
ORGANIZATION AND SELECTION OF RECONFIGURABLE MODELS

Antonio Diaz-Calderon
Christiaan J. J. Paredis

Pradeep K. Khosla

Department of Electrical and Computer Engineering
Institute for Complex Engineered Systems

Carnegie Mellon University
Pittsburgh, PA 15213, USA

ABSTRACT

This paper introduces the concept of reconfigurable simula-
tion models and describes how these models can be used to
support simulation-based design. As in object-oriented pro-
gramming, a reconfigurable model consists of a separate
interface and multiple implementations. An AND-OR tree
represents which implementations can be bound to each
interface. From the resulting model space, a designer can
quickly select the simulation model that is most appropriate
for the current design stage. We conclude the paper with an
example that illustrates the XML-based implementation of
reconfigurable models.

1 INTRODUCTION

Multi-disciplinary simulation is an important tool in the
design of mechatronic systems. The demand for less expen-
sive products that can be introduced quickly to respond to
market demands requires that these products be designed
with minimal prototyping, relying on simulation instead to
verify design requirements.

To support such a simulation-based design paradigm,
new simulation tools are required. These simulation tools
should allow designers and analysts to combine models
from different disciplines into integrated system-level mod-
els, allow models of sub-systems to evolve throughout the
design process (from conceptual design to detailed design),
and allow designers and analysts with expertise in different
disciplines to collaborate in a open design environment.

To support the evolutionary nature of the design pro-
cess, it should be easy to modify and refine the models of
system components. The reconfigurable models described
in this paper allow the designers and analysts to quickly
select different models by navigating through an AND-OR
tree. Through the domain independent model representa-
tion, and XML-based format, these reconfigurable models

can also be easily shared among collaborating team mem-
bers.

We begin the presentation by defining port-based and
reconfigurable models. In Section 4, we introduce AND-
OR trees to characterize the model space of a component,
and use this representation to organize the models into a
component library (section 5). Last, we define an XML-
based markup language to describe reconfigurable models
(section 6).

2 PORT-BASED MODELS

Multi-disciplinary and reconfigurable simulation models
build on our port-based modeling paradigm (Diaz-Calderon
et al. 2000). The port-based modeling paradigm is based on
two concepts: ports and connections (Diaz-Calderon et al.
1998, 1999). As illustrated in Figure 1, ports represent
localized points on the boundary of the system where
energy exchange between the system and the environment
takes place. A connection between two ports represents the
energy exchange between two subsystems.

The port-based modeling paradigm cannot be applied
to all systems; it is limited to systems with lumped interac-
tions. When an interaction is distributed in nature, as
between a boat and the water on which it floats, it must be

System

Environment

Figure 1: Port-based Model of an Engineering System. Energy
Ports are Represented by Non-directed Lines while Signal
Ports are Represented by Arrows

approximated by a large number of lumped interactions.
The internal model of a component, however, may still be
distributed. Consider, for example, a flexible beam attached
to a structure by its two ends. Although a finite element
model may describe the internal behavior of the beam, the
interaction with the structure can still be captured with only
two ports. For mechatronic systems, the primary interac-
tions between components tend to be lumped, so that the
port-based modeling paradigm is applicable. Only when
very detailed models are required, may we have to consider
phenomena, such as thermal interactions, that are distrib-
uted in nature.

There exist several modeling languages that can
describe port-based models. These languages are based on
object-oriented principles, and include Dymola (Dynasim
AB 1999, Elmqvist et al. 1993), OMOLA (Anderson 1994),
NMF (Sahlin 1996), and—more recently—Modelica (Elm-
qvist 1998) and VHDL-AMS (IEEE 1999). Although these
modeling languages can represent port-based objects, they
do not permit the model structure to be easily modified.
Instead, only mechanisms for parameter reconfiguration are
provided. Given the evolutionary nature of the design pro-
cess, it is also desirable to accommodate reconfiguration of
the model structure. Therefore, we introduced a modeling
paradigm called reconfigurable models (Diaz-Calderon et
al. 2000).

3 RECONFIGURABLE MODELS

A reconfigurable model is a system representation based on
two concepts: interface and implementation. The interface
of a system describes the interaction through a set of ports,
while the implementation describes a system’s internal
behavior. Together they define a complete model of a sys-
tem. As is illustrated in Figure 2, it is possible to assign dif-
ferent implementations to the same system interface,
thereby achieving reconfigurability of models. Our recon-
figurable models are conceptually similar to the polymor-
phic models defined by de Vries (de Vries and Breunese
1995), but have a different instantiation mechanism. Addi-
tionally, de Vries represents models by bond graphs which
limits their applicability to lumped parameter systems.

A reconfigurable component model provides a mecha-
nism to describe changes in both structure and parameter
values. Reconfiguration is based on instantiation and com-
position. The principle of instantiation refers to the binding
of an interface to an implementation. It is represented by
pairs of the form where is an interface and is an
implementation bound to . The principle of composition
refers to the description of the behavior of a component in
terms of interfaces and interactions of subcomponents.

By binding all possible implementations to each of the
interfaces of a reconfigurable model, we obtain the model
space of a component. To facilitate the selection of a partic-

ular model from this space, we organize it as an AND-OR
tree. In addition, we have developed a component taxon-
omy to organize the reconfigurable models in a component
library.

4 COMPONENT STRUCTURE

In this section, we present a component structure based on
an AND-OR tree that captures the entire model space for a
component. The component structure is similar to the sys-
tem entity structure (SES) developed by Zeigler (Kim et al.
1990). The difference is that the SES captures system archi-
tecture alternatives, while the component structure
describes modeling alternatives for a single component in
the system. To capture system architecture alternatives, the
SES defines a set of labels that specify both coupling infor-
mation and selection constraints imposed on the elements
of the system.

In an AND-OR tree representation of the modeling
space, each implementation of an interface generates an
AND arc as illustrated in Figure 3. The degree of an AND
arc is defined as the number of successor nodes. AND arcs
of represent primitive implementations. AND
arcs of represent compound implementations.
Based on the principle of composition, an AND arc points
to all the interfaces that constitute the composed model.
The principle of instantiation is described by an OR arc
pointing to all valid implementations for a given interface.

For example, the AND-OR tree shown in Figure 3
depicts part of the structure of a DC motor. The top-level
interface can be bound to three different implementations.

Φ φ〈 | 〉 Φ φ
Φ

system
C

system
D

system
B

system
A

parameters

System E

system
D

system
B

system
A

constitutive
equations

implementation C

implementation B

implementation A

Figure 2: A Reconfigurable System Model

degree 1=
degree 1>

At the second level, the AND arc of indicates
that the electro-mechanical implementation is composed of
the interfaces electrical, conversion and mechanical. Each
interface, in turn, generates an AND-OR tree that expands
the possibilities in the selection of their respective imple-
mentations. For instance, the implementation “armature
losses” of the interface electrical, spans an AND arc of

 with two interfaces resistor and inductance.
A particular model for a component is described by a

sub-graph (an induced tree) of the AND-OR tree. The
induced sub-graph on the component model structure has
no remaining OR arcs and is defined by the bindings

 for where N is the number of
interfaces and is the number of implementations for
interface . An example of an induced tree is indicated by
bold arcs in Figure 3.

To fully define a concrete component, it is also neces-
sary to define the parameter values of the model. This com-
bined process of finding an induced sub-graph in the
component structure together with the assignment of fixed
parameter values for the component is called realization.
Without assigning specific parameter values, a model rep-
resents a family of components, for instance, the family of
all DC motors. To represent the hierarchical relationships
between reconfigurable models in model families, we have
organized the models in a component library.

5 COMPONENT LIBRARY

The component library presents to the user the set of
available reconfigurable models in an organized fashion. It
contains two kinds of models: system component models
and component interaction models. System components

include physical artifacts such as motors, gears, resistors, or
micro-controllers. Component interaction models capture
the dynamics of the interaction between two system compo-
nents, but are not directly associated with any physical
structure. For example, consider the model of a revolute
joint illustrated in Figure 4. Although a joint appears in
almost any mechanism, it does not have any physical struc-
ture. Instead it represents the kinematics and dynamics of
the interaction between two components, and its parameter
values depend on the physical structure of the interacting
components.

As is shown in Figure 5, component models in the
library are organized in a type hierarchy that is represented
by a directed acyclic graph. The vertices in the graph point
towards more specific instances of components. The family
of DC-motors, for example, is classified under the path
SystemComponentsgTransducersgMotorsgDC-motors.
Furthermore, a component (or subgraph of the library) may
appear in multiple locations; for instance, the same DC-
motor may be classified under SystemComponentgElectro-
Mechanical. Although one can define different taxonomies
for different applications, we have defined a taxonomy
based on the energy domains and functions of the compo-
nents.

The component library may also represent the relation
between a family of models and a particular instance of that
family. A family of components is defined by an abstract

degree 3=

degree 2=

Φi φk〈 | 〉 i 1…N= k, 1…ni∈
ni

Φi

Figure 3: Component Model Structure Based on an AND-OR Tree

Inductance

Loss Free
Power Conversion

Electro - Mech.
Implementation

Implementation
n

DC motor

Conversion Electrical Mechanical

Ideal Model Armature
Losses

Friction No Friction

OR OR

OR OR

AND AND

AND Interface

Implementation Resistance

Loss Free
Power Conversion

Electro - Mech.
Implementation

Implementation
n

DC motor

Conversion Electrical Mechanical

Ideal Model Armature
Losses

Friction No Friction

OR OR OR OR

OR OR OR OR

AND AND AND AND

Interface

Implementation

Interface

Implementation

Figure 4: Rigid Body Interaction

Stator RotorRevolute
joint

model. Such a model has a fully defined reconfigurable
structure, but its parameters have not yet been fixed. A con-
crete model, on the other hand, has a complete set of
parameter values assigned. Concrete models may be
derived from abstract models by assigning specific values
to abstract model’s parameters, or may be defined indepen-
dently as a model without parameters. An example of a
familyninstance relation in the component library is the
MICROMO_GNM3125 motor model, which is derived
from the abstract motor model by specifying the appropri-
ate parameter values.

The organization of component models, as described
above, supports the simulation-based design process. As is
illustrated in Figure 6, one can think of engineering design
as the process that transforms functional requirements into
a physical structure or form, with a behavior that satisfies

the desired function. Typically, high-level functional
requirements are first hierarchically decomposed into sub-
functions. These sub-functions are then mapped to physical
structures that are ultimately re-composed into a complete
system. Within the context of simulation-based design, sim-
ulation models are used to evaluate different design alterna-
tives and to support the decisions the designer has to make.
Since the designer is gradually adding detail to the design
prototype, the corresponding simulation models have to fol-
low this same evolution. Our component library and recon-
figurable models aid the designer in this process.

For example, at a particular stage of the design process,
the designer decides that the function of transforming elec-
trical energy into rotational mechanical energy is best per-
formed by a DC-motor. He can then replace the model for a
generic electro-mechanical transducer with one of its chil-
dren in the component taxonomy, namely, the DC-motor
model. At this time, the DC-motor model still represents the
family of all possible DC-motors, because its parameters
have not yet been fixed. This allows the designer to evalu-
ate different motor alternatives by performing simulations
with different parameter values. Once and appropriate set
of parameters has been determined, the designer can refine
his choice and select a particular DC-motor from among the
children of the generic DC-motor model in the component
library.

In conjunction with the selection of a particular com-
ponent from the component library, the designer may also

Figure 5: Component Library Browser

Form
Synthesis

Modeling &
Analysis

BehaviorFunction

Evaluation

Form
Synthesis

Modeling &
Analysis

BehaviorFunction

Evaluation

Figure 6: The Simulation-based Design Process

select a particular model from the component’s model
space. For instance, after selecting a particular DC-motor
type, the designer decides to replace the simple default
model implementation with a detailed implementation that
includes models for armature losses and mechanical fric-
tion.

6 COMPONENT MODELING MARKUP
LANGUAGE

This section introduces the language for describing recon-
figurable component models. The language is based on
XML (extensible markup language) (W3C 1999) and cap-
tures the component model structure based on the AND-OR
tree representation. Although most simulation languages do
not support model reconfiguration, a particular model
selection (induced tree) can be translated into a variety of
languages: VHDL-AMS (IEEE 1999), modelica (Elmqvist
1998), ASCEND (Piela et al. 1991), OMOLA (Anderson
1994), or NMF (Sahlin 1996). Within our software frame-
work, the XML description is translated into VHDL-AMS
and then simulated with Advanced MS from Mentor Graph-
ics. The design of our model description language, has the
following characteristics:

• Multi-disciplinary: the language captures the interac-
tions between components in multiple energy domains.

• Declarative: the language expresses the laws of physics
without assigning causality.

• Meta-knowledge: the language represents knowledge
that is implicit in the constitutive equations (such as
assumptions and approximations).

6.1 Why XML?

XML provides a clear document structure and a context-
free vocabulary. We further take advantage of XML’s hier-
archical document structures to capture the hierarchical
nature of the component models. In addition XML provides
the following benefits:

• Document sharing: designers can use standard XML
tools to view and edit models.

• Component search: designers can use search tools to
locate component models based on desired characteris-
tics.

• Expressiveness: a rich internal structure and a rich
vocabulary makes model knowledge clear.

• Reuse: a consistent document structure makes it easier
to reuse document content and apply it to different prob-
lem domains.

6.2 The Markup Language

Component models are organized into a document, the
internal structure of which captures the hierarchical struc-

ture of component models. All aspects of the component
models (i.e., modeling constructs) are described with a rich
vocabulary that translates into XML tags. A document type
definition (DTD) describes the internal structure of a docu-
ment and defines the symbols in the vocabulary. The use of
this DTD ensures that the models will be valid (i.e., the
document contains all the parts required by the DTD but no
extraneous parts) and well formed (i.e., the document is
syntactically correct).

The markup language defines the two basic modeling
entities, interface and implementation, as the core of the
internal document structure. Other tags represent the consti-
tutive equations, subcomponents, interactions between
components, and meta-knowledge. Our markup language
describes both abstract and concrete system models.

The interface of the system includes required tags for
ports and parameters. For example, the interface declaration
for the DC motor in Figure 3 would be as follows:

interface DCmotor
parameters
ktau: real = 1.0e-14;
km: real = 1.0;
Ra: real = 1.0;
La: real = 1.0e-3;
Jm: real = 1.0e-14;
Bm: real = 1.0e-5;

ports
pos, neg: electrical;
rotor, reference: rotational;

end DCmotor;

Additional optional elements are used to introduce dec-
larations that are common to all implementations of the
interface, such as conditional statements that check the
validity of parameters, and meta-knowledge statements that
provide semantic information about the different imple-
mentations associated with the interface.

An implementation of an interface is described by a
declaration section and a statement section. The declaration
section defines quantities (or subcomponents in the case of
a compound component) that are local to the body of the
implementation. The statement section defines the behavior
of the component with either a set of constitutive equations
or a set of connection statements.

Compound components are described by the tags com-
ponent and connections. Components declare the instances
used in the model, and connections define the interactions
between subcomponents. A component declaration
describes the induced tree in the AND-OR tree of the com-
ponent. It captures hierarchically the parameter propagation
and the interface-implementation bindings.

For the DC motor illustrated in Figure 3, the imple-
mentation composed of the three subsystems—electrical,
conversion, and mechanical—is defined as:

implementation dcmotor-cmp implements DCmotor
declarations
elect-subsystem elect(Ra=10,La=0.1)
bound-to armature-l-impl
resistor ra(r=Ra) bound-to resistor
inductance la(l=La) bound-to inductance;

conv-subsystem conv(Km=km, Kt=ktau)
bound-to conv-impl;

mech-subsystem mech(Bm=1.0e-5)
bound-to friction-imp;

statements
connections;

end dcmotor-cmp;

In this implementation, the paths DCmotor-Electrical-
[Resistor, Inductance], DCmotor-Conversion, and DCmo-
tor-Mechanical-[Friction], shown in Figure 3, provide the
subtree selected for the DC motor. The electrical system of
the DC motor includes armature losses in the electrical sub-
system and friction in the mechanical subsystem.

Binding the electrical subsystem to the implementation
armature-losses requires also binding implementations for
the components ra and la. These bindings are recursively
specified in the declaration of the component elect. For
example, component ra with interface resistor is bound to
implementation resistor. The implementation resistor is
defined by a set of constitutive equations and does not
require bindings for any sub-components.

7 FUTURE DIRECTIONS

This research fits within a larger project, called “The Com-
posable Simulation Project” (Composable Simulation,
2000). The goal of the project is to support the simulation-
based design process with a new simulation framework. As
indicated in Section 5, reconfigurable models and compo-
nent libraries make a step towards this goal. At the same
time, this research is only a starting point from which addi-
tional research efforts will emanate. Following is a list of a
few future directions.
Reconfigurable models and component libraries support
model evolution through model selection and component
selection. However, both selection processes are performed
completely by the user. In the future, we plan to automate
these processes at least partially. For component selection,
this means helping the user to decide which component has
a behavior that best matches a desired function; for model
selection, it requires deciding which model is most appro-
priate (adequate accuracy with minimal computational
requirements) for a given experimental frame.

Solving these selection problems requires explicit
knowledge about the semantics of the models. This infor-
mation can be stored as meta-knowledge tags in our XML
format. Semantic knowledge is also important for human
users—a good designer will not use a model without under-

standing which physical phenomena it includes and which
approximation have been made.

Another related research issue that needs to be
addressed in the future is that of model creation and mainte-
nance. Reconfigurable models contain a lot of information
and require a lot of effort to create. These models are only
practical if much of this effort can be amortized over a large
number of models. One way to achieve this is by grouping
models into parametrized model families. A single recon-
figurable model can then be used to represent all the
instances of the family. A second approach that we are
exploring is the automatic generation of models by extract-
ing model parameters from the form description, i.e., CAD
data (Sinha et al. 2000). One can think of this approach as
models that include a description of both the form and the
behavior of a component; the parameters of the behavioral
model are functions of the features and parameters of the
form.

This brings us to the ultimate goal of the composable
simulation project, namely, to interleave the design and
analysis processes so that an up-to-date simulation model is
automatically generated as the designer defines the design
prototype within a CAD environment. The development of
reconfigurable models and their organization in component
libraries is a first step towards that goal.

8 CONCLUSIONS

In this paper, we introduced the concept of reconfigurable
models and their organization into a component library. An
AND-OR tree is used to captures succinctly all possible
model alternatives (the model space) of a reconfigurable
component model. These reconfigurable models can be log-
ically organized into a library of components that supports
the simulation-based design process through both compo-
nent selection and model selection. Because reconfigura-
tion of simulation models is rarely supported in current
simulation languages, we have developed a neutral XML
format to represent reconfigurable models. From this neu-
tral format, simulation models in a specific language can be
derived once a particular simulation model has been
selected. Our current implementation uses VHDL-AMS as
the target language.

ACKNOWLEDGEMENTS

This research was funded in part by DARPA under contract
ONR #N00014-96-1-0854, by the National Institute of
Standards and Technology, by the NSF under grants
#CISE/IIS/KDI 9873005 and #EIA-9729827, by the Penn-
sylvania Infrastructure Technology Alliance, by Adtranz,
and by the Institute for Complex Engineered Systems at
Carnegie Mellon University.

APPENDIX

An XML representation of a DC motor model.
<interface ident="DCmotor">
<generics>
<parameter semantics="torque_constant"
default="1.0e-14" nature-type="real"
ident="tau"/>

<parameter semantics="motor_constant"
default="1.0" nature-type="real"
ident="km"/>

<parameter semantics="armature_resistance"
default="1.0" nature-type="real"
ident="Ra"/>

<parameter semantics="armature_inductance"
default="1.0e-3"
nature-type="real"
ident="La"/>

<parameter semantics="rotor_inertia"
default="1.0e-14" nature-type="real"
ident="Jm"/>

<parameter semantics=”friction”
default=”1.0e-5” nature-type=”real”
ident=”Bm”/>

</generics>
<boundary>

<terminal nature-type="electrical"
name="pos"/>

<terminal nature-type="electrical"
name="neg"/>

<terminal nature-type=”rotational”
name=”rotor”/>

<terminal nature-type=”rotational”
name=”reference”/>

</boundary>
</interface>

<implementation compound="true"
of-interface="DCmotor" ident="dcmotor-cmp">
<component interface-name="elect-subsystem"

name="elect">
<parameter-binding actual-part="10"

formal-part="Ra"/>
<parameter-binding actual-part="0.1"

formal-part="La"/>
<parameter-binding actual-part="10"

formal-part="km"/>
<bound-implementation

implementation-name="armature-l-impl">
<component interface-name="resistor"

name="ra">
<bound-implementation

implementation-name="resistor"/>
</component>
<component interface-name="inductance"

name="la">
<bound-implementation

implementation-name="inductance"/>
</component>

</bound-implementation>
</component>
<component interface-name="conv-subsystem"

name="conv">
<parameter-binding actual-part="32.0e-3"

formal-part="tau"/>
<bound-implementation

implementation-name="conv-impl"/>
</component>
<component interface-name="mech-subsystem"

name="mech">
<parameter-binding actual-part="1.0e-5"

formal-part="Bm"/>
<bound-implementation

implementation-name="friction-impl"/>
</component>
<concurrent-statements>

<connect terminal-B="neg"
terminal-A="elect.neg"/>

<connect terminal-B="rotor"
terminal-A="mech.load"/>

<connect terminal-B="reference"
terminal-A="mech.ref"/>

<connect terminal-B="conv.elect"
terminal-A="elect.conv"/>

<connect terminal-B="conv.mech"
terminal-A="mech.conv"/>

<connect terminal-B="pos"
terminal-A="elect.pos"/>

</concurrent-statements>
</implementation>

REFERENCES

Anderson M. 1994. Object-oriented modeling and simula-
tion of hybrid systems. Ph.D. Dissertation, Department
of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

Composable Simulation. 2000. The composable simulation
project. Carnegie Mellon University, Institute for Com-
plex Engineered Systems, Pittsburgh, PA 15213.

de Vries T. J. A. and A. P. J. Breunese. 1995. Structuring
product models to facilitate design manipulations. In
Proceedings of the International Conference on Engi-
neering Design ICED ’95. Prague, Czech Republic.

Diaz-Calderon A., C.J.J. Paredis, and P. K. Khosla. 1998. A
modular composable software architecture for the simu-
lation of mechatronic systems. In Proceedings of ASME
Design Engineering Technical Conference, 18th Com-
puters in Engineering Conference. Atlanta, GA.

Diaz-Calderon A., C.J.J. Paredis, and P. K. Khosla. 1999. A
composable simulation environment for mechatronic
systems. In Proceedings of SCS 1999 European Simula-
tion Symposium. Erlangen, Germany.

Diaz-Calderon A., C.J.J. Paredis, and P. K. Khosla. 2000.
Reconfigurable models: A modeling paradigm to support
simulation-based design. In Proceedings of SCS 2000
Summer Computer Simulation Conference. Vancouver,
British Columbia, Canada.

Dynasim AB. 2000. Dymola. Lund, Sweden.
Elmqvist H., F.E. Cellier, and M. Otter. 1993. Object-ori-

ented modeling of hybrid systems. In Proceedings of

European Simulation Symposium. Delft, The Nether-
lands.

Elmqvist H., S.E. Mattsson, and M. Otter. 1998. Modelica:
The new object-oriented modeling language. In Proceed-
ings of The 12th European Simulation Multiconference.
Manchester, UK.

IEEE, 1076.1 Working Group. 1999. Analog and mixed-
signal extensions for VHDL. IEEE.

Kim T. G., C. Lee, B. P. Zeigler, and E. R. Christensen.
1990. System entity structure and model base manage-
ment. IEEE Transactions System Man and Cybernetics,
20: 1013-1024.

Piela P.C., T.G. Epperly, K. M. Westerberg, and A. W.
Westerberg. 1991. ASCEND: An object oriented com-
puter environment for modeling and analysis. 1- The
modeling language. Comput. Chem Engng, 15(1): 53-72.

Sinha R., C.J.J. Paredis, and P.K. Khosla. 2000. Kinematics
Support for Design and Simulation of Mechatronic Sys-
tems. In Proceedings of the 4th IFIP Working Group 5.2
Workshop on Knowledge Intensive CAD. Parma, Italy.

Sahlin P. 1996. Modeling and simulation methods for mod-
ular continuous systems in buildings. Ph.D. Dissertation,
Department of Building Sciences, Division of Building
Services, Royal Institute of Technology, Stockholm,
Sweden.

World Wide Web Consortium. 1999. Extensible Markup
Language (XML).

AUTHOR BIOGRAPHIES

ANTONIO DIAZ-CALDERON received the B.S.E.E and
the M.S. in Computer Science from Monterrey Institute of
Technology (Mexico) in 1987 and 1990 respectively, and
the M.S. in Civil Engineering and Ph.D. in Electrical and
Computer Engineering from Carnegie Mellon University in
1993 and 2000 respectively. His Ph.D. research focused on
composable simulation to support simulation-based design
of mechatronic systems. Dr. Diaz-Calderon is a Post-Doc-
toral Fellow at the National Robotics Engineering Consor-
tium, The Robotics Institute at Carnegie Mellon University.
His research activities include vehicle dynamics modeling
and simulation, and the development of a lift truck rollover
prediction system to reliably indicate proximity to unsafe
states of motion. His email and web addresses are
<adiaz@cmu.edu> and <www.cs.cmu.edu/
~adiaz>.

CHRISTIAAN J.J. PAREDIS received the M.S. in
Mechanical Engineering from the Catholic University of
Leuven (Belgium) in 1988, and the M.S. and Ph.D. in Elec-
trical and Computer Engineering from Carnegie Mellon
University in 1990 and 1996 respectively. His Ph.D.
research focussed on task-based design of modular systems,
using agent-based evolutionary algorithms. He also devel-

oped a composable manipulator (the Reconfigurable Modu-
lar Manipulator System) that can be rapidly reconfigured
for a different tasks. Dr. Paredis is currently research fac-
ulty at the Institute for Complex Engineered Systems at
Carnegie Mellon University. His research activities include
modeling and simulation of complex electro-mechanical
systems, and the development of small distributed robotic
systems. Additional information about his research can be
found at <www.cs.cmu.edu/~paredis> and
<paredis@cmu.edu>.

PRADEEP K. KHOSLA received B. Tech from IIT
(Kharagpur, India), and both MS (1984) and Ph.D. (1986)
degrees from Carnegie-Mellon University. He served as
Assistant Professor of ECE and Robotics (1986-90), Asso-
ciate Professor (1990-94), and Professor (1994 -), Found-
ing Director (1/97-6/99) of Institute for Complex
Engineered Systems (which includes the former Engineer-
ing Design Research Center - an NSF ERC). He is currently
the Philip and Marsha Dowd Professor of Engineering and
Robotics, and Head of Electrical and Computer Engineer-
ing Department at Carnegie Mellon. From January 1994 to
August 1996 he was on leave from Carnegie Mellon and
served as a DARPA Program Manager in the Software and
Intelligent Systems Technology Office (SISTO), Defense
Sciences Office (DSO) and Tactical Technology Office
(TTO). Professor Khosla’s research interests are in the areas
of internet-enabled collaborative design and distributed
manufacturing, collaborating autonomous systems, agent-
based architectures for distributed design and embedded
control, software composition and reconfigurable software
for real-time embedded systems, reconfigurable and distrib-
uted robotic systems, integrated design-assembly planning
systems, and distributed information systems. His research
is multidisciplinary and has focused on the theme of “creat-
ing complex embedded and information systems through
composition of and collaboration amongst building
blocks.” His email and web addresses are
<pkk@ece.cmu.edu> and <www.ece.cmu.edu>.

