Proc. Winter Simulation Conference, Orlando, FL, December 2000
IEEE Computer Society Press, Los Alamitos, CA, pp. 1705-1712

LINKING SPATIALLY EXPLICIT PARALLEL CONTINUOUSAND DISCRETE MODELS

Boleslaw K. Szymanski

Gil bert Chen

Department of Computer Science
Renssaer Polytedhnic Ingtitute
Troy, NY 1218Q U.SA.

ABSTRACT

This paper advocates the use of mohil e agents for linking
simulations running on different computers. A Mohile
Component approach is proposed to enhance reusability
of existing smulations and to improve dficiency of
component based smulations of complex systems. A
basic unit of the mohile @mponent simulation is a
simulation server with a communication interface to
mohil e agents. Each mobile agent links and coordinates
component’s exeaution. We used this approach to
implement a combined Lyme disease simulation. It
consists of a partial differential equation based continuous
simulation and perallel discrete event simulation with
explicit space representation. The performance of this
implementation is presented to demonstrate the feasibility
of the Mobile Component approach. In addition, a
processport model of simulation is discussed. Its
implementation allows efficient linkage of simulation
servers, if they are programmed in a simulation language
supporting the processport model. We finally show that
the performance of the Mohle Component approach
could be dgnificantly improved by using compiler
techniques to eiminate overhead of communication
among simulation servers.

1 INTRODUCTION

An exponential growth in procesor speed and network
bandwidth in the last decade enables development of large
simulations of unprecalented fidelity and computational
complexity. In particular, it has becmme feasible and
computationally efficient to create large-scale simulation
by integrating several existing models. Component-based
modeling technique is a convenient way of building
integrated simulations for distributed and heterogeneous
computational environments. A large simulation can be
partitioned into a number of componentsthat interact with

each other. The interaction itsdf is relatively smple and
therefore easy to describe. Building each component may
require knowledge from spedfic discipli nes, which makes
modeli ng a whole system by a single team difficult.

Ancther advantage of component-based approach is
that it facilitates sSmulation reusability. Existing models
can easily be integrated with new ones that are built from
scratch. Since verification and validation of a simulation
is a very tedious and dfficult task, using a simulation
aready verified is very valuable Hence modern
simulation design paradigms upport reusability as a
means of reducing the st and complexity of the design
of large simulations.

In the next sedion, we briefly review High Level
Architedure (HLA), the best-known component approach
for simulation, and point out its advantages and
disadvantages. Sedion 3 introduces mohle agent
technology, which alows autonomous programs to
dynamically link distributed simulations. In Sedion 4, we
propose a new approach, referred to as Mobile
Component approach, to coordination of distributed
simulations based on mohil e agent technology. In Sedion
5, we present a case study of the smulation of Lyme
disease. In Sedion 6, we introduce a processport model
that results in efficient linkages within a mohle
component simulation. Sedion 7 concludes the paper.

2 THEHLA

Developed by the US Department of Defense, HLA (see
US Department of Defense, Judith et al. 1998 provides
software architedure for integration of a wide variety of
simulations. A major design goal of HLA was to provide
amodeling medhanism for reusing existing simulations ©
that the cost and time required to create new ones can be
deaeased. The U.S. Department of Defense (DoD) has
mandated that the HLA should be used acrossall classes
of simulations within the DoD. In addition, the HLA has
been adopted as the standard for distributed simulation by


Bolek
Text Box
Proc. Winter Simulation Conference, Orlando, FL, December 2000
 IEEE Computer Society Press, Los Alamitos, CA, pp. 1705-1712


the Objed Modding Group, and is currently under
consideration for beaming IEEE standard 1516

The HLA standard is composed of threeparts:

1. HLA rules that describe design principles and
congtraints on  HLA-compliant  federates
(smulations) and the etire federation. A
federation is a combined simulation system that
is created by integrating federates.

2. HLA object models that describe the aitical
aspeds of simulations and federates <ared
acrossa federation.

3. An HLA interface specification that describesthe
runtime services provided by the Runtime
Infrastructure (RTI) to federates and by federates
to the RTI. The Runtime Infrastructure is
responsible for executing a federation.

In HLA, reusability is understood much broader than
the @mmon notion of reusability in the software
engineging community (Ernest 1998. Runtime
information of all elements within a simulation (federate)
is colleded by a federate wrapper and available to the
RTI. The RTI acts as a communication bus. All
communication between federates is implemented on a
subscription basis and must go through the RTI. A
federate may subscribe to a spedfic objed classand may
have the RTI notify that federate whenever a new ohjed
of this classis discovered. The subscriber federate may
also request that it will receve updates to the subscribed
objed whenever its attributes are dhanged. The publishing
federate notifies the RTI whenever an objed’s attribute
value danges, which are then sent to the subscriber
federates.

There are two problems with this approach. First, the
HLA requires that the simulation is built in accordance
with its framework. Although in theory it is posshle to
wrap up a legacy simulation as an HLA-compliant
federate, a considerable amount of effort must be put to
program the wrapper. Often writing such a wrapper is
more difficult than writing a federate from scratch.
Semnd, the subscribing and publi shing scheme imposes a
tremendous burden on communication bandwidth (Wayne
and Gerald 1999. Some tedhniques, such as Remote Data
Filtering (William et al. 1998, have been proposed to
reduce this communication overhead. Yet, the fact that
federates cannot transmit messages diredly to ahers
prevents efficient communication implementation.

3 MOBILE AGENT

A close examination of theidea behind the HLA approach
reveals that the underlying communication scheme of the
HLA is based on a Client/Server paradigm. The six
groups of services defined by the HLA standard can be
clustered into two classes. Some services, call ed federate-

initiated, are provided by the RTI and invoked by
federates. In contrast, RTI-initiated services are provided
by federates and invoked by the RTI. The RTI has an
interface named RTlambassador that defines all federate-
initi ated services. Similarly, a federate must implement a
FederateAmbassador interface for all RTI-initiated
sarvices. As a result, bath the RTI and each of the
federates may act asa client and a server at the sametime.

One limitation of the Client/Server paradigm is its

lack of flexibility. The set of services provides by the
server is defined statically. Thus, it is impossble for a
server to med unforeseen requirements without
modifying itsinterface Thisis exactly the reason why the
HLA designers have put a significant amount of effort to
define enormous runtime services that enable @moperating
a wide variety of simulations nowadays. Whether or not
the HLA can med all future nealsis of course unknown.

Ancther limitation of the Client/Server paradigm is

that it results in inefficient communication. Each request
invoked by a client might require multiple two-way
messges. For simulations that need intensive inter-
component interaction and that exeaute on limited-
bandwidth networks, this often is a seriousinefficiency.

The described abowe limitations of the Client/Server

paradigm result from the design in which the server but
not the dient has the cde to perform the service
Therefore, the dient must send a request to the server that
then exeautes the rresponding service and sends the
result back to the dient. If the code would be able to
migrate from host to host, the disadvantages of
Client/Server paradigm would have been overcome. This
is the idea behind Mohile Code paradigms of which the
following are the three most important ones (Carlo and
Giovanni 1997, Antonio et a. 1997):

1. Code on Demand paradigm in which the dient
fetches the service @de from the server and
exeautes that code. This method can save
bandwidth if the size of code is snaller than the
size of data produced by that code.

2.  Remote Evaluation paradigm in which the dient
poseses code that performs the service
However, the dient neadsto send this code to the
server for exeadtion. In this lution, the main
goal is increased flexibility. Binding the service
code to the dient instead of keeguing it with the
server makes modification and upgades of the
service esy. Another advantage of this approach
is smplification of balancing the load between
servers, because ech server can exeaute any
serviceunder such an arrangement.

3. Mobile Agent approach that can be viewed as a
generalizaion of Remote Evaluation. In this
approach, there is no distinction between a client
and a server. All hosts on the network behave the



same way. An agent, consisting of the exeautable
code and theintermediate state, can migrate from
host to host and interact with other agents. As a
result, both the isse of communication
efficiency and the issue of load balance @n be
addressd.

Thanks to its effediveness the Mohle Agent
approach has been an active research area in the past few
years, while Code on Demand and Remote Evaluation
approaches attract few researchers. Various Mohil e Agent
systems are now available, most important among them
are D’Agent (Robert et al. 1996 and Aglets (Aglets
Software Development Kit). Applications of Mohile
Agent systems include network management (Alan et al.
1999, information retrieval, eledronic commerce and
others. Mobil e Agents has also receved much attention in
the simulation community. They can be applied to the
distributed smulationsin two ways:

1. Data Filtering (Linda et al., Linda et al. 1999.

An approach has been proposed that uses mohile
agents to link a continuous smulation with a
discrete event simulation. By sending a mobile
agent to the remote data server to perform a
remote omputation such as filtering the data,
transmisson of large data sets is avoided. Only
the relevant data, that often contain a relatively
small part of the full data, is sent back.

2. Mobile Smulation. To reduce the variance of
results, a simulation must be run for along time,
often repeatedly. As a result, the size of the
simulation code is often small compared to the
amount of data produced by such a run.
Therefore, when linking multi ple simulations, it
is beneficial to move all simulation code together
to a powerful multi processor instead of running
them on separate hosts. Using this approach can
significantly reduce the overhead of
communication among simulation components.
For instance, if the TCP/IP based messge
passng can be replaced by the shared-memory
messge passng, time savings can be very
significant. Moreover, this overhead can be
totally eliminated if some compiler techniques
are used to reconfigure the simulation, aswe will
describein the later sections.

As dmulations are bemming larger, networks of
computers are increasingly attractive platformsto exeaite
them. The Mohile Agent tedhnology provides an efficient
way of implementing simulations on such a platform,
making the Mohle Agent an increasingly important
diredion in simulation research. In the next section, we
present a novel approach, named Mohle Component
Approach, which applies Mohile Agent technology to
component-based simulations.

4 MOBILE COMPONENT APPROACH

Currently, two challenges for a good component-based
modeling technique are:

1. easeof linking existing simulations, and

2. facilitating collaborations in building new

simulation.

These two goals are what the HLA wants to achieve,
too. However, in our opinion, the HLA falls dort of bath
of them. In case of the first goal, the HLA does all ow easy
linking of existing simulations, but such simulations must
be built in accordance with the HLA framework. It
remains unclear whether the HLA can med the second
goal because two main disadvantages of the HLA are its
inflexibility and inefficiency.

We propose Mohile Component approach to solve the
abowe problems. In this approach, mobile agents link
together simulation components. The main benefit of such
arrangement is that the mobile agent can choose the best
host to exeaite on. The awmmunication flow between the
agent and the mmponent simulations may not be
symmetric. Some mmponents may have more intensive
communication with the linking agent than the others.
Therefore, an efficient solution is to put the agent and the
component that requires maximum bandwidth on the
same host. This lution can be modified and the agent
can dynamically migrate to aher hogt, if it deteds
changes in communication flow during a simulation run.

Ancther important feature of Mobile Component
approach is the concept of a smulation server. Each
simulation is required to define an interface that provides
sufficient functionality to link it with other components.
Mobil e agents interact with the simulations only through
such interface In thisway, seaurity issueis circumvented.
By limiting the access to components, this paradigm
distinguishesitsdf from the majority of the airrent mohile
agent systemsin which seaurity istheimportant isaue that
has attracted a lot of researchers.

An interface onsists of methods and events. Mobile
agents invoke methods while simulations trigger events.
Both methods and events define an argument list and a
returned data type. An interface may have multiple
implementations to maximally utili ze the cpabiliti es of
the underlying computer hardware. For instance if the
simulation and the agent are located on the same host,
shared-memory implementation can be used to avoid the
relatively dow speed of TCP/IP.

Currently, the research on Mohile Component
approach focuses on the first goal, which is to facilit ate
linking of existing simulations. We will discuss how it
meds the second goal in Sedion 6.



5 CASE STUDY: LYME DISEASE SIMULATION

Lyme Diseaseis prevalent in the Northeastern United
States. People can acquire the disease by coming in
contact with atick infected with the spirochet, which may
transfer into the human blood, causing an infection. Even
though the most visible cases of Lyme disease involve
humans, the main infection cycle consists of ticks, mice
and deer. If an infected tick bites a mouse or a deer, it
becomes infected. The disease can also be transmitted
from an infected mouse to an uninfected, feeding tick.
Ticks undergo three life stages: they are born as larvae,
transform then into nymphs and finally mature into adult
ticks. Larvae and nymphs prefer feeding on mice, while
adult ticks bite only mammals, mainly deer. The seasonal
cycle of the disease, and the duration of the simulation, is
180 days, starting in the late spring. Thistimeisthe most
active for the ticks and mice. For example, during that
time mice are searching for nesting sites and may carry
ticks a considerable distance. The cycle of Lyme disease
isshown in Figure 1.

uninfected . .
tick bite/V larval tick \nfict.on
infected infected
mouse nvmphal tick
- A bite
mfecnox Uninfected
mouse

Figure 1: The Cycle of Lyme Disease

We have already built a paralle discrete event
simulation (PDES), in which deer and mice are modeled
as individuals and space is discretized into a grid of
locations (Ewa et al. 1996). Ticks are treated as a
"background", a distinct feature of each space location.
The density of ticks is computed independently at each
location. Hence, it changes in discrete steps even between
neighboring locations. Another simplification in this
model is an assumption that ticks are totally immobile
themselves and spread over the space only by being
carried around by the animal on which they feed. The
simulation uses the optimistic protocol. To reduce the
overhead incurred by rollback, it employs Breadth-First
Rollback (Ewa and Boledaw 1997) that limits the number
of events that need to be rolled back in response to a
straggler.

A more accurate model requires that tick density
changes continuoudly in space and ticks themselves
spread out by crawling in response to the level of

crowding at each point of space. In such a moddl, ticks
density is described by a set of partial differential
equations (PDE). Incorporating a PDE solver directly into
the paralld discrete simulation could be extremely
difficult, because it changes fundamentally the nature of
discrete event simulation; typically, the whole program
would have to be redesigned.

Alternatively, a separate PDE solver can easily be
built using either a standard or customized numerical
package. Then, the PDE solver and the parallel discrete
event simulation need to work collaboratively in order to
simulate the Lyme disease more accurately. Using
Mobile Component approach, both of them are viewed as
simulation servers that need to define an interface for
mutual collaboration. Then, an agent can be built to
synchronize them, as shown in Figure 2 (Gilbert et al.
2000).

interface

N

Continuous Synchroni- Discrete
Simulation zation Event
Agent Simulation

Figure 2: Linking Two Simulations

5.1 Modified Discrete Event Smulation

To reflect the mobility of ticks, the original discrete event
simulation has been extended with an interface through
which the tick state can be changed. Whenever the
discrete event simulation needs to access the density of
ticks, it triggers an event indicating that the tick density
has changed in a particular location. That event is then
passed to the interface, and is received by a maobile agent
which can then decide whether to respond immediately or
later, based on the timestamp of the event.

interface DES

methods:
void init();
events:
void tickbite(int proc_id, int x, int 'y,
double time, TICK& tick);
void tickdrop(int proc_id, int x, int 'y,
double time, TICK& tick);
void tickbite_undo(int proc_id, int x, int y,
double time, TICK& tick);
void tickdrop_undo(int proc_id, int x, int y,
double time, TICK& tick);

Figure 3: Interface of the Discrete Event Simulation



5.2 Continuous Simulation

There are five types of ticks in the Lyme disease
simulation: uninfected adult ticks, infected adult ticks,
susceptible nymphs, infectious nymphs and questing
larvae. To describe the tick population, we use a reaction-
diffuson modd. A reaction term summarizes spatially
localized processes of birth, death, and when applicable,
developmental advance and infection transmission. The
parameters of the reaction terms areindependent of spatial
location. Diffusion terms involve the second-order partial
derivatives. Diffusion approximates biological dispersal
of ticks in response to the overpopulation.

To solve the above partial differential equations, we
chose the fully discrete finite difference method which
discretizes both in time and space dimensions. Thus, the
continuous domain of the equations is replaced by a
discrete mesh of points and the derivatives are replaced by
finite difference approximations. In addition, the PDE
solver needs to be able to rollback simulation time
because it is linked with an optimistic discrete event
simulation whose events may be executed out of the
temporal order.

interface CS{
methods:
void init(int x, int y);
void write(int X, int y, tick_type t, double density);
void read(int x, int y, tick_type t, double& density);
void forward(double time);
void backward(double time);
events:
void forward_complete();
void backward_complete();

Figure 4: . Interface of the Continuous Simulation

5.3 Synchronization Algorithm

The synchronization between continuous and discrete
event simulations uses approximations on the simulated
time. The mobile agent that is responsible for the
synchronization keeps track of the simulated time of the
continuous simulation. If a discrete event arrives with a
timestamp falling into the range between current and the
next smulated time of the continuous simulation, then
this event is processed immediately. If the event
timestamp is greater than the next step continuous time,
the event must be stalled for later execution. The mobile
agent advances the continuous simulation into the next
step only when all simulated times in discrete processes
have past the next continuous simulated time.

5.4 Experiment Results

In our experiments, the parallel discrete event ssimulation
is based on MPI and runs on a 16-node IBM-SP2
machine. Another standalone program running on the
IBM-SP2 provides the interface to the paralle discrete
event simulation. The continuous simulation running the
PDE solver executes on a 12-node SGI Origin 2000
shared-memory multiprocessor. The PDE solver uses
Pthread library to distribute the computation over multiple
processors. In addition to the computation processors, an
additional communication processor is assigned that runs
the interface opened by the PDE solver.

5.4.1 Discrete Event Simulation as a Simulation
Server

Asdescribed earlier, the original discrete event smulation
is modified to enable a mobile agent to change ticks state
variables. To demonstrate feashility of the Mohile
Component approach, we built a mobile agent whose only
function is to drive the discrete event ssimulation. This
agent simply records the density of ticks without changing
them, except in the initialization phase where certain
amounts of ticks are distributed over the two-dimensional
space.

Table 1: Comparison of Simulation Execution Timeswith
a Mobile Agent Running on Different Computers. The
parallel discrete event simulation uses four processors.

Agent host Execution Time
Remote computer 134 seconds
IBM SP2 74 seconds

This agent is written in the Java-based Aglet system
developed by the IBM Tokyo Research Laboratory. It can
either run on the remote computer from which the user
gets access to the simulation sever, or migrate to the IBM
SP2, on which the computer smulation server resides.
Table 1 shows a significant speed difference between
these two options.

This experiment shows how useful a mobile agent
can be. Suppose a biologist uses the discrete event
simulation to study dynamics of Lyme disease. She might
want to add or remove ticks at selected points in space
and the simulated time. The traditional approach would
require that the biologist have accessto and understanding
of the source code. He would have to modify, recompile
and run the source code. This is an error prone and
difficult process. In contrast, using our approach, the
biologist only needs to modify the mobile agent described



abowe. The user is completely separated from the internal
detail s of the simulation.

5.4.2 Linking Two Simulations T ogether

In our first attempt to link continuous smulation with
discrete event simulation, we used the Aglet system to
build a mohile agent, as illustrated in Figure 2. The
communication between the agent and the interfaces is
implemented in TCP/IP. However, the preliminary results
were very disappointing. The smulation speed was
extremely slow. A simulation run that ends at the 80" day
of smulated time takes 1932 semnds, whereas in our
earlier effort to link together the same simulations, the
same computation took only 52 semnds.

We first suspeded that this outcome was caused by
the use of JAVA programming language that could be up
to ten times dower than C/C++. So we rewrote the agent
in C++ (it was not amohil e agent in a strict sense, but we
dedded to focus on speal not on mohility at this point).
The exeaution time deaeased to 1320sewnds, indicating
still very dow implementation. This indicated that the
TCP/IP communication was the source of the battlenedk.
Hence we replaced the TCP/IP communication between
the agent and the cntinuous smulation running on SGI
Origin 2000 with the shared-memory interprocess
communication entirely within SGI machine. The result
showed a great improvement, the exeaution time dropped
to 289 seconds.

However, the communication between the agent and
the discrete event simulation is gill implemented in
TCP/IP. Unfortunately, IBM SP2 is not a shared-memory
computer. And more, it seems that the version of MPI
currently installed on our IBM SF2 does not support
message passng between two programs running on the
same processor. Thus, just to demonstrate how fast this

simulation can run, the interface provided by the discrete
event simulation was moved to the SGI Origin 200Q The
agent uses ared-memory message passng to accessbath
interfaces. The exeaution time improved further into 117
seconds.

The eperiment shows that in the component based
approach the mmmunication among dff erent components
might bemme the batlenedk that degrades the
performance greatly. Efficient communication is the key
to an efficient implementation using this approach.

6 COMMENTSON MOBILE COMPONENT
APPROACH

The eperiment with linking two different simulations
shows that the Mohile Component approach has the
ability to reuse e&isting simulations with little extra
programming effort. However, the best result achieved by
the agent approach is gill twice dower than the approach
based on dired connedion between components. This
performance gap is caused by the overhead induced by
communication between the agent and the cntinuous
simulation. While the diredly conneded approach
accessss the tick density through memory references, the
agent approach uses dared-memory based messge
passng. Therefore, an important question related to the
Mohile Component approach is whether a more dficient
linkageis possble.

Efficiency is afundamental isaiein computer science
that in our case has two aspeds. First, there is a spead
with which a program exeaites. Seand, thereisthe st
of program development. In many cases, these two
aspeds are mntradictory. For instance the component-
based approach is a convenient method to kuild a large
simulation, however, it introduces considerable overhead
incurred by the mmmunication between components.

Table 2: Comparison of Different Implementations of the Linking Agent. In the diredly conneded approach (Gil bert et al.
2000, there doesn't exist a spedalized agent. Instead, an extra communicating thread in the cmntinuous smulation is
responsible for cooperating with the discrete event simulation. It uses memory references to accesstick state variables, and

uses TCP/IP to interact with discrete event smulation.

Source Communication Communication Exeaution
Language | between Agent and | Between Agent and | Time
Continuous Discrete Event | (semnds)
Simulation Simulation
Diredly C++ 52
Conneaed
Mohile Java TCP/IP TCP/IP 1946
Component | C++ TCP/IP TCP/IP 1320
Approach C++ Shared-memory TCP/IP 289
C++ Shared-memory Shared-memory 117




This problem can be overcome by using of a process
port moded and a new sSmulation language that
implements this model. Then, compil er techniques can be
utilized to eiminate the mponent communication
overhead.

6.1 A Process-Port M odel

The ProcessPort Modd is an extension of the dasscal
logical processview in PDES community (Richard 199Q.
Each component is viewed as a logical process with a
number of ports through which the processinteracts with
others.

A legacy simulation can be esily wrapped up as a
ProcessPort model by providing an interface Notice that
every method or event in the inteface has a
corresponding port. For instance, a method correspondsto
aport that recaves al arguments of the method and sends
out only those arguments passd by reference

init _D
red —p> PDE [>r— forward_complete
write —
forward _—E Solver [>r— backward_complete
backward— >

Figure5: A Processport View of the Continuous
Simulation

6.2 A Language for Process-Port M odel

It is beneficial to have new simulations written in a
simulation language that enforces the ProcessPort model .
The detailed discusson of such a language is beyond the
scope of this paper. We only outline here its major
features:

1. Such alanguage may employ a communicating
extended finite state machine (CEFSM) as the
implementation of the Process-Port model. The
CEFSM mode enables the aompiler to exploit
the data and control flow information.

2. The language should facilitate mobile
computing. A program written in this language
should be able to migrate across a network of
processors equipped with the language mwmpil er.

3. Prior to exeaution, a program written in this
language may passthrough a configuration phase
in which the @mpiler optimizes away
unnecessary message passng overhead between
processes.

6.3 Unifying Simulation Server with Agent

Both the smulation server and the mohile agent can be
programmed using the new simulation language. They can
fredy roam on the network and lodk for the most suitable
computers for their exeaution. After configuration, they
could be merged asa single program that can exeaute with
maximum efficiency.

The users dill should be able to program the
simulation in other programming languages. In such case,
the Mohile Component approach would degrade to a
simple linking approach that doesn’t provide the most
efficient linkage. However, such flexibility may be
convenient for some users for various reasons.

6.4 Comparison withtheHLA

As dated abowe, the HLA is an approach using a bus
communication. The RTI serves as a bus into which
simulations conforming to the standard can be esily
“plugged”. The disadvantage is quite obvious, the RTI
tends to be a serious bdtlenedk that degrades the
performance when the simulation becomes large.

simulation

simulation

Figure 6: The HLA Approach

In contrast, the Mobile Agent approach is
hierarchical. A number of processs can be grouped into a
composed processthat behaves as a simple process

000 GO

Figure 7: The Mobile Component Approach

However, the Mohile Federate Approach is by no
means a substitute for the HLA. Rather, it isan alternative



toit. Both approaches addressdifferent problems. For the
HLA, it isthe interoperability that concerns the designers
most. For the Mobile Federate Approach, the main
consideration is the dficiency. There might be @ses
where one approach is preferable to the other.

7 CONCLUSION

The Mobile Component approach has been motivated by
the attempts to link continuous smulation and dscrete
event simulation in order to create a more accurate model
for Lyme disease. The mohil e agent proved to be a useful
method for linking dfferent simulations. With the cncept
of a smulation server, the role of mohile agent in
collaborating simulation has been cdarified. Such
clarification seems an important step towards wide spread
use of distributed smulations. The ProcessPort model
suggests a novel approach to efficient component-based
simulations. Its usefulness needs to be verified by future
research.

ACKNOWLEDGMENT

Thiswork was partially supported by the NSFGrant KDI-
9873138 The mntent of this paper does not necessrily
refleda the position or policy of the U.S. Government — no
official endorsement should be inferred or impli ed.

REFERENCES

Alan Bivens, L. Gao, M.F. Hulber and B.K. Szymanski,
1999 Agent-Based Network Monitoring. Proc.
Autonomous Agents99 Conference, Workshop 1, Agent
Based High Performance Computing: Problem Solving
Applications and Practical Deployment, Seattle, WA,
pp.41-53.

Adglets Software Development Kit. IBM Tokyo Research
Laboratory. http://www.trl.ibm.co.jp/aglets/

Antonio Carzaniga, Gian Pietro Picco and Giovanni
Vigna, 1997 Designing Distributed Applications with
Mobile Code Paradigms. In Proceeding of the 1997
International Conference on Software Engineering.

Carlo Ghezzi and Giovanni Vigna, 1997 Mohle Code
Paradigms and Tedhnologies: A Case Study. Mobile
Agents: First International Workshop.

Ernest H. Page, 1998 The Rise of Web-Based
Simulation: Implications for the High Levd
Architedure. In Proceedings of the 1998 Winter
Smulation Conference.

Ewa Dedman, Boledaw Szymanski and Thomas Caraco,
1996 Simlulating Lyme Disease Using Paralld
Discrete Event Simualtion. In Proceedings of the
Winter Smulation Conference.

Ewa Dedman and Boleslaw Szymanki, 1997 Breadth-
First Rollback in Spatialy Explicit Smulations. In
Proceedings of the Workshop on Parallel and
Distributed Smulation, 1997

Gilbert Chen, Boleslaw, 2000K. Szymanski and Thomas
Caraco. Multiparadigm Simulations in  Modeling
Spread of Lyme Disease. In 2000 European Smulation
Multi-Conference.

Judith S. Dahmann, Richard M. Fujimoto and Richard M.
Weatherly, 1998 The DoD High Level Architedure:
An Update. In Proceedings of the 1998 Winter
Smulation Conference.

Linda Wilson, George Cybenko, David Lynch, Bruce
Cushman-Roisin and Boledaw K. Szymanski. KDI:
Next-Generation Agent-Based Distributed Simulation,
http://www-nml.dartmouth.edwKDI

Linda Wilson, George Cybenko and Daniel Burroughs,
1999 Mohle Agents For Distributed Simulation. In
High Performance Computing Symposium.

Richard M. Fujimoto, 199Q Parallel Discrete Event
Simulation. Communications of the ACM, 33 (10)
pp.31-53, 1990

Robert Gray, David Kotz, Saurab Nog, Daniela Rus and
George Cybenko, 1996 Mohile Agents For Mohle
Computing. Technical Report PCS TR96-285, Dept. of
Computer Science, Dartmouth Coll ege, May.

US Department of Defense. High Level Architecture.
Defense  Modeling and  Simulation  Office
http://hla.dmso.mil

Wayne J. Davis and Gerald L. Modller, 1999 The High
Level Architedure Is There A Better Way? In
Proceeding of the 1999 Winter Smulation Conference.

William S. Murphy Jr. and Galen D, 1998. Aswegan.
High Level Architedure Remote Data Filtering. In
Proceedings of the 1998 Winter Smulation
Conference.

AUTHOR BIOGRAPHIES

BOLESLAW K. SZYMANSKI is a Professor of
Computer Science He has been at Rensslaer since 1985
In the past he was aso affiliated with the University of
Pennsylvania, Aberdeen University (U.K.) and Warsaw
Polytechnic (Poland). Dr. Szymanski recaved Ph.D. in
Computer Sciencefrom National Academy of Sciencesin
Poland in 1976 He is an IEEE Felow, ACM National
Ledurer, Editor-in-Chief of Scientific Programming. He
has edited and contributed chapters to several bodks and
authored over 150 research papers in journals and
conference proceelings. His research has been supported
by NSF, DARPA, ONR, ARO, NASA and industry.

His current research focuses on pro-active network
management, distributed and peralld computing and



computational models of evolution, epidemics and
biomedical systems. He has been also involved in
econometric modeling, algorithm design and information
retrieval.

GILBERT CHEN is a graduate student in Computer
Science department at Rensselaer Polytechnic Ingtitute.
Hereceived BS and MS degreesin Electrical Engineering
from Tsinghua University in 1995 and 1998 respectively.
Hisemail addressis<cheng3@s. r pi . edu>.





