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ABSTRACT

Web-based network simulation frameworks are becoming
highly portable and extensible. However, they still lack the
degree of language and platform independence required for
large-scale deployment on the World Wide Web. Our
approach to enabling large-scale deployment uses a set of
standard CORBA-IDL based programming interfaces, a
publisher-subscriber model for communication, and
dynamic composition of all simulation entities (simulated
network hosts and links). A prototype application for
testing distributed computing policies demonstrates that the
CORBA components not only provide language and
platform-independence, but also provide the ability for
simulationists to connect objects to a third party distributed
simulation. By using a uniform messaging approach to all
simulation events, objects can be reassigned to different
simulation entities without requiring code modifications.
Dynamic loading and unloading of objects during a
simulation run supports fault simulation, simulation entity
polymorphism, and generation of dynamic topologies.  A
link-scheduling example has demonstrated that our
language and platform-independent network simulation
framework attains extensibility and flexibili ty.

1 INTRO DUCTION

The World Wide Web (WWW) and the underlying Internet
provide a potentially huge distributed computing infra-
structure that can be extended to host distributed simula
tion services (Fishwick 1996). With recent developments
in web-based simulation technology, the portability and
versatility of simulation tools has increased dramatically
(Page, Griff in, and Rother 1998). The ubiquity of web
access has also created a promising medium for large-scale
deployment.

Achieving large-scale deployability on the web poses
some interesting challenges. Web-based simulation tools
need to be portable across a variety of computing
1587
platforms. These simulation tools also need to be as
flexible as traditional tools, and in particular need to be
extensible by end users. Furthermore, this flexibil ity should
not compromise on user-comfort issues such as using a
familiar implementation language. Therefore, web-based
simulation tools need to provide a portable and extensible
infrastructure with interoperability support for distributed
simulation objects written in a variety of languages.

The current trend toward building web-based network
simulation frameworks is to use platform independent
object-oriented (OO) technologies such as Java (Arnold
and Gosling 1996) and RMI/Enterprise Java Beans
(Thomas 1998). These frameworks are portable and
extensible, but require that all simulation objects be
developed in the single language of Java. This approach
limits the ability to re-use existing code and limits the
deployability of the framework to only those users who are
comfortable with the Java language.

This paper proposes a web-based network simulation
framework that uses the Common Object Request Broker
Architecture (CORBA) (OMG 1998) technology to
provide a flexible, extensible, platform-independent and
language-independent simulation environment that is
suitable for large-scale deployment. The framework uses
standard CORBA Interface Definition Language (IDL)
(OMG 1998) based Application Programming Interfaces
(APIs) and a CORBA Object Request Broker (ORB)
(OMG 1998) to provide the necessary location
transparency and language independence. These CORBA
components enable simulationists to write their own
objects on their own platforms, and have their objects
participate from their platforms in a remote-simulation
hosted by a third party.

All simulation entities (simulated hosts and links) in the
framework are composed using stock and user-written
objects. A mechanism based on the publisher-subscriber
model (Rajkumar, Gagliardi, and Sha 1995) facilitates
communication among these objects. All interactions within
the framework are message-based and have a uniform mess-
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age format. This enables loosely coupled interact
between objects in a simulation entity and facilitates relo
tion of objects to different simulation entities with ease.

The IDL-based APIs in the framework also includ
support for dynamic loading and unloading of modul
(user-written and stock objects).  This enables modules
load or unload other modules dynamically during t
simulation run. This facility is useful for simulating faults
changing the behavioral aspects of simulation entit
(simulation entity polymorphism) and generating dynam
topologies. This adds tremendous flexibility to th
simulation framework and makes it well suited to simula
real-world wired and wireless networks.

A prototype application for network simulation
frameworks was also implemented as a proof-of-conc
exercise. The application includes networking-speci
tools for visualization, debugging and post-simulation da
analysis. These tools aid in rapid composition and anal
of a simulated network.

2 PREVIOUS WORK

Simulation tools can be primarily divided into two classe
generic simulators and simulation frameworks. Generic
simulators are relatively simple and can be used as build
blocks for more complex, specialized simulator
Simulation frameworks, on the other hand, inclu
specialized tools to simplify the development of doma
specific simulations. Therefore, simulation framewor
may be preferable to generic simulators.

The CORBA-based simulation facility developed 
Bellcore (Shen 1996) for generic discrete-event simulat
provides a location-transparent and language-indepen
mechanism for generic simulations, and is suitable 
remote simulation. However, this work is targeted sole
for generic simulations and would have to be extended
be applicable to domain-specific contexts.

Mature network simulation frameworks such as REA
(Keshav 1988), ns-2 (Fall and Varadhan 1998), INSAN
(Mah 1998) and x-Sim (Brakmo, Bavier, Peterson, a
Raghavan 1997) provide rich APIs and tools, and ha
been extensively used by researchers. However, even 
support for web-based simulation in REAL, its flexibility i
limited because it does not provide simulation support 
user-written objects in its web-based mode. This limits 
utility for large-scale deployment over the Web.

With the recent demand for web-based netwo
simulations, frameworks such as NetSimQ (Hou, Han and
Jain 1998) have been developed. NetSimQ provides an
extensible simulation environment and a rich graphi
user-interface. A Java implementation gives NetSimQ high
portability, but comes at the price of a single-langua
implementation approach.

The network simulation framework discussed in th
paper builds upon the work done in both the simulation a
1588
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distributed computing communities to combine the best
both worlds. It builds upon ideas drawn from CORBA
based generic simulators to create a language-independ
distributed network simulation framework. This allow
remote user-written objects to cooperate in a simulatio
distributed on several machines, in a language-independ
and platform-independent fashion. To our knowledge, th
degree of flexibility is novel for a network simulation
framework. Additionally, our framework offers a set o
networking specific tools for composition and analysis 
the simulation.

Our framework stresses providing flexibility by
dynamically composing simulation entities. The publishe
subscriber communication model along with a unifor
message format aids us in achieving this goal. This co
munication model is similar to the anonymous commun
cation model (Oki et. al. 1993) used in the distribute
computing community and facilitates relocation of objec
to different simulation entities during a simulation run.

The Defense Modeling and Simulation Office’
(DMSO) High Level Architecture (HLA) (Dahmann,
Fujimoto, and Weatherly 1997) also supports su
language-independent and platform-independent comp
tion of a simulation. However, the HLA differs from ou
framework in that it is generic rather than networking
specific. Hence, it does not include any tools fo
synthesizing and analyzing network simulations. The HL
does provide reasonable underlying mechanisms for fut
versions of our framework, but was not ready in time to 
used on the current project described in this paper.

3 NETWORK SIMULATION FRAMEWORK

The architecture of the network simulation framework 
derived from a top-down Object Oriented (OO) view of 
network. To produce an extensible foundation for th
framework, we identified the core components present
all communication networks and built their softwar
counterparts. These core components are modeled
abstract classes, where each abstract class head
hierarchy of a particular type of components. Compone
get more specialized and embody additional features a
properties with each successive level in the hierarchy.
addition, all components were built using well-establish
OO design patterns (Gamma et al. 1995) to make th
highly re-usable.

3.1 Object Hierarchy

All hardware components are derived from an abstract b
class called Entity. This abstract class encapsulates meth
definitions that are common to all hardware components

Two classes were derived from Entity, called Node
and Channel to model the fundamental concept of 
communication network in which a set of nodes exchan
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messages over some communication medium. Anot
level of class inheritance was used to construct the Host
and Link classes.  A Host, which is derived from a Node,
has a Central Processing Unit (CPU) and input/output (I
ports, while a Link, which is derived from a Channel, could
be a simplex, half-duplex or full duplex link.

Each entity consists of a module manager, which
encapsulates an API, known as the ‘Module Plug-in AP
(MPA). The ModuleManager class is an abstract base cla
that heads a hierarchy of more sophisticated mod
managers. Module managers are also refined us
multiple levels of inheritance, and there is always one a
only one module manager associated with each en
These inheritance hierarchies are shown in the cl
diagram of Figure 1.  (All notations in figures are per t
Object Modeling Technique (OMT) (Rumbaugh et a
1991, Rumbaugh 1994).

Figure 1: Class Diagram for Simulation Entities

Even with additional components, all entities have
limited set of behavioral properties. Therefore, one or m
intelligent modules are assigned to each entity to enhan
behavior.

To support flexible object composition, entities need
standard way to reference all modules without having
know particular module classes. Hence, all modules 
derived from an abstract base class, Module, which exports
an interface known as the Module Callback Interfa
(MCI). The MCI contains methods for modul
initialization, message processing and module shutdo
Figure 2 shows the inheritance hierarchy for a modu
where ModuleX and ModuleY are example concre
classes derived from the abstract base class Module. A
typical host or link consists of a number of assign
modules and an appropriate module manager.  Figur
shows typical host and link configurations.

3.2 CORBA IDL-based APIs

The Module Plug-in API (MPA) and the Module Callbac
Interface (MCI) provide standard interfaces and seman
for modules and the simulation entities to refer to ea
1589
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Figure 2: Class Diagram for Modules

Figure 3: A Typical Host and Link Configuration

other without having to know concrete class details. This 
helpful when simulation entities need to be compose
dynamically.

The flexibility provided by the MPA and the MCI is
extended further by defining them in CORBA IDL and
using a CORBA ORB to provide necessary middlewar
services. Modules written in a variety of languages an
distributed on a variety of platforms can be dynamicall
reassigned to different simulation entities while
cooperating in a single simulation. CORBA thus provide
location transparency and language independenc
eliminating the need for complicated inter-proces
communication code. In addition, it also makes our AP
highly portable and our framework widely deployable.

3.2.1  The Module Plug-in API

The CORBA-IDL based Module Plug-in API (MPA) is
shown in Figure 4. Note that only the core API calls hav
been shown. An illustration of how the API would be use
is presented later in the paper.

Figure 4: The Core Module Plug-in API
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There are two things worth noting about the MPA
First, the MPA uses a uniform message forma
AmMessage, for all calls. This feature, along with the
publisher-subscriber communication model, facilitat
relocation of modules to different simulation entities.

Secondly, the MPA includes methods for dynam
loading and unloading of modules. These requests 
generated by other cooperating modules desiring 
dynamically alter the behavior of the simulation enti
without user intervention. This feature enables simulati
faults dynamically, changing entity behaviors dynamical
and changing the topology of the simulated network o
the-fly. For example, loading a routing and forwardin
module on a host might change its behavior from an e
host to a router. Similarly, a router failure can be simulat
by unloading all the modules on a router, causing t
simulated network to re-route. This provides a dynamica
customizable simulation environment that can simulate
large number of scenarios.

3.2.2  The Module Callback Interface

The CORBA-IDL based Module Callback Interface 
shown in Figure 5. This interface has three metho
amInit, amProcessMessage, and amDestroy, which are
invoked for module-initialization, message-delivery an
module-shutdown respectively. These have a unifo
single-argument invocation format, enabling modu
relocation to different simulation entities with ease.

Figure 5: The Module Callback Interface

3.3 Inter-Module Communication

All inter-module communication in the framework i
message-based and is built upon a publisher-subscr
model that is functionally similar to the anonymou
communication model.

Messages are published on named software bu
called message-channels. These message-channels a
dynamically created by an entity in response to reque
from modules to either publish on, or listen to, non-existe
message-channels. Message-channel names serve
unique identifiers with scopes limited to each entity. 
database of names for existing message-channels is kep
each entity and can be queried by a module to decide o
unique name for its new message-channel. Entities han
message distribution transparently using message-cha
names. Thus, an entity acts only as a message-distribu
1590
,

re
o

-

-

e

a

,

er

es

ts
t
as

by
 a
le

agent for all inter-module messages bearing no knowled
of their contents. This complements our design goals 
“simple entities” and “intelligent modules”.

To illustrate the communication mechanism, consid
an example in which the two classes, SenderModule and
ReceiverModule, shown in Figure 6, are derived from
Module. Both these classes inherit the MCI and provide t
necessary implementations for the methods in the MCI.
Figure 7, the instance hostA of class Host comprises of an
instance hostModuleManager of class
HostModuleManager, which provides the necessary
implementations for methods in the MPA. The instanc
hostA, also has three modules assigned to it, name
sender, which is an instance of class SenderModule and
receiver1 and receiver2, which are both instances of clas
ReceiverModule. As their names suggest, sender acts as a
publisher and desires to publish messages on a n
message-channel ‘XYZ’. receiver1 and receiver2, on the
other hand, act as subscribers and desire to receive
messages published on message-channel ‘XYZ’.

Figure 6: Class Diagrams for Modules
SenderModule and ReceiverModule

Figure 7: Object Diagram for Host ‘hostA’

The sequence of events using this communicati
model for the example configuration is shown in th
sequence diagram of Figure 8. For clarity, API calls ha
been simplified and arguments have not been encapsula
via the AmMessage message format.
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Figure 8: Sequence Diagram for an Example Scenario
Inter-Module Communication

Three features provided by this model are noteworth
First, if no subscribers had subscribed to message-cha
‘XYZ’, publisher sender could have still published
messages. Second, the message distribution service
hostA does not care about the contents of a message, 
just delivers the message to all the registered subscrib
Finally, all publishers and subscribers can subscribe a
unsubscribe whenever they choose. Thus, these feat
provide a loosely coupled communication mechanism t
is useful for dynamic inter-module communication an
module reassignment.

4 PROTOTYPE OVERVIEW

A prototype framework was implemented using 
traditional two-tier client server model with a portab
user-interface that requests simulation services from
remote, compiled simulation kernel. This syste
partitioning provides portability to the framework withou
compromising on model execution speed. Additionally, o
approach reduces startup costs such as download latenc

The prototype consists of a simulation kern
implemented in C++ and a user-interface written in Java
CORBA ORB is used to provide remote object invocatio
and facilitates communication between the user-interfa
and the simulation kernel. A CORBA name service is us
for providing the appropriate object references at run-tim
In addition, a Relational Database Management Syst
(RDBMS) is used to provide the necessary loggi
facilities. This system architecture is illustrated in Figure 

Access to the simulation kernel is via a simulatio
server, which waits for simulation requests. Simulatio
requests are generated by user interfaces when a 
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Figure 9: System Architecture of the Prototype

decides to start a new simulation. Upon receiving 
simulation request, the simulation server spawns a proc
called a Simulation Executive. The simulation executive
takes over the task of managing the simulation a
coordinating interactions between different entities in th
simulation.  Each user interface has exactly one simulat
executive assigned to it. The simulation executive hand
scheduling events and checking for breakpoints. Each h
or link is encapsulated in a HostExecutive or LinkExecutive
class respectively. These classes act as wrappers for
corresponding entities and present an API that oth
components in the system use for startup/shutdown of 
encapsulated entity, event delivery, instrumentation a
injecting asynchronous inputs. These executives a
derived from a base class EntityExecutive that supports
common functionality.

Typical sequences of interactions that take pla
among the various components in the system are sho
in the sequence diagram in Figure 10. On startup, the u
interface first contacts the SimulationService and requests
the creation of a new SimulationExecutive. Next, an input
specification provided by the user is sent to th
SimulationExecutive. This specification is then parsed
and the appropriate HostExecutives and LinkExecutives
are instantiated. The specification also contains identifie
for modules that need to be loaded (recall that for a h
or link to exhibit a desired set of behavioral propertie
modules need to be assigned to it). Thus, ea
HostExecutive or LinkExecutive instantiates its modules.
These modules then interact with the entity encapsula
in the executive through the MPA and drive th
simulation.

A simulation typically consists of many stock
modules and a few user-written modules. Stock modu
are pre-defined to help provide a variety of facilities suc
as routing abilities for a Host or statistical message
corruption for a Link. User-written modules might be
modules written by the user or could be third-par
modules conforming to the MCI and the MPA. In order t
bootstrap these modules into a simulation, an activati
daemon is included in the code shipped with the us
interface.
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Figure 10: Sequence Diagram for a Typical Startup
Scenario

5 EXAMPLE APPLICATION

To exercise the MPA and the MCI, we implemented th
behavior of Resource Priority Multiplexing (RPM)
(Hansen 1999) modules for scheduling network traffic. W
found it straightforward to implement RPM schedulers a
modules in our framework, and obtained simulation resul
matching theoretical behavior predictions.

RPM is a probabilistic method for sharing resource
among competing tasks, and is normally used fo
scheduling network traffic from flows that compete for
access to a specific network link. RPM involves two
components – the RPM scheduler and the RPM equati
solver. Due to space limits, we only discuss the RPM
scheduler, although the equation solver was als
implemented. The RPM scheduler is made up of a marker
that assigns priorities to packets and a scheduling
mechanism that transmits these packets. The marker has
built-in state machine having one state per competing flo
The holding times for each state are decided by the RP
equation solver. These holding times depend on the ta
mix and the service levels required by each task. (Th
terms task and flow are used interchangeably througho
this section; the RPM scheduler sees the manifestation o
task as a flow of packets that the task produces.)

The implementation for the methods in the MCI fo
the RPM scheduler is shown in Figure 11(a) through 11(c
Only the necessary code to explain the concepts a
illustrate the use of the MCI and MPA has been included.

Figure 11(a) shows the initialization sequence for th
RPM scheduler module. Initially, the module parses the inp
parameters, which can be user-specified via a configurati
file, or can be set by a module dynamically at run-time. Th
input parameters contain information about queue sizes a
other configuration options. On parsing the input paramete
the module registers as a subscriber to a message-cha
named “XMIT_REQUEST”. This message-channel is used 
receive messages from other modules on the entity that w
to send packets out on the network.
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(a) Initialization

(b) Message Processing

(c) Shutdown

Figure 11: MCI Method Implementations for the RP
Scheduler

Figure 11(b) shows the implementation of th
amProcessMessage method, containing the decisio
process of the RPM module. The amClassifyPacket
method classifies and marks packets with an appropr
priority that depends on the state of the state-machine
the marker. After marking, the packets are enqueued a
scheduled for transmission. If the queues get full, 
scheduler in the amSchedulePacket method starts dropping
packets with the lowest priorities until there is enou
space in the queues to enqueue the new packet.

Figure 11(c) shows the amDestroy method of the
module. As there is neither any shared state between
RPM module and other modules nor any persistent stat
the RPM module, the module does not have any clea
work to perform and is thus empty.

A simple two-host network was simulated to test t
RPM modules, in which one host was the sender and
other the receiver. Three modules were used to gene
traffic bound from the sender to the receiver. The traf
profiles for the three modules (or tasks) are shown in Ta
1. The notation used for the high and low profiles deno
the amount of time the task is in a particular state (high
low) and the traffic it generates. For example, the task
generates 5Mbps of traffic, 95% of the time. A RP
scheduler was also assigned to sender and was use
schedule packets from the three modules. The bandw
of the link connecting the two hosts was set to 30Mb
The last column in Table 1 indicates the assurance-le
required by each task.
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Table 1: Traffic Profiles for the Modules A, B, and C
Task Low Profile High Profile Assurance

A 95%@5Mbps 5%@20Mbps 99%

B 85%@2Mbps 15%@18Mbps 99%
C 90%@7Mbps 10%@12Mbps 98%

The results obtained for the network simulation
problem are shown in Figure 12 and 13. Figure 12 show
the observed traffic generated by the three modules. It c
be seen that this traffic confirms to the traffic profiles o
Table 1. The delivered traffic at the receiver and th
assurance-levels for the tasks are shown in Figure 13. It
apparent that all three modules get equal to or more th
the assurance-levels that they desire. The values actua
obtained were 99.16%, 99.28% and 99.58% for tasks A,
and C respectively. Additionally, it can be seen tha
guaranteeing a service-level of 99%, 99% and 98% for t
three modules, which have the potential of generating mo
traffic than the link can handle, is a non-trivial task.

The RPM module implementation delivered the
expected results with a minimum of implementation effor
Thus, we feel that our MPA and MCI are sufficient and
useful for implementing even relatively complex modules.

6 CONCLUSIONS AND FUTURE WORK

The concurrent need to provide portability and extensibilit
to web-based simulation frameworks, while providing
complete language-independence and platform
independence for large-scale deployment, mandates
careful choice of distributed object technologies plus 
good design. Previous web-based network simulatio
frameworks fall short of providing complete language an
platform-independence, limiting deployability.

Our approach to enabling large-scale simulatio
framework deployment uses CORBA-IDL based APIs, 
publisher-subscriber communication model, and dynam
composition of all simulation entities. The CORBA
components provide language and platform-independen
In addition, they allow simulationists to write their own
objects on their own platforms and have their objec
participate from their platforms in a remote-simulation
We used a uniform message format to enable modu
reassignment to different simulation entities withou
requiring source-code modifications or recompilation. Ou
APIs also include support for dynamic loading and
unloading of modules, which facilitates simulation o
faults, simulation entity polymorphism and dynamic
topologies. A networking example demonstrated th
applicability of this approach to realistic modeling projects

Despite the flexibility and suitability of our framework
for large-scale deployment, an implementation based on
still has to address issues such as security, protection a
fault-tolerance if it is to be deployed on the World Wide
1593
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Figure 12: Traffic Generated by Tasks A, B, and C

Figure 13: Service Characteristics and Assurance
Levels of Tasks A, B, and C

Web. For example, in order to achieve secu
communications, users need to be authenticated a
messages may have to be encrypted. We envision 
future use of SSL-based (Freier, Karlton, and Koch
1996) CORBA ORBs.

The work presented herein demonstrates that it 
possible to attain a web-based network simulatio
framework suitable for large-scale deployment witho
sacrificing extensibility or flexibility.  The prototype
described in this paper is being used to evaluate distribu
computing policies, and is being itself executed as 
simulation on distributed computers. It is envisioned th
other such naturally distributable simulations will benef
from a similar approach.
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