EVALUATION OF POLICIESFOR THE MAINTENANCE OF
BRIDGESUSING DISCRETE-EVENT SIMULATION

Srinath Devulapalli

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State

University in partia fulfillment of the requirements of the degree of

M aster of Science
In

Civil Engineering

Dr. Julio C. Martinez, Chair
Dr. Jesus M. dela Garza

Dr. Gerardo FHlintsch

August 16™ 2002
Blacksburg, Virginia

Keywords: Bridge Management, Policy Analysis Tool, Discrete Event Simulation

Copyright 2002, Srinath Devul apalli

EVALUATION OF POLICIESFOR THE MAINTENANCE OF

BRIDGESUSING DISCRETE-EVENT SSIMULATION
Srinath Devulapalli

(ABSTRACT)

With the recent developments of several bridge managements systems and their
wide-spread use, bridge engineers are redlizing the importance of systematic and well
planned investments and appropriate management. However the results are far from
satisfactory. Bridge management systems need more effective policy analysis tools that
can take advantage of the vast amounts of available information to be more efficient.

The objective of this research is to develop a policy analysis tool, which is generic
in nature and can be applied to any bridge management system provided all the
appropriate data is available. In particular, this policy analysis tool is geared to suit policy
making, planning and budgeting for the interstate bridges in the state of Virginia.

The policy analysis tool developed in this research is a discrete event ssmulation model
capable of extracting information from text files in the Pontis Data Interchange format and
simulate user defined element level policies. The modd testing was performed using the interstate
bridges of the Salem district in Virginia All the relevant information was extracted from their
PONTIS databases.

Several scenarios with varying network policies were smulated. The results indicate the
validity and the accuracy of the mode. The policy analysis tool is a useful addition to the existing
policy analysis tools and is capable of handling probabilistic distributions of data instead of single
value averages. This will enable the tool to capture more information thereby making the
simulation model more redlistic.

The general framework that was developed here can be applied to any infrastructure
problem, and eventually it should be possible to achieve a discrete event simulation based
integrated infrastructure management system.

ACKNOWLEDGEMENTS

The support of all my committee members Dr. Julio C. Martinez, Dr. Jesus M de la
Garza, Dr. Hintsch and Mr. Allen Williams is greatly acknowledged. | would especially
like to thank my guide Dr. Martinez for his constant encouragement and support. Thank

you for being there whenever | needed you.

| would also like to thank Mr. Dean Hackett from the Virginia Department of
Transportation. His constant feedback was absolutely critical for the completion of this
project. Specia thanks to Juan Pinero for his help and enthusiasm in the development of
the project. | would also like to thank my friend Jitamitra Desai for just being there

whenever | needed to talk to someone.

| would also like to thank my family for shaping me into the person | am and ultimately

responsible for this work.
| would like to take this opportunity to thank the Virginia Departrment of Transportation

and the National Science Foundation for funding this project and providing me with this

unique opportunity.

Table of Contents

ACKNOWIEAGMENTS. ... e e e i
S o T U = Vi
S 0 = o =,

LiSt Of APPENAICES. ... e e e e e e e e e e viil
Chapter

1INTRODUCTION 1

LIBACKGROUND... ... e e 1

1.2 COMPONENTS OF A BRIDGE MANAGEMENT SYSTEM... 2

1.2.1 Data Storage Module ..o veiiiiiiiiiiii e 3

1.2.2 Condition Prediction/Deterioration Module............... 3

1.2.3 Cost Prediction ModelSccovviiiiiiii e 4

1.2.4 Policy AnalySISTOOISccvvviviie e e 4

1.2.4.aPriority SEttingccoovvvviieiiiiiie e, 4

1.2.4.b Optimization..........coueveiieniiieie e e eae 5

1.2.4.c Systems DYNamicCS..........vvvvevneeneannannnnnnns 6

1.3 NEEDS FOR A POLICY ANALYSISTOOLcccovennnannns 6

2LITERATURE REVIEW 9

2.1 BRIDGE MANAGEMENT SYSTEMSIN EXISTENCE 9

2. L1 PONLS ..ot e e 9

212 BIOGIE oot 10

2.1.3 Local Bridge Management Systems.............ccveuvenne. 10

2.2POLICY ANALYSISTOOLS ..o, 10

2.2.1Priority SEttingovveviiiii 10

2.2.20pMIZALION ...vt e e 11

2.2.3 Other Policy AnalySiISTOOISo.vvvvieie e e, 12

3 OBJECTIVES 15

3.1SPECIFICOBIECTIVES ... e 16

4 RESEARCH METHODOLOGY
4.1 UNDERSTANDING BRIDGE MANAGEMENT
4.1.1 Description of the Bridge Management Problem
4.1.2 Policy ANAlYSISoveieee e e e
4.12aHedthIndexcoooviiiiiiiii
4.1.2.b Improvement Cost Ratioeeee.
4.1.3 Classification of Bridgesccovvviviiiiiiiiieienan,
4.2 CONCEPTUAL MODEL ...t
4.2.1 Software Development ToolScccoeevvvvvviiiininnne,
4.2.2 ITODOSCOPE ...ttt e e e
4.2.3Working of Smulation Modelccoiiiiiin
4.3 STROBOSCOPE IMPLEMENTATION OF THE MODEL
4.3.1 Smulation Parameterscovvviiin i e
4.3.2 Additional Components of Policy Analysis Toal..........
4.3.3 Working of the Stroboscope Codeocovvvneinnnnn.
4.4 SEGREGATION OF DATA AND MODELc.ccoiiinennn
45 DATA INPUT FROM PONTIS ... e
4.5.1 Assumptions made in the Model Development
4.5.2 Policy AnalysisFile ...
5SMODEL TESTING
S.2SCENARIO 2 ...
S.3SCENARIO 3 .o
6 CONCLUSION and FURTHER STUDIES
6.1 RESEARCH SUMMARY AND CONCLUSIONccee.
6.2FURTHER STUDIES ... e
REFERENCES
APPENDICES

LIST OF FIGURES

Figure 1.1 — Components of a Bridge Management Systemc.cooeoi i vennn, 3
Figure 4.1 - Flow Chart of the Bridge Management Processccoevvvvviieininnn, 25
Figure 4.2 — Visualization of the Stroboscope Modelccovviiiiiii i 27
Figure 4.3 — Components of the Policy AnalysSisToolcccoceiiiiiiinn i, 30
Figure 4.4 — Transition Probability Datafor Element 131c.cooviiiiiiiiiennne 32
Figure 4.5 — Organization of Datainto 3-D ModelSccccoviiii i, 33
Figure 5.1 — Comparison of Element Level Policies ..o, 54
Figure 5.2 — Actual vs. Target Distributionsccoooiiiiiiiic e 55

Vi

LIST OF TABLES

Table 4.1 — Condition State Definitions for Painted Steel Deck Truss (Element 131)18

Table 4.2 — Maintenance Actions for Painted Steel Deck Truss (Element 131) 19
Table 4.3 — Classification Of Bridgesooviiiniiiiieie e e e 22
Table5.1—NoMaintenanCce BUAgELccoiviiiie e e 49
Table5.2 - VDOT Element Level Policies with Budget of 1 Million 49
Table 5.3 — Description of Modified Deck Policies...................coccoveeieiennn.. .50
Table 5.4 — Description of Modified Girder PoliCiesc.ovvviiiiiiiiici e 51
Table 55— VDOT Element Level Policies with Budget of 1 Million 52

Table5.6 — Modified DeCK POIICIESon e e e e e e e e e D2
Table5.7 — Modified Girder POlICIESc.ove v e e e e e e e et et et e e e D3
Table 5.8 — Modified Deck and Girder POlICIEScooovvieie e i, 53

Vil

LIST OF APPENDICES

A TEIEMENT LEVE Dala enieie it e e e e e 63
B i Calculation Of HI ... 65
C: TablesImported from PONTIS ... e e 67
D : Listing of StroboSCOPE COUEouvitiitie it it e e et e e e 69
E:Listing Of DLL COUEuiriirit it e et e e e e e e e e e e e 117
F:VDOT Element Level POIICIES ..ot e e 138
G : Functionsprovided by DLLc.oiviiiiiiiii e e e e e 0. 148
H : Listing of Policy ANalySISFIlEc.uiiii i e 149
I: Calculation of Maintainability INdeX ... e 154

viii

Chapter 1

INTRODUCTION

1.1 BACKGROUND

A Nation's productivity and internal competitiveness depends on fast and reliable
trangportation. According to the “2001 ASCE Report Card for the Nation's
Infrastructure”, 29% of Virginias highway bridges are functionally obsolete or
structurally deficient. These deficient structures represent significant impediments to the
safe, economical use of the highway system and result in safety hazards, high user costs,
and huge outlays for preservation and replacement. Balanced against this backlog of
bridge needs is a generadly inadequate level of funding by public agencies for
infrastructure needs.

The collapse of the Silver Bridge in 1967 was the immediate catalyst for what
became a comprehensive bridge safety inspection program mandated by the Nationa
Bridge Inspection Standards (NBIS). According to this program, created by the Federal
Highway Act of 1968, every bridge on a public road must be inspected at least every 2
years and highway agencies across the nation have inspection staffs and programs that
collect and update critical bridge inventory and inspection data. The Federal Highway
Administration (FHWA) maintains this information in a comprehensive NBI database.
Based on their study of the NBI database, Small and Cooper (1998) concluded that
during the period of 1983 to 1993 even though the total number of deficient structures
and associated percentages have been decreasing, this trend can be attributed not to sound
management principles or increased level of funding over the years, but due to the use of
new materials with increased durability and fewer maintenance requirements. “As the
inventory continues to age, additional demands will be placed on bridge engineers and
managers. In particular, the large volume of structures built during the Interstate era will
require increased maintenance, major rehabilitation, and in some cases replacement.

Given these projected needs and anticipated static budgets, further progress in the
1

removal of deficienciesisout of the question” (Small and Cooper, 1998).

Bridge owners today should be able to make decisions pertaining to maintenance
and improvement that take into account both the financial constraints as well as the
overall needs of the highway system. The complexities and costs associated with
preserving the nation's bridge infrastructure demand innovative approaches to collection
and analysis of data and prediction of current and future bridge preservation actions.
These needs, coupled with the availability of modern analytical methods and high-speed
computers, are leading to the development of comprehensive bridge management

systems.

1.2 COMPONENTS OF A BRIDGE MANAGEMENT SYSTEM

In 1986, a demonstration project was initiated that supported workshops in amost
every state and sought to develop sound bridge management practices. Based on this, the
American Association for State Highway and Transportation Officials (AASHTO) in
conjunction with several other DOT’s, was able to establish the primary requirements of
a comprehensive Bridge Management System (BMS) and the key features required by
any effective Bridge Management System.

Based on the guidelines provided by AASHTO the key components of a Bridge

management system have been identified as

1. Data Storage.
2. Deterioration Models.
3. Cost Models.
4. Policy Analysistools.

Figure 1.1 depicts the different components of a Bridge Management System as
described above. These mmponents integrate seamlessly to aid the decison maker in

managing the Bridge Network.

BRIDGE MANAGEMENT SYSTEM

v v

Cost Models Deterioration Models

\ 4
\ 4 . .
Data Storage Pollcyl_,ggal ysIs

FIGURE 1.1 Components of a Bridge Management System

1.2.1 Data Storage M odule:

Data collection and data analysis are essential components of a bridge
management system. The database connected to the bridge management system stores
data from periodic field inspections. Regardless of the techniques used for data analys's,
the success of the policy analysis and bridge management system in general depends
upon the quality and sufficiency of the data collected to a great extent. Information stored
in the database is used as input into the model. The models are used to predict the future
condition and perform “what-if” analyses under different scenarios to determine the

impacts on the network. The two types of models are deterioration, and cost models.

1.2.2 Condition Prediction / Deterioration Models

An important purpose of data analysisis the prediction of future bridge conditions
under different strategies. For this, several data analysis techniques such as Regression
anaysis, Markov chains (Schrer and Glagola, 1994), Bayesian estimation and Fuzzy set
theory have been successfully applied for the prediction of bridge element condition, user
costs and naintenance estimates (Kleywegt and Sinha, 1994). These models effectively

3

process the database of inspections and arrive at generalized behavior of different

components of the bridge that enables them to predict the future condition of a bridge.

1.2.3 Cost M odels:

A bridge management system typically estimates two types of costs: improvement
and agency. Improvement costs are estimated to determine the cost of a maintenance
action to improve the condition of the element. The agency cost could include the
expected user cost savings for safety and serviceability improvements. Typically these
costs are modeled and updated using Bayesian estimates. One disadvantage of this
method is that typically the cost models estimate the cost as a single value, which could
be obtained as a weighted average of historic costs and expert opinions. However,
lumping &l this information into a single value loses the inherent uncertainty in costs.
Instead a suitable mechanism should be developed in which distributions are developed

for the costs.

1.2.4 Policy Analysis Tools:

The objective of any BMS is not only data storage but also data analysis and the
determination of the best maintenance policy. So we need a procedure that compares
different policies and determines the best policy to be followed. Several tools have been
developed to aid the decision makers in allocating the funds among the competing needs.
Some of the common techniques in use are priority setting and optimization. Specifically,
linear programming, dynamic programming and integer programming are commonly
used optimization techniques. Also the author has developed a discrete-event simulation

based policy analysistool.

1.2.4.a Priority Setting

The competing bridges are ranked according to certain criteria so that thet the
decision maker can focus his attention on the most critical bridges rather than all the
bridges. Severa ranking methods have been developed to aid in the priority setting. One
such method is the sufficiency rating developed according to FHWA'’s Structure

Inventory and Appraisal Guide (1979). Another such method is based on the level of
4

service. The California DOT has developed a Health Index (HI) in which the bridges are
ranked based on its structural condition.

1.2.4.b Optimization

The purpose of optimization is to find the optima set of actions to be

implemented. For this a number of techniques can be used.

Minimization of life cycle costs is a bridge level approach to policy anaysis. All
the alternatives are considered and the promising alternative is implemented for that
programming period for every bridge. This essentially reduces to continuing routine
maintenance until either rehabilitation or replacement is better. This method does not
arrive at the network level global optimum, as it does not consider network level budget

constraints into account.

In Linear Programming the vaue of an objective function is maximized or
minimized by changing decision variables, subject to certain linear equality/inequality
congtraints. One formulation of the Bridge Management problem in linear programming
can be — “maximization of the Level of Service of the bridge network by adjusting the
maintenance policies subject to budget constraints’. If the decision variables are not
continuous variables but instead integral values, the problem can be solved as an Integer
Linear Programming problem. The main advantage of LP and ILP methods is that the
techniques are easy to use and can be applied to problems with hundreds or thousands of
variables. But the disadvantage of these methods is that the objective functions and
congtraints are restricted to linear functions of the decision variables. Nonlinear
programming techniques can be used for nonlinear functions but they are

computationally much more demanding and a solution cannot always be determined.

Dynamic Programming is another optimization approach. It is based on the
Principle of Optimality, which states that “Optimal policies over time consist of optimal
sub alternatives over shorter periods of time’. Thus, optimal long-term policies can be
viewed as short-term sub policies over successive periods of time. The optimal

aternative can be calculated recursively for each state at each sub time period thereby

arriving at the long time optimal strategy.

1.2.4.c Systems Dynamics

Systems Dynamics has aso been employed as a policy analysis tool (Kim 1996,
Kim 1998.). Systems Dynamics views the problems of Bridge Management as a cause-
and-effect system. Investment in facility maintenance will upgrade the physical condition
of the assets, but physical deterioration will take place simultaneoudly. If the investment
is sizable enough, the physical condition of the facilities will be maintained in good
condition. An improper alocation of the funds may result in further deterioration of
facilities. Thus in the long run an optimal allocation of funds will maintain the assets in
required criteria. Systems Dynamics tries to formulate this equilibrium in terms of
differential rate equations and solve them.

1.3NEEDSFOR A POLICY ANALYSISTOOL

Any Policy Analysis tool involves decision making related to selecting the most
cost-effective bridge improvement strategies at both the project and network levels. The
typical variables which go into this anaysis include agency costs, user costs, discount
rates etc. However it should be realized that uncertainties could exist in these decision
variables. These uncertainties are of two types — physica uncertainties and modeling
uncertainties. Physical Uncertainty represents the physical variability that is associated
with a particular parameter. For example: The cost of repairing a pot hole is never a
unique value of say $300 but ranges between $200 and $450 based on several factors like
the extent of damage, existing conditions, type of pavement etc. Modeling uncertainty on
the other hand is associated with idealizations that are used in assessing a particular
effect. For example when trying to asses the condition of a bridge, different inspectors
might rate the bridge differently. “Uncertainties can easily lead to making the wrong
decisions, especialy in selecting the best from pairs of closely ranked competing
strategies’ (Sobanjo, 1999). The same argument applies to the condition prediction
models. The modeling uncertainty can be reduced through the use of standardized

6

inspection and recording procedures. The physical uncertainty in costs and deterioration
rates is inherent because in rea life the cost of the maintenance activity or the
deterioration is not always the same value but dependent on several factors like weather,
quality of work etc. none of which can be easily quantified. Therefore, trying to obtain a
single valued average will result in error and these errors could add up and lead to wrong
conclusions. An alternative approach is to employ probabilistic distributions fitted to the
parameters based on statistical analysis of reliable and available historical data. However
most of the existing policy analysis tools cannot handle data based on probabilistic
distributions of data.

Discrete Event Smulation is a tool that can effectively handle probabilistic
distributions of data. However any redlistic simulation model is computationally
demanding thereby limiting their use to date due to lack of available technology. With the
advances of computational power in the last decade, it has been made possible to develop
and test realistic simulation models. These models will help the decision maker to capture
all the inherent uncertainty in the data and yet to a reasonable level of reality simulate the

rea life scenarios (Martinez and loannou, 1999).

It is known that it is possible to model any type of system using Discrete Event
Simulation (DES), provided that detailed discrete data about the individual elements that
make up the model is available (Law & Kelton, 2000). It is therefore possible to make a
DES model of a bridge system and incorporate into that the specific strategies of funding
for a given scenario. Ever since the passing of the FHWA act of 1968, every state has
been collecting detailed condition information about its bridges which can drive a DES
model. However this merely reduces to a heuristic model building, coding and a single
run of the program to obtain the “answer”. Any changes in the policies or the condition

data renders the model useless thereby making this exercise cost ineffective.

The purpose of this research is to investigate how a DES model that is generic in
nature can extract data from the available sources, can incorporate how an agency spends
the budget and can provide test strategies that are independent of the model and the

network data. Such a model can be populated with any network data and incorporates the
decision making process. Such a goal is not specific to bridge management alone and its
concepts can be extended to asset management in general by a dight modification of the
principles used and the underlying assumptions.

Chapter 2
LITERATURE REVIEW

Prior to the late 1980's, there were no management systems adaptable to the
management of bridge programs nor was there any clear definition of key bridge

management principles or objectives.

From the 1980’ s considerable amount of research has been done in developing a
comprehensive Bridge Management system, which will aid the user in making crucial
decisions pertaining to bridge maintenance. Based on this research several bridge

management systems have been devel oped.

2.1 BRIDGE MANAGEMENT SYSTEMSIN EXISTENCE

PONTIS and BRIDGIT are two nationwide projects with a generic design that can
be adapted to accommodate the individual needs of an agency. Based on the survey
conducted by the FHWA, 42 states indicated that they intended to implement PONTIS
(Khan, 2000). Small and Cooper (1998) recorded that as of May 1998, PONTIS was
licensed to 38 states, the District of Columbia, Sacramento and Los Angeles Counties,
City of Los Angeles, and the New Jersey Turnpike Authority. Maine and a few other
states were looking at implementing BRIDGIT (Khan, 2000).

2.1.1 Pontis

PONTIS (“pontis’ is the Latin word meaning “pertaining to bridges’) is a bridge
management system developed by the Federal Highway Administration (FHWA) in
conjunction with six state DOT’s and the consultant joint venture of Optima Inc. and
Cambridge Systematics. To quote the Pontis User’s Manual, “Pontis is a new generation
network-level bridge management system which incorporates dynamic, probabilistic
models and a detailed bridge database to predict maintenance and improvement needs,
recommend optimal policies and schedule projects within budget and policy restraints.”

Pontis has a database containing the bridge condition data, traffic needs, deterioration
9

models, accident costs, maintenance, improvement and replacement costs. Using this data
Pontis prioritizes the bridges and allocates the limited budget © the bridges to derive
maximum benefit for the entire system (Thompson and Shepard, 1994).

2.1.2 Bridgit

BRIDGIT is a bridge management system developed jointly by National
Cooperative Highway Research Program (NCHRP) and National Engineering
Technology Corporation. BRIDGIT is very similar to Pontis in terms of its modeling and
capabilities. The system requires data at an element level and reports the condition of the
elementsin terms of condition states. Deterioration is modeled as a Markov process. Cost
models are addressed in a similar fashion (Lipkus, 1994).

2.1.3 Local Bridge Management Systems

In addition to PONTIS and BRIDGIT, there are severa other loca bridge
management systems that have been adopted by a handful of states. The Alabama DOT
(Green and Richardson, 1994), Connecticut DOT (Lauzon and Sime, 1994), Indiana DOT
(Woods, 1994), North-Carolina DOT (Johnston and Lee, 1994) and PennDOT (Oravec,
1994) are a few state agencies that have opted to develop their own Bridge Management
System as opposed to using an of the shelf software.

22 POLICY ANALYSISTOOLS
2.2.1 Priority Setting

Priority Setting is used in some Bridge Management systems like North Carolina
DOT (Johnston and Zia, 1984, Johnston and Lee, 1994) and in a few others (Kleywegt
and Sinha, 1994). The advantage of Priority Setting is that it helps the decision makers to
narrow their focus on a short range of critical bridges rather than the entire list of bridges.
Some variations of the Priority Setting are Concordance analysis and Analytical
hierarchy process (Kleywegt and Sinha, 1994). PennDOT’ s bridge management system
has a decision support component that is based on priority setting. It prioritizes bridges

according to their maintenance and improvement needs based on a deficiency mating

10

(Oravec, 1994). The main disadvantage of all such pair-wise comparison methods is that
as the number of alternatives increase, the number of pair wise comparisons increases
significantly.

Larsen and Holtz (1999) discuss two extensions of Priority rarking — Net Present
Value method and Point ranking method. The Net present value method tries to compare
the current value of future costs by taking into account factors like inflation, and selects
the aternative with the lowest cumulative present value. This method makes it possible to
compare strategies for which the costs are spread over a period of time. The point ranking
method can be used as an dternative or addition to the net present value method. It
calculates the fina priority ranking point based on the weighted points assigned to bridge
condition, load capacity, and clearance. Then this weighted average is weighted by the
importance of the road structure (usualy a function of traffic volume, location,

importance etc.) to arrive at acommon platform for comparing different bridges.

2.2.2 Optimization

Optimization is the most widely used technique in most Bridge Management
Systems (Johnston et a, 1994, Hyman and Hughes, 1983). PONTIS uses Linear
Programming (Golabi et al, 1992) as its policy analysis tool. It determines the long-term
optimal policies for each element definition and then applies them to each bridge and

tries to schedule projects subject to the project constraints.

Indiana BM S has applied Integer Linear programming (ILP) to generate optimal
policies for bridge systems (Vitale et al, 1996). The formulation tries to maximize the net
utility value of the network subject to the budget constraints. The utility actualy is a
function of (@) structural condition, (b) safety, (c) cost effectiveness, and (d) community.
Each objective is quantified using one or more utility curves. A set of 17 maintenance
activities has been considered in the analysis. This method does not take into account the
durations of the maintenance activities. In redlity, al the bridges are not closed for
maintenance simultaneoudly but are spread over the year. This is not modeled in the

formulation. The model cannot handle stochastic distributions of maintenance costs or

11

utility functions. ILP has been suggested as a further improvement to the existing Linear
programming module of PONTIS (Golabi et a, 1992). However as observed by them the
main disadvantages of ILP as opposed to Linear programming are that the computation
time scales much faster as the size increases and the objective functions and constraints
are restricted to linear functions of the decision variables. Though nontlinear

programming techniques can be a solution, they are computationally more demanding.

Dynamic Programming is aso being considered as a viable extension to the
optimization module of PONTIS (Golabi et a, 1992). Indiana DOT (Woods, 1994) uses
dynamic programming in combination with ILP for its optimization module. The
planning horizon is split into smaller time zones and the long-term optima plan is
considered to be the sum of the short-term optimal policies of the individua time zones
(Dynamic Programming based on Principle of Optimality). At each of these stages the
short-term optimal policies are arrived at using ILP. North Carolinas BMS has the
OPBRIDGE module responsible for determining the optimum improvement action and
time for each bridge and it is based on the same principle (Johnston, 1992). However this
module is aso based on the NBI rating rather than the CoRe element level classification.

2.2.3 Other Policy Analysis Tools

Genetic Algorithms have been applied to the problem of optimization (Miyamoto
et al, 2000). This agorithm is based on the theory of evolution, and using three operators
(selection, mutation and crossover) creates a suitable individual solution. The algorithm
was applied in conjunction with a bridge management system (Concrete Bridge Rating
System) to analyze existing concrete bridges.

Smilowitz and Madanat (2000) have addressed the issues of errors and
uncertainty in inspections and nonfixed interval inspections using latent Markov
decision process (LDMP). This method originaly developed from structural reliability
tries to predict the future condition of the element based on all its previous condition
states as opposed to the traditional Markov decision process, which simply predicts the

future condition based on the current conditions.

12

Frangopol et a (1999) developed an optimization model based on reliability of
the bridges as opposed to the condition state information. This optimization problem
consists of minimizing the total expected cost under reliability constraints, which ensure
that the bridges have a certain minimum reliability at all times. Since reliability is not a
single value but rather a random variable, the model is capable of handling probabilistic
distributions of data. Flaig and Lark (1999) proposed the same approach but with a small
change. They contest that the risk calculation should be based on the consequences of a
bridge failing and not just on the relative importance of a bridge. Cesare et a (1993) have
also proposed a reliability based policy analysis tool as an alternative to condition data.
Due to the inapplicability of “Full search” and “branch-and-bound” algorithms, they have

proposed a solution to the problem using genetic algorithms.

Biefi (1999) developed an expert system policy analysis tool based on artificial
neural networks and analytical functions. This tool has the ability to learn, recognize and
choose different goals and try to achieve these goals. The expert functions are based on
data collected and on the knowledge represented in the computer system. This expert

system has been tested with the Railway Bridge Management system in Poland.

Kleywegt and Sinha (1994) discuss several heuristics developed by researchers.
GarciaDiaz and Liebman (1983) developed an investment staging model for bridge
replacement and scheduling of bridges. However these heuristics do not address the
entire bridge management issue as a whole but instead address specific issues in Bridge

Management.

Kim (1996) developed an integrated infrastructure-planning model for pavements
and bridges. This approach determines the causal relationships between the different
components of a transportation network and tries to solve the problem based on systems
dynamics. The problem with this model is the same in that it can handle only discrete
values for the decision variables. Kim (1998) extended this systems dynamics model and
validated its applicability to several demographic areas. This planning model was able to
predict the future conditions over a 20-year period.

13

Not much research has been done in the application of discrete event simulation
as a policy analysis tool. PONTIS version 4 has a smulation module that simulates the
network behavior but neither the PONTIS User's manua nor any other literature sheds
light on the inner workings of this simulation module. However the PONTIS simulation
module cannot handle distributions for the cost models or the deterioration models.
Neither does the PONTIS smulation model take into account the durations of the

individual maintenance actions leading to the belief that its working is probably not
discrete event smulation based.

14

Chapter 3
OBJECTIVES

There is a lot d investment in bridges and a lot more should be invested to
achieve the desired level of service. It therefore pays off to invest wisely. Several bridge
management systems have been developed to aid the policy makers in making better
decisions. The key component of bridge management systemsis a Policy analysis tool.

Optimization, Markov chains and Systems Dynamics are the three main policy
analysis tools which have been employed to date in bridge management systems.
Optimization techniques are limited by the complexities of the problem they can solve
and the computational time scales with the magnitude of the network. Systems Dynamics
is a methodology that uses control theory and feedback structure for a system to analyze
the problem. Markov chains assume that everything prior to the current condition does
not matter and predict the future condition based on transition probabilities.

The main problem in bridge management is the vast amount of information that
should be captured for analysis. Each bridge is unique with its own deterioration rates
condition states, maintenance costs and improvement needs. Systems Dynamics is based
on the principles of interactions between deterministic, dynamic, non-linear and closed
boundary systems (Kim 1996). The systems approach described in Kim (1996) tries to
define the different sub-systems existing in a transportation network and defines the
relationships between them. It then predicts the behavior of the sub-systems under
varying external conditions. The drawback of systems dynamics approach is that it
cannot take into account intangible factors like weather in a quantitative manner.
Simulation can handle such factors by using distributions for the data instead of

deterministic values.

Discrete event simulation based models can be developed for any problem

provided that suitable discrete state information is available. Therefore it is possible to

15

incorporate the available information about a specific bridge sub-system into a Discrete
Event simulation model and run simulations to observe the network behavior. However
this approach has some shortcomings. First the model will be problem specific and
cannot be used for a different sub-system unlessiit is extensively modified to suit the new
sub-system. Further the model will need to be tweaked constantly to keep it up to date.
Any changes in the network structure could mean changing the model to incorporate

these changes. All thisinvolves significant work rendering this solution cost-ineffective.

This research tries to develop a suitable and generic framework for employing
discrete event ssimulation models to solve the problem of bridge management thereby
adding simulation as a policy analysis tool to the already available policy analysis tools.
Based on this framework, a DES based model was developed. This model is generic in
nature and can extract data from available sources, thereby making sure that it is not
problem specific, but can be applied to any bridge network, provided all the compatible
datais available.

3.1 SPECIFIC OBJECTIVES
This research will address the following issues

1. To develop a suitable framework for employing DES as a general purpose policy
analysis tool in bridge management in particular and asset management in

general.
2. To explore the usefulness of this tool in bridge management.
3. To determine the capabilities, limitations and requirements of such atool.

4. To determine the kind of strategic policies that can be modeled using this tool.

16

Chapter 4

RESEARCH METHODOLOGY

4.1 UNDERSTANDING BRIDGE MANAGEMENT

The first step in the development of a ssimulation model is to formulate the
problem. This involves a thorough understanding of the bridge management problem and
the decision making process of the personnel involved. Through interviews with several
experts and literature review, a thorough understanding of the issues in bridge
management was obtained. What follows is a description of the main problems involved

in bridge management which distinguish it from any other asset management.

4.1.1 Description of the Bridge M anagement Problem

The primary difficulty with bridge management is the vast number of different
bridge types in existence (Cable Stayed, Reinforced Concrete, Timber etc.). Each type of
bridge has its own components, deterioration rates, maintenance £hedules and costs,
which are unique to that type; bridges cannot be viewed as a generic ‘Bridge' type. So the
bridges need to be classified into different categories based on their common properties.
Different approaches have classified the bridges based on their components. One of the
most common approaches is the National Bridge Inventory (NBI) classification where
each bridge is classified into major components like Deck, Superstructure, Substructure
and Other Minor Elements. The status of a bridge is afunction of the health of these
components. However one major limitation with this method is that it classifies the
bridges into broad categories and the properties might vary significantly within a
category. The magor components of a bridge consist of many elements, materials,
possibly different functions for the same element and different quantities of the same
element. Each of these elements behaves differently over time as a function of the load
and environment that they are subjected to. Thus, by collecting various amounts of
information on the components and lumping all that information into one number grossly
reduces the value of the information gathered.

17

This difficulty can be overcome by further classifying the categories into sub-
components. The Commonly Recognized (CoRe) element classification of Bridge
elements prepared by the FHWA is much more detailed than the NBI classification. This
classification is used in PONTIS, BRIDGIT and other Bridge Management systems.

What follows is a description of the CoRe element classification.

There are about 160 elements that make up the entire range of bridge components.
An element is a basic functional unit of the bridge, such as a girder, bearing pad, column,
pier cap, deck or joint. Every bridge will not have all these elements but will most likely
be made up of about a dozen of them. The list of al the elements used in PONTIS
classification for the state of Virginiais given in Appendix A. Each element has a set of
defined condition states. This classification achieves a greater level of detail. There are at
least three different states and at most five different states for each element. These
condition states are defined using engineering language applicable to that element. For
example Table 4.1 shows the condition states for the painted steel deck truss element.

TABLE 4.1 Condition State Definitions for Painted Steel Deck Truss (Element 131)

State Description of the Condition State

State 1 There is no evidence of active corrosion and the paint system is sound and
functioning as intended to protect the metal surface.
There is little or no corrosion. Surface or freckled rust has formed or is

State 2- forming. The paint system may be chalking, peeling, curling or showing
other early evidence of paint system distress but there is no exposure of
metal.

State 3 Surface or freckled rust is prevalent. There may be exposed metal but there
is no active corrosion, which is causing loss of section.

Stete 4 Corrosion may be present but any section loss due to active corrosion does
not yet warrant structural analysis of either the element or the bridge.
Corrosion has caused section loss and is sufficient to warrant structural

State 5: analysis to ascertain the impact on the ultimate strength and/or
serviceability of either the element or the bridge.

18

In addition to the condition of a bridge element, its environment and the effects of
traffic and aging govern the behavior of an element. Every condition state has three
associated action types, two of which will restore the element to a better condition and a

Do Nothing activity, which simply lets the element deteriorate at its natural rate.

For example, consider the Painted Steel Deck Truss (element 131) in condition
state 3. There are three possible types of mainterance actions as given in table 4.2.
TABLE 4.2 Maintenance Actions for Painted Steel Deck Truss

Maintenance Action Type | Description of the Maintenance Activity
0 Do Nothing
1 Remove Surface Rust
2 Clean and Spot Paint

Ancther difference in this rating from the NBI rating is that it rates bridge
elements in quantitative units rather than an average rating for the entire element. Since
total quantities of an element are rated, it is reasonable that an element can have multiple
condition states. For example: beam-ends. If there are 4 girders, each 100 feet long (a
total of 400 LF). However, usually only the beam ends have advanced deterioration due
to joint leakage. The entire 400 LF would not be coded in condition state 4 but only a
portion of the total amount, say 5 LF per beam end under the open joint. Thus only 5% of
the beamends will be rated in condition state 5. The remaining 95% is placed in
condition state 3. Therefore different portions of an element can be in different condition
states. The Elemert Data Collection Manual (1996) gives a detailed description of the
condition states and the way in which they are assigned.

Bridge Management as mentioned earlier is a complex problem. Some of the

issues arising in the development of a simulation model for bridge maintenance are:

1. Bridges cannot be viewed as a single entity but need to be divided into their sub-
elements. The CoRe classification as mentioned earlier consists of about 160
elements, each of which can exist in 3-5 states with each state having its own
deterioration rates, maintenance activities and costs. All this data needs to be

19

suitably represented and managed in the simulation model.

2. The different permutations of policies that can be performed on each individual
element give rise to a physically unmanageable number of policies at the network
level. A suitable mechanism needs to be developed so that the user can effectively

manage the numerous possible network policies.

4.1.2 Policy Analysis

At any given point of time each bridge has its own needs and competes for
resources. Though each bridge is unique, a common platform needs to be developed in
order to compare the competing bridges and ensure maximum benefit for the resources
consumed.

4.1.2.a Health Index;

The need to have a single number that could be used to judge the performance of
maintenance and rehabilitation efforts was identified by California Department of
Transportation. They have developed an improved performance measure called the health
index (HI), which ranks a bridge on a scale of 0 to 100 (Roberts and Shepard, 1999). The
HI uses element inspection data based on the FHWA CoRe element description to
determine the remaining asset value of a bridge. It weighs the quantity of each element in
each condition state against the failure cost of the element. A summation of the value of
all elements on a bridge is then compared with the summation of the reduced value of any

deficient elements; the ratio of the two numbersis the HI for that bridge.

Thus HI = (SCEV/STEV)* 100 1)
Where TEV isthe total element value and CEV is the current element value.

TEV=Tota element quantity*failure cost of the element (FC)

CEV=S(Quantity Condition State* WF;)*FC

The method of calculation of HI along with an example is given in Appendix B.
20

4.1.2.b Improvement Cost Ratio

The HI provides an effective mechanism to compare different bridges and rank
them accordingly. However merely selecting the bridges with the lowest HI for
maintenance is not an effective strategy since this merely trandates to reconstruction and
rehabilitation as opposed to a combination of preventive maintenance and rehabilitation

and might not result in effective spending of the available funds.

In order to ensure effective spending a mechanism called the Improvement Cost
ratio has been developed by the author. This concept is based on benefit cost ratio. The
Improvement Cost ratio is defined as

Improvement Cost Ratio = Future Healthindex - Current Healthlndex)

Cost of Maint. Action

where the Future Health Index is the new health index the bridge will achieve if
the proposed maintenance action is performed, Current Health Index is the HI of the
bridge before the maintenance action is performed and Cost of Maint. Action is the total
cost of the proposed maintenance action.

Based on the element level policies the overall Improvement Cost ratio (IC) for
the bridges is developed every year. The bridges are then ranked in descending order of
their IC ratio. Based on the available funds the bridges are selected from the top until the
model runs out of funds thereby ensuring maximum improvement for the money spent. If
the model encounters a situation where the available funds are insufficient for the bridge
under consideration in the list, the model proceeds down the list to see if it can perform

maintenance activity on a bridge with lower IC ratio.

4.1.3 Classification of Bridges

For the purpose of reporting, the average HI is not a suitable mechanism, as it
does not give the entire picture of the network. Consider an example with 5 bridges. The
average HI can be the same if al the bridges have a HI of 80 or if the HI’s of the bridges
are say 95, 95, 95, 95 and 20. However the two cases are not the same. In the second case

21

the last bridge is well below the level of service and probably close to failing, which is
not reflected in the average value. What is needed is a reporting mechanism that can
show the distribution of bridges and give a clearer picture of the state of the network. For
this purpose the bridges fave been classified into five different categories — Excellent,
Good, Fair, Poor, and VPoor. The specific qualifying criterion for each of these
categoriesis given in Table 4.3.

TABLE 4.3 - Classification of Bridges

Category Qualifying Criterion
Excellent HI>95
Good HI<=95 and HI>82
Fair HI<=82 and HI>70
Poor HI<=70 and HI>40
V Poor HI<=40

Every year the bridges can now be classified into these five categories giving a
clearer picture of the state of the network. Using this classification in the above example
yields 5 bridges in Good condition in the first case and 4 in excellent and 1 in VPoor

condition state in the second case.

There might be a target distribution of Bridges among these categories (e.g. 25%
in Excellent, 65% in Good and 10% in Fair). However the actual distributions might be
very different from this. The simulation model can be run with different budgets and
policies in order to compare the actual conditions versus the target conditions. Since the
region of deficit can be observed clearly, it can be focused in the next run. For example if
it is observed that the actual distribution is 30% Excellent, 35% Good and 35% Fair, then
most of the budget should be allocated to the Bridges in Fair condition to restore them to
Good and probably a portion to Excellent to maintain them in that state.

4.2 CONCEPTUAL MODEL

Based on this understanding of the working of bridge management and the

22

available data a conceptual model was developed to represent the bridge management

process.

4.2.1 Softwar e Development Tools

Microsoft Windows operating system was used as the development platform for
the software development part of the research. The software was developed such that it
can be implemented on any Windows platform (95/98/NT/2000).

Next is the selection of suitable discrete event simulation software. Stroboscope
smulation language was used for Simulation modeling. Its powerful modeling
capabilities made the representation of complex models very easy. Further Stroboscope
provides a front end, which enables the overall structure to be viewed visually similar to a
flowchart thereby reducing the possibility of any logical errors. The conceptua model is
developed in Microsoft VISIO using Stroboscope templ ates.

Some extensions had to be made to Stroboscope for it to interface with PONTIS

data. These extensions were developed in C++ using Microsoft Visual Studio — version 6.

4.2.2 Stroboscope

Stroboscope is a discrete event simulation language with a Microsoft VISIO
interface to develop models. What follows is a brief description of the key concepts used
in Stroboscope. This discussion should help the reader follow the implementation of the
model in Stroboscope.

Almost al models in Stroboscope are represented using networks. A network is a
high level representation of a simulation model and consists of nodes connected by links
through which resources of different types flow. Resources are the basic things used to
represent rea life entities like Trucks, Loaders, Bridges, Pre-Stressed beams etc.

Resources however need not be real-life objects and can be abstract ‘things' also.

There are different kinds of modeling elements in Stroboscope. The first element

is the queue element represented graphically with a circle. The queue entity is a container

23

for holding a resource or resources that are idle until certain criteria are met. Each queue
is associated with a particular type of resource. The next entity is the activity which as
opposed to queues draws resources as soon as they are available and does something.
They represent the work or tasks to be performed using the necessary resources. An
activity can represent a task that can take place zero, one or several times during
simulation. Each of these instances can be independent of one another and can occur
simultaneously or can occur one after another. Each instance can have its own duration

and can hold specific resources that were required for that activity to start.

The most common activities used in Stroboscope are the Norma and Combi
activities. Combi activities represent tasks that start when certain conditions are met. At
appropriate moments in the smulation, Combi’s are scanned to determine if the
necessary conditions exist for them to start. Combi’s can only draw inactive resourcesii.e.
from queues. They are represented as rectangles with their top-left corner chopped off.
Normal activities represent tasks that start immediately after other tasks end. A Normal
acquires resources from the activity that has just finished. They are represented as

rectangular boxes in the model.

These three elements are the basic building blocks of a Stroboscope simulation
model are can be used to represent the basic models. A more complex model can have
more complex building blocks like assemblers, disassemblers, consolidators etc. For a
more detailed discussion of the elements of Stroboscope and understanding Stroboscope
models, refer Martinez (1996).

4.2.3. Working of Simulation M odel

Based on the understanding of the bridge management process and the available
data the overall working of the simulation model is developed to emulate the bridge
management process. Figure 4.1 shows the flow chart working of the simulation model.
This model is described below. The bridges are created and initialized and then placed in
the bridge network where they reside for a major portion of the simulation. During each

year the qualifying bridges are drawn through the bridge network based on the selection

24

criteria (Improvement Cost ratio and available funds). The qualifying bridge is sent to the

RepairBridges activity where the preferred maintenance activities are performed on each

element and the repaired bridge is sent back to the Bridge Network where it resides until

the next year.
Initialize
Bridges
v
./ Bridge ‘;
/ Network /~
Onceayear
QualifiesforRepair
NO YES
y A
UpdateBridges RepairBridges

FIGURE 4.1 Flow Chart of the Bridge Maintenance Process

25

At the end of the year, all the bridges that did not qualify for repair are sent to the
UpdateBridges activity, which updates the conditions of the bridge elements and sends
the bridge back to the bridge network. Note that in addition to the Improvement Cost
ratio and the available funds, there are two additional criteria which determine if a bridge
qualifies for repair or not. The first is the delay, which ensures that if abridge is repaired
then it is not repaired for the next three years. This condition is imposed to ensure that the
same bridge does not qualify for repair over successive years, thereby depriving other
bridges of the needed funds. This is actually not far from reality. The second criterion
introduced is that at any instant of time only a certain number of bridges can be repaired
simultaneously. This condition is imposed to capture the resource constraint in the
network. Working on al the bridges simultaneously brings the transportation
infrastructure to a halt. Any small area considered in the simulation will have a small
number of competent contractors who can undertake the repair work thus limiting the
number of simultaneous repairs. Further the decision makers might not wish to close
more than a specified number of bridges for repair to avoid inconvenience to the general
public. The effect of al these rea life congtraints is that at any point of time only a
limited number of bridges should be closed for repair, which is what is being modeled. It
should be realized that these are strategies in the model and their parameters can be
changed to try out different strategies. For example to try out the hypothetical situation
where unlimited number of contractors are available, the number of bridges which can be
worked on can be set to a very high number. Similarly the impact of changing the size of

the infrastructure maintenance staff can be indirectly measured by varying this number.

The front end of the simulation model is shown in Figure 4.2. What follows is a

brief description of the working and the underlying logic of the model in Stroboscope.

26

B9

cl
OneYear
AssembleBrid
ges
N——>IcreateBridges
8 —>
4
SeperateBridg
es

RepairElement] =3 w [RPrdEle
s g Qts

y DisassemBridg
es

BS E2
RepairBridges Element
X AsmRprdBridg

es

86 @ B7 | . [AssembleElem B8
ges>< el s
|

RCntr <€ 4;

= |

R5

7
Y

Report

\4

FIGURE 4.2: Visualization of the Stroboscope M odel

27

The BridgesToCreate node is where the bridges in the network are created. Here
the bridges are a ssimple place holder for the elements and do not contain any information
other than Bridge ID. The ElementsToCreat is where the individual elements of the
bridge are created. The elements contain the inspection data and deterioration conditions.
CreateBridges node matches the bridges to the corresponding elements and creates whole
bridges. At this point in the simulation the bridge properties like number of elements,
overall heath index (HI) of the bridge are determined. The bridges and their
corresponding elements are combined together in the AssembleBridges node as a unit. At
this stage the Bridge component contains the individual element components and the two
are inseparable. Once assembled the individual elements cannot be accessed directly.
Only the Bridge properties are available at this stage. This feature is used to group
together al the elements of a bridge together and work on them as a bridge unit instead of
the individual elements. It aso helps to compare bridges instead of individual elements of
a bridge. At this stage the bridges pass on to the BridgeNetwork node. This concludes the
initialization phase of the model and at the end of this stage bridge network with al the

relevant information has been created.

RepairBridges node draws the bridges from the network for repair and
maintenance one by one. The total number of bridges that can be drawn for repair
depends on the available budget, which can be changed every year. The link B4
connecting BridgeNetwork and RepairBridges is the link where decisions pertaining to
which bridge to work on are taken. Thisis a crucial part of the smulation model since the
network policies are what decide the behavior of the model. Once a bridge is selected it
passes on to the DisassemBridges node, which separates the elements from the bridges so
that they can be worked on. The RepairElementsis where the elements are repaired and
their condition, cost incurred and other parameters are updated. Also the available funds
are deducted by the appropriate amount. Once all the elements of the bridge are repaired,
the bridge can be reassembled. AssembleElems matches the elements to the
corresponding bridges and they are put back together in AsmRprdBridges and sent back
to the BridgeNetwork.

28

If a bridge is not repaired then it deteriorates and its status needs to be updated.
This updating of the bridges takes place at the end of every year. The loop
UpdateBridges, Brdgs, SeperateBridges, DisassemBridge, and AssemBridge performs
this action. The names of the nodes indicate the roles they play. UpdateBridges selects
the bridges whose condition needs to be updated. Brdgsand SeperateBridges separate the
bridges and send them one by one to DisassemBridge. The link E7 connecting
DisassemBridge and AsssemBridge updates the conditions of the elements. AsssemBridge
updates the bridge parameters (HI, RepairCost etc.) based on the new element conditions.
DisassemBridge and AssemBridge update the deterioration of the node. The YrCntr and
OneYear loop assures that the bridges are updated once every year. Finaly Report draws

the bridges every year and reports their status to the user.

As the proposed model was being developed, experts in the field were consulted
to test the accuracy of the model. This iterative process was continued until an accurate

representation of the bridge management process was obtai ned.

4.3 STROBOSCOPE IMPLEMENTATION OF THE MODEL

Based on the above behavior of the model the corresponding Stroboscope code is
created and the appropriate Stroboscope statements are written. The complete
Stroboscope program is given in APPENDIX D. What follows is a description of the

parameters that can be varied to change the behavior of the model.

4.3.1 Simulation Parameters

The parameter YrsToSimulate defined in line 7 is the number of years the model
is to be smulated. The array FUNDSMTRX (line 9) contains the funds assigned every
year. The next four parameters in lines 12 through 15 give the lower bounds of the
corresponding ranges. Only four parameters are required as the upper limit of Excellent is
assumed to be 100 and the lower bound of VPoor is assumed to be 0. The parameter
Delay in line 17 gives the minimum time interval between successive maintenance works
on any bridge. Finally the parameter MaxBridgeCount on line 17a gives the maximum

number of bridges that can be closed for repair simultaneously.

29

4.3.2 Additional Components of the Policy Analysis Tool

The Stroboscope model described above can simulate the network and project the
network health over a period of time. However the model cannot work in isolation. A
suitable mechanism needs to be developed to incorporate the existing network conditions
as a starting point for the model. Since the goal of this research is to employ Discrete
Event Simulation as a policy analysis tool and not to develop a Bridge Management
System, it was decided to develop the policy analysis tool to work in conjunction with a
Bridge Management System. PONTIS bridge management system was selected due to its
availability and ease of use. The input mechanism that should be developed will import
al the appropriate data from PONTIS. Further an appropriate querying tool should be
devised so that the user can try out different network policies. All tese components
should work in tandem for an effective policy analysis tool. Figure 4.4 indicates the

different components required by the policy analysis tool.

PONTIS Data:
TABLE ACTMODLS PARAMETERS:
TABLE BRIDGE YrsToSimulate POLICY
TABLE CONDUMDL FUNS;I;/IyTRX ANALYSISFILE
TABLE ELEMDEFS M axBridgeCount
TABLE ELEMINSP L
v
INPUT DLL L » STROBOSCOPE MODEL

FIGURE 4.3 Components of the Policy Analysis Tool

4.3.3 Working of the Stroboscope Code

Stroboscope cannot extract data from text files. Therefore an add-on DLL was
developed which aids Stroboscope to extract the data from the appropriate PONTIS files.
The list of al the tables which are extracted from PONTIS are given in figure 4.3. A
detailed description of al the tables imported from PONTIS follows in section 4.4. The

30

command LOADADDON in line 6 loads the appropriate DLL. Once the DLL is loaded
the information read from the PDI files is extracted by calling the appropriate functions
provided by the DLL. First the data files need to be opened using the OpeninputFile][]

function. This function takes the name of the file as the parameter and returns a

Stroboscope address to the file. Unless the file is in the same directory as the Stroboscope

model,

the full path of the file should be specified as the parameter. Then the appropriate

functions are called in lines 34,36,40,42 and 45 using the Stroboscope file address as the

parameter as given below.

34
35
36
37
38
39
40
41
42
43
44
45

CALL ReadEl enent Dat a[dat a] ;

ASSI GN data Openlnput File["Bridges.txt"];

CALL Cet Bri dgel nfo[data];

ASSI GN data OpenlnputFile["El em nsp.txt"];

CALL GCet El enent | nf o[dat a] ;

ASSI GN data OpenlnputFile["int_el endefs. PDl"];
CALL Cet St at eCount [dat a] ;

ASSI GN data OpenlnputFile["int_condundl.PDI"];
CALL Get Fai |l ureCost [data];

/ Read the el enent |evel policies to be inplenented
ASSI GN data OpenlnputFile["PolicyAnalysis.txt"];
CALL Get Pol i cyl nfo[data];

The names of the functions indicate the specific role played by them. Lines 19 to

29 define the various data containers (arrays) needed to effectively manage the data and

are given below.

18.
19.
20.

/| DECLARATI ON FOR TRANSI TI ON PROBABI LI TI ES
ARRAY Tr ansProbDat a 800;
/ DECLARATI ON FOR MR&R ACTI ONS AND TRANSI Tl ON

PROBABI LI TI ES FOR ACTION TYPE 1

21.
22.

ARRAY Mhai nt Act 1Dat a 800;
/| DECLARATI ON FOR MR&R ACTI ONS AND TRANSI TI ON

PROBABI LI TI ES FOR ACTI ON TYPE 2

23.
24.
25.
26.
27.
28.

ARRAY Mai nt Act 2Dat a 800;

/| The preferred elenent |level activity matrix

ARRAY Pr ef Mai nt Act 800 5;

/[Failure cost information for every el enent

ARRAY Fai | r Cost Dat a 800;

[Array giving the maxi rum nunber of allowable states

for each el ement

29.

ARRAY St at eCnt 800;

The specific information contained in each array is given in the comments
31

associated with the array dcefinitions. In particular the TransProbData, MaintActlData,
and MaintAct2Data arrays are 3-dimensiona arrays, even though the definitions indicate
that they are 1-dimensional arrays of size 800. Each of the 800 values is in turn a 2
dimensional matrix. These matrices are defined in line 454, 469, and 483 of the Input
DLL and are filled with the appropriate values read from the PONTIS PDI files. Each
element of the TransProbData is a 2D array of size 5X5 where each element indicates
the transition probability from a condition state (the row) to a transition state (the
column). The arrays MaintActlData and MaintAct2Data however are of size 6X5. The
6™ element in each row corresponds to the unit cost for that maintenance activity. The
row gives the initia condition state of the element and the column gives the target

condition state.

These tables predict the future condition of the element after a year given its
current condition. For example consider figure 4.4. 1t shows the transition probability
table for element 131. It can be observed from the figure that a painted steel deck truss
(element 131) in condition state 3 has a probability of 0.7 of staying in the same
condition state in a span of one year, a probability of 0.2 of deteriorating to condition
state 4 and 0.1 of reaching condition state 5. In other words, if 100 square feet of the deck
trussisin condition state 3, after a year approximately 70 square feet will remain in state

3, 20 square feet will reach state 4 and 10 square feet will be close to failure (state 5).

CONDITION STATETO CONDITION

STATE
1 2 3 4 5 FROM

1

0.1 [09]00[00 [00
0.0 [08] 0200 |00)
00 (000702 |01 3
0.0 000007 |03 4
0.0 (0.0 00 [00 |10 5

FIGURE 4.4 Transition Probability Data for Element 131

32

CONDITION
CONDITION STATE TO STATE

1 2 3 4 5 FROM
1
2
3

ID | 4
_ 5
800 X Unit Cost

MaintAct2Data Array

FIGURE 4.5 Organization Of Data Into 3-D Arrays

The organization of the datais shown in figure 4.5. Since only 2-D array elements
can be accessed using the regular Stroboscope syntax, the elements in these 3-D arrays
should be accessed using a function GetArrayElement[]. Thus in the above figure if there
are 800 2-D arrays for each table, GetArrayElement will point to the appropriate 5X5
table for TransProbData and the appropriate 6X5 array for MaintActlData and
MaintAct2Data. For example consider GetArrayElement [MaintAct2Data [1D],0,5] from
line 149 of the Stroboscope model. The MaintAct2Data specifies the array from which
the data needs to be extracted. The ID indicates the element number whose data needs to
be extracted. ID varies between 0 and 800. The next two parameters indicate the specific
value that needs to be extracted. For example the O and 5 here indicate that the number
corresponds to the unit cost for MaintAct2Data in condition state O as indicated by the
‘X’ in the figure. Similarly GetArrayElement[TransProbData[ID],2,3] gives the transition
probability of element ID from condition state 2 to condition state 3 for no maintenance

(Since TransProbData array contains the no maintenance transition probabilities).

The resource types that are used in the simulation are defined in lines 48 to 69.
The bridge and the element are the basic resource types of the model. In addition the
counter resource type is a generic resource type defined to help in counting and managing
the model. The properties associated with each resource type are also defined here. The

33

CEV and TEV of the element correspond to the Current Element Value and the Total
Element Vaue of the element.

48. COWPTYPE Bridge; /BR

49. SAVEPROPS Bridge H TotEl ens RepairCost BrlD
QueueFrm Last Repai redTm FHI ;

50. CGENTYPE Counter; /CO

51. COWPTYPE Elenent; /EL

52. SAVEPROPS Elenment Statel State2 State3 State4
State5 Qy ID EH Source UnitFlrCst statecnt S1 S2 S3
S4 S5 Costl Cost2 Cost3 Cost4 Cost5 FStatel FState2
FSt at e3 FSt ate4 FStat e5;

53. /Variable storing the current el enent val ue

54. VARPROP El ement CEV ' statecnt ==57?

55.

(Statel+State2*0. 75+St at e3*0. 5+St at e4*0. 25)*Q y*Uni t FI
rCst:

56.

stat ecnt ==4?(St at el+St at e2*0. 67+St at e3*0. 33) *Q y*UnitF
| rCst:

57. (Statel+State2*0.50)*Qy*UnitFlrCst’';

58. /Variable storing the future el enent val ue

59. VARPROP El ement FEV 'statecnt==57

60. (FStatel+FState2*0. 75+FSt at e3*0. 5+FSt at e4*0. 25)
*Qy*UnitFlrCst:

61. statecnt==4?(FStatel+FState2*0.67+FSt at e3*0. 33)
*Qy*UnitFlrCst:

62. (FStatel+FState2*0.50)*Qy*UnitFl rCst';

63. /Variable storing the total repair cost of the

el ement

64. VARPROP El enent RepairCst

65.

(St at el* Cost 1+St at e2* Cost 2+St at e3* Cost 3+St at e4* Cost 4+
St at e5*Cost5)*Qy';

66. /Variable storing the total el enent val ue

67. VARPROP El enent TEV 'Qy*UnitH rCst';

68. /Variable storing the ICratio for the bridge

69. VARPROP Bridge I C ' RepairCost!=0?((FH -

Hl) * 1000/ Repai r Cost):-100';

The Current Element value is defined by the Cadlifornia Department of
Transportation as CEV=S(Quantity Condition State* WF)* FC. Appendix B describes the
calculation of the CEV in detail. This calculation of CEV corresponds to the lines 54 to
57 in the modd. Similarly the formula for calculating the FEV is given in lines 59 to 62
and is given below.

34

54. VARPROP El ement CEV ' st at ecnt ==5?

55. (St at el+St at e2*0. 75+St at e3*0. 5+St at e4*0. 25) *
Qy*UnitFlrCst:

56. stat ecnt ==4?(St at e1l+St at e2*0. 67+St at e3*0. 33) *Q y* Un
itFlrCst:

57. (Statel+State2*0.50)*Qy*UnitFlrCst';

59. VARPROP El enent FEV 'statecnt==57?

60. (FStatel+FState2*0.75+FSt at e3*0. 5+FSt at e4*0. 25) *
Qy*UnitFlrCst:

61. st at ecnt ==4?(FSt at e1+FSt at e2*0. 67+FSt at e3*0. 33) *
Qy*UnitFlrCst:

62. (FStatel+FState2*0.50)*Qy*UnitFlrCst';

The FEV corresponds to the Future Element Vaue of the bridge. The FEV is the
element value of the bridge in the future provided the recommended maintenance actions
are performed. The total repair cost given in lines 64 and 65 is the summation of the
repair costs in al condition states i.e. statel* cost1+state?* cost2+...+state5* costs. The IC
calculates the Improvement Cost of the bridge and is given by the improvement in the HI
for the money spent. This formulais incorporated in line 69. Note that if the repair cost of
the bridge is 0, then the IC is assigned a value of —100 to ensure that the bridge does not
qualify for repair.

Lines 72 to 132 describe the different nodes used in the Stroboscope model. These
nodes correspond to the combis, queues, and links given in figure 5.4. The bridges and
elements are created at the start of the simulation in lines 818 and 820. The current
element information from the PONTIS database is associated with the elements in lines
77210 780 and is given below.

772. ONENTRY El ement sToCreat ASSIGN I D

El I NFJ ResNum 1, 0] ;

773. ONENTRY El enent sToCreat ASSIGN Qvy

El I NFQ ResNum 1, 2] +EI __ | NFO ResNum

1, 4] +El __ I NFO ResNum 1, 6] +EI __| NFOf ResNum
1, 8] +El __ I NFO ResNum 1, 10] ;

774. ONENTRY El enent sToCreat ASSI GN St atel
El I NFQ ResNum 1, 1]/ 100;

775. ONENTRY El enment sToCreat ASSI GN St at e2
El I NFJ ResNum 1, 3]/ 100;

776. ONENTRY El enment sToCreat ASSI GN St at e3
El I NFJ ResNum 1, 5]/ 100;

777. ONENTRY El ement sToCreat ASSI GN St at e4

35

El I NFQ ResNum 1, 7]/ 100;

778. ONENTRY El enent sToCreat ASSI GN St at e5
El __INFJ ResNum 1, 9]/ 100;

779. ONENTRY El enent sToCreat ASSI GN Source
El _INFJ ResNum 1, 11];

780. ONENTRY El enent sToCreat ASSI GN st at ecnt
StateCnt[ID];

The Input DLL fills the EL__INFO array with the appropriate element info.
Similarly the DLL fills Br__INFO array with the bridge information from the PONTIS
data files. This bridge information is associated with the bridges upon creation in line
327. Thus the DLL reads the number of bridges and stores it in Br_INFO and the number
of elements and stores it in EI_INFO so that the stroboscope model can create the

appropriate number of bridges and elements as there are in the bridge network.

The statements in lines 140 to 145 are responsible for matching the bridges and
their corresponding elements upon creation.

140. /* Startup of CreateBridges

141. PRIORITY Creat eBri dges ' 500';

142. DRAVWUNTI L Bl ' Creat eBridges. Bri dge. Count ' ;
143. DRAVWUNTI L EO

" El ement sToCr eat . El ensof Bri dge. Count ==0" ;

144. DRAWMERE EO

' Sour ce==Cr eat eBri dges. Bridge.Brl D ;

They correspond to the links EO, B1 and the combi CreateBridges in the network.
The bridges are sedlected one a a time and sent to CreateBridges. The filter
ElemsofBridge created in line 136 matches the elements corresponding to that bridge.
Line 143 ensures that al the elements of a bridge are drawn to match them to their
corresponding bridge. The condition in line 144 ensures that only the elements belonging
to the bridge in question are selected. The bridges and their corresponding elements are
combined together in the AssembleBridge node. At this point the properties of the bridge
are updated (lines 316 — 324) and the bridges are sent to the BridgeNetwork.

When drawing the elements through the link EO their properties are set. The code
corresponding to this operation is in lines 149 — 310. The unit cost information of the

elementsis set in lines 149 — 153 based on the preferred maintenance activities defined in

36

the policy analysis table. For example consider line 149 given below.

149. ONDRAW EO ASSI GN Cost1 ' (PrefMintAct[ID,0]==2)?

CGet ArrayEl ement [Mai nt Act 2Data[| D], O, 5] :

((PrefMaintAct[I D, 0]==1)"

Cet ArrayEl enent [Mai nt Act 1Data[1 D], 0,5]:0)";

The maintenance cost for element in statel depends on the recommended
maintenance action for statel. If maintenance actionl is recommended, then Costl = Unit
cost of maintenance actionl (Given by GetArrayElement[MaintActlData[ID],0,9]),
otherwise Costl = Unit cost of mantenance action2 (Given by
GetArrayElement[MaintAct2Datg[1D],0,5]). Similarly the other costs are defined in the

appropriate manner.

The transition probability information is then copied to a temporary array
ActProbData (155-304). For example observe lines 155 to 160

155. ONDRAW EO ASSI GN Act ProbData 0 O

156. Pref MaintAct[ID, 0] ==27

157. (CGet ArrayEl enment [Mai nt Act 2Data[1 D], 0,0]):

158. PrefMaintAct[ID, 0] ==17

159. (CGet ArrayEl enent[Mai nt Act 1Data[l D], 0, 0]):

160. (CGetArrayEl ement[TransProbData[l D], 0,0])";

The model checks whether maintenance action 1 or maintenance action 2 is
recommended for statel. Based on this information, it extracts the appropriate transition
probability (GetArrayElement[MaintAct2Datd[1D],0,0] or GetArrayElement
[MaintActlDatg[1D]0,0]). Using this future condition states are set in lines 306 - 310.
The future state is merely the transition probability multiplied by the amount of quantity.
For example. consider line 306 shown below.

306. ONDRAW EO ASSI GN FStatel

' St at el*Act ProbDat a[0, 0] +

St at e2* Act ProbDat a[1, 0] + St at e3* Act ProbDat a[2, 0] +
St at e4* Act ProbDat a[3, 0] + St at e5*Act ProbDat a[4, 0] ' ;

The total quantity in Future statel is given by the current quantity in a state*
probability that it will go to statel when the recommerded maintenance actions are
performed i.e. ?State;* Probability that that state goes to statel.

The selection of bridges should include the minimum delay period before a bridge
37

can quaify for repair. This is determined in the NonDelayedHI parameter defined in line
328, which ensures that a bridge qualifies for repair only if SimTime-LastRepairedTm >=
Delay (The acceptable value is to be assigned by the user.) The NonDelayedHI parameter
also takes into account if the funds are sufficient to undertake repair on a bridge through
the condition RepairCost <= Funds. Thus if the bridge should not qualify for repair based
on ether the delay or lack of funds, the NonDelayedHI is assigned a very low number to
prevent the selection of this bridge and if the bridge qualifies then the IC is assigned the
NonDelayedHI (Note that all these are defined as VarProps which ensures that their
values are computed instantaneously thereby ensuring that the current conditions are
taken into account). Lines 758 to 766 contain the ordering mechanism for the bridges.

758. /* Startup of RepairBridges
759. FILTER Best Exc Bridge ' NonDel ayedH ==
Bri dgeNet wor k. NonDel ayedHl . MaxVal & NonDel ayedHI ! =-

100" ;

760. SEMAPHORE Repai rBridges ' (BridgeNetwork. Cur Count
+ I nWKkBridges. Cur Count == Br__Count) ';

761. PRIORITY Repai r Bri dges 20;

762. ENOUGH B4 ' Bri dgeNetwor k. Best Exc. Count &

Bri dgeNet wor k. Best Exc. Repai r Cost . AveVal <=Funds’ ;

763. DRAWNHERE B4

' NonDel ayedH ==Bri dgeNet wor k. NonDel ayedHI . MaxVal &
NonDel ayedHI ! =- 100 & Repai r Cost <=Funds' ;

764. DRAVWUNTI L B4 RepairBridges. Bridge. Count;

765. DRAWORDER B4 - NonDel ayedHI ;

766. ONDRAW B4 ASSI GN Funds Funds- Repai r Cost ;

These lines rank the bridges in increasing order of NonDelayedHI (effectively the
IC) and select the bridges with the highest value until the model runs out of funds. The
filter in line 759 determines the bridge with the highest value. This bridge is selected in
line 763. Line 764 ensures that only one bridge is selected at atime. The bridges are then
repaired and sent back to the bridge network. Line 765 deducts the cost of the repair work
of the selected bridge from the total available funds and proceeds to the next bridge.

The node DisassemBridges then segregates the bridge from the elements in order
to update the condition of the elements. The RepairElements repairs the elements for the
duration of the maintenance activity and then sends the updated elements to the

RprdElements queue. While flowing through the link E4, the condition states of the

38

elements are updated (Lines 346 - 513). Similar to the link EO, the current states and the
future states of the element are updated. For the purpose of the updating the element and
performing the repair work, the preferred maintenance activities are determined from the
PrefMaintAct array.

Once all the elements corresponding to a bridge are repaired, the bridge is ready
to be combined with its elements and sent back to the network. Lines 521 to 531 check if
all the elements corresponding to the bridge have been repaired and then initiate the next
step. They are aso responsible for the matching of the elements to the corresponding
bridges similar to the lines 140 - 145 for links EO and B1. The bridge and elements are
then assembled in the AsmRprdBridges where the properties of the bridge are updated
(Lines 537 — 546) and the bridge is sent back to the bridge network. It should be noted
that the LastRepairedTime parameter of the bridge is aso reset here to the current
simulation time in order to ensure that the bridge does not qualify for the specified
number of years (Line 538).

538. ONASSEMBLY AsnRpr dBri dges ASSI GN Last Repai redTm

Si nili ne;

539. ONASSEMBLY AsnRpr dBri dges ASSI GN Repai r Cost

540. AsnRprdBri dges. El enent . Repai r Cst . Sunval ' ;

541. ONASSEMBLY AsnRprdBridges ASSIGN H '

542. AsnRprdBri dges. El enent. TEV. Sunval ! =0?

(AsnRpr dBri dges. El enent . CEV. Sunval /

543. AsnRprdBri dges. El enent. TEV. Sunwval *100): 0" ;

544, ONASSEMBLY AsnRprdBri dges ASSI GN FH

545. AsnRprdBri dges. El ement. TEV. Sunval ! =0?

(AsnRpr dBri dges. El enrent . FEV. Sunval /

546. AsnRprdBri dges. El enent. TEV. Sunmval *100) : 0" ;

If the bridge does not qualify for repair, then it is selected by the UpdateBridges

node at the end of the year. This selection is coded in lines 561 to 563.

561. ENOUGH B10 1;
562. DRAWNHERE B10 ' Si nTi me-Last Repai redTnp=1";
563. DRAWUNTI L B10 O;

The link B10 only selects the bridges that were not repaired in the current year
and need to be updated. Once the bridges are selected, they need to be sent one by one to
the disassembler, which is ensured by the queue Brdgs and combi SeperateBridges. The

39

DisassemBridge node separates the bridges from the elements so that they can be
updated. The link E7 updates the condition of the elements (Lines 576 — 743). The
calculations are similar to those performed in link E7, except they are simpler since only
the transition probabilities from the TransProbData need to be used. Once the element
conditions are updated, the bridge properties are updated in the assembler AssemBridge
(line 746 — 754) after which the updated bridges are sent back to the bridge network.

For the purpose of reporting the bridge network conditions, the Report activity
draws the bridges every year. In order to ensure that the bridges do not enter the repair or
deterioration cycles before reporting, the Report activity is given a higher priority so that
it takes precedence over the other activities (Line 795). The bridges could be in either the
bridge network or the InWrkBridges queue and so the report draws the bridges from both
the links. In order to ensure that the bridges are returned to the appropriate queue on
termination of Report, each bridge has a parameter Queue which is set to the appropriate
gueue on entering that queue (lines 327, 338). Upon termination of the Report activity the
bridges are sent back to the appropriate queue using this parameter (lines 809, 810).

809. RELEASEWHERE R2 ' QueueFr m==Bri dgeNet wor k" ;

810. RELEASEWHERE R4 ' QueueFr me=I nW kBri dges"' ;

The conditions of the bridges are collected in the BinCollector HICollector which
sorts the HI values into appropriate bins from 0-100 (lines 784, 788, 790). This
information is then sent to the output to display the network health (lines 797 — 804).

797. ONSTART Report PRI NT StdQutput "%ik. Of
%45. 2f 945. Of 9%d2. Of 94.2. Of 94.2. Of %d2. Of\ t " Si mTi ne
798. Hl Col | ector. AveVal

799. HI ol | ector. nSanpl es-

Hi t sAt Or Bel owBi n[HI Col | ect or, Excel | ent]

800. HitsAt O Bel owBi n[HI Col | ect or, Excel |l ent] -
Hi t sSAt Or Bel owBi n[HI Col | ect or, Good]

801. HitsAt O Bel owBi n[HI Col | ect or, Good] -

Hi t At Or Bel owBi n[HI Col | ect or, Fai r]

802. HitsAt O Bel owBi n[HI Col | ector, Fair]-

Hi t At Or Bel owBi n[HI Col | ect or, Poor]

803. Hi t sAt O Bel owBi n[HI Col | ect or, Poor];

Upon termination of the report activity the funds for the new year are allocated to
start the repair and updating cycle one again (line 812).

40

4.4 SEGREGATION OF DATA AND MODEL

It can be observed that the model does not depend on the number of bridgesin the
network or the condition of the bridges, or the transition probabilities or any other
network characteristics. These parameters are specific to each bridge network and if they
are incorporated into the model, this renders the model problem specific, which is
contrary to the goal of this project. Therefore these parameters should be separated from
the model. To facilitate this, the available data from the Salem District of Virginia was
studied to develop a suitable mechanism to input the data into the model. Another
advantage of this date segregation is that any changes made to the model will not affect

the data and vice versa.

After careful study of the Salem district databases, it was decided to input the data
into the model using text based data files. The format of these files is set up to coincide
with the PONTIS Data Interface (PDI) files. The PDI files can be generated from
PONTIS by selecting the appropriate tables using the import mechanism. These files
drive the ssimulation model without any changes thus simplifying the process of data
input to the model significantly. Since all the inspections are entered into the PONTIS
databases regularly, it ensures that the simulation model works with the latest

information.

4.5 DATA INPUT FROM PONTIS: (C++ DLL)

The PDI information should be retrieved by the Stroboscope model. However
Stroboscope was not equipped with the provision to extract data from an input file. So a
DLL was developed in C++, which facilitated reading data from a text file. Then a set of
functions were written which automated the process of reading the data from the text files
and interpreting it accordingly and thereby driving the simulation model. The following
tables have been imported from PONTIS in the Pontis Data Interchange (PDI) format

1. TABLEACTMODLS
2. TABLEBRIDGE

3. TABLE CONDUMDL

41

4.

5.

TABLE ELEMDEFS
TABLE ELEMINSP

The complete list of al the tables imported from PONTIS along with the fields

and their purpose in the model is given in APPENDIX C. The data is extracted by calling

appropriate functions provided by the DLL. Once the information is extracted, the model

proceeds with the smulation.

The complete C++ source code for the Input DLL is given in APPENDIX E. The

comments in the code describe the working of each section of the code. In addition the

development of DLL’s for Stroboscope is documented in Martinez (1996). The specific

functions supported by the DLL aong with their descriptions are given in APPENDIX G.

4.5.1 Assumptions madein the Model Development

1.

2.

All maintenance actions have duration of 15 days. Though data corresponding to
the duration of maintenance actions is not available, it is assumed that with the
growing importance of bridge management state agencies will soon start
collecting this information and it will be available. Once the information is
available it can be incorporated into the model. The model has the provision to

incorporate this information when available.

All the elements are assumed to be in a moderate environment (enviD=2). Most
state agencies have not yet classified their bridges into the different environment
categories and so it was felt that modeling the separate environments would be a
futile exercise. Therefore the default environment for all bridges is assumed to be
moderate. If this assumption is felt inadequate, the environment type can be
modified to suit the specific bridge system under consideration. However the
model does not have the capability to handle more than one environment

simultaneoudly.

Only bridges of one category are modeled. A detailed analysis of bridges with
varying importance (like interstate vs. primary or secondary) is beyond the scope

of this research and so all bridges are assumed to be of one category — interstate,

42

primary or secondary. In the specific databases used for testing purposes only

interstate bridges were used.

4.5.2 Policy AnalysisFile

The policy information was also decided to be segregated from the model. A
strategy to be smulated can be converted to a rule-based text file system which can then
be read by the model. Thus the network model depicting the bridge management process
is static. By varying the policy analysis file, different strategies can be smulated. By
varying the input data files, different network can be simulated. This segregation and
isolation of components assures that each section has specific responsibilities and any
changes made to one component will not affect the others thus promoting flexibility and
reusability.

The cmmand GetPolicylnfo in line 45 of the Stroboscope model extracts the
element level policy information from the policy file. A complete Policy Analysis file is
given in Appendix G. It is a simple text file and can be edited using any text editor like
Microsoft Notepad etc. The genera format of the Policy info file is given here.

/["Unp Conc Deck/AC Ovl"

1300021
["P Conc Deck/AC Ovly"
1400021
/["P Conc Deck/Thin Ovl"
1800011

Every element whose policy is to be defined has two lines in the policy file. The
first line gives the PONTIS description of the element. Note that the line should be
preceded by a‘/’. The '/ indicates that the line is a comments line and should be ignored.
The next line contains the actua policy information. The first number indicates the
element to which this information belongs. The next five numbers indicate the preferred
maintenance activity in each condition state. The ‘O’ indicates a do-nothing activity, ‘1’
indicates a maintenance activity type 1 corresponding to that condition state and similarly
‘2" corresponds to maintenance activity 2. Thus the unpainted concrete deck with AC

overlay in condition states 1, 2 and 3 do not get any maintenance activity performed,

43

whereas maintenance activity type 2 is performed in condition state 4 and maintenance
activity type 1 is performed in condition state5. These element level policies need to be
defined for al the elements. By varying the preferred activities, different policies can be
implemented. For example the maintenance policy given above is more inclined towards
reconstruction and rehabilitation. A maintenance policy like 13 1 1 1 2 1 is geared
towards preventive maintenance.

Chapter 5
MODEL TESTING

The firgt step in the testing of the model was to ensure that the model represented
reality. This was ensured by an iterative process of interviews with experts and

modifications until the final accurate model was developed.

The next step was to ensure that the trandation of the understanding/proposed
model to Stroboscope was accurate. For this purpose, the interstate bridges of the Salem
district of Virginia were chosen to represent actual test data. This data was obtained from
the PONTIS databases of VDOT. A total of 102 interstate bridges were smulated. Three

different scenarios were tried out for testing purposes.

5.1SCENARIO 1

This scenario involves the network behavior over time if no maintenance
activities are performed. This is modeled by assigning no maintenance budget for the 10
years of simulation. The results of this ssmulation run are given in table 5.1. It can be
observed in the table that the average hedlth of the network decreases over time which is
what is expected in this case. When these results were shown to the experts their response
to the behavior of the network was “The prediction of the network where the average HI
falls from 85 to 75 is accurate. Further since most of the interstate bridges are new, the

low drop in the HI (about 10) over a span of 10 yearsis also acceptable.” (Hackett, 2002)

5.2SCENARIO 2

Having addressed the issue of populating the model with actual data and trying
out test simulations, the next question was “Is it possible to represent the currently used
maintenance strategies in the Policy Analysis framework that has been developed?’ To
answer this question a second scenario was devised. This scenario involves the
simulation of the network with the currently used VDOT maintenance policies. To

capture the required maintenance policies, these maintenance policies had to be trandated

45

into the rules and incorporated into the Policy Analysis file. To achieve this goal, several
interviews with VDOT bridge engineers were conducted to determine the actual
maintenance policies used in the field. For each element, the different maintenance
policies possible in al possible condition states were enumerated and the bridge
engineers were asked to pick the most commonly used/preferred maintenance actions. A
complete list of al the maintenance actions examined in the interviews is given in
Appendix F. The highlighted actions are the preferred maintenance actions for a
condition state. This information was in turn trandated into the policy analysis text file
and used as an input for the simulation. This simulation output is shown in table 5.1. The
response of the personnel involved to this output was “Comparing with scenario 1 the
prediction of the model that the network health improves is a valid prediction. Further a
budget of 1 million dollars is sufficient to amost maintain the network in its present state
which is an acceptable prediction.” (Hackett, 2002)

5.3 SCENARIO 3

The next scenario explores the possibility of the ease of modifying the existing
strategies to perform “what-if” analyses The currently used VDOT maintenance policies
were used as a starting point and several maintenance actions were modified to determine

their impact on the network.

Decks and Girders are an important part of every bridge and are a major
contribution to the health index of the bridges. Therefore they were chosen for analysisin
this scenario. It was observed that the VDOT maintenance strategies typically had a Do-
Nothing policy for the initial condition states and performed reconstruction/replacement
in the later stages especially for the elements under consideration. It was decided to
change this policy to prefer preventive maintenance over maintenance on an as-needed
basis. For this three different cases were devised. The first case involved changing the
element level policies for the deck elements to ensure preventive maintenance. The
second case involved changing the element level policies for the girder elements and the
final case was a combination of the first two cases. The specific Policy Analysis files

were generated in all three cases. A detailed list of the policies that were atered is given

46

in tables 5.3 and 5.4. For the purpose of comparison a target distribution of the bridges
among the various categories was decided based on expert opinion as — Excellent — 5%,
Good — 75% and Fair — 20%. The simulations were compared to this target distribution to

determine the effectiveness of the policies used.

Tables 5.5 through 5.8 illustrate the results in a tabular format for easy
comparison. A comparison of the four tables indicates that the element level policies
can have a significant impact on the overall network even though the budgets are the
same. Table 5.6 and 5.7 show a improvement in the overall HI of the network as
opposed to Table 5.5 over 10 years, indicating that preventive maintenance is more
beneficial than reconstruction in the long run. The specific Stroboscope commands
required to test these scenarios are summarized at the end of the corresponding tables.

For the commands to work, the specified policy analysis file should be available.

The ssimulation results are summarized in figures 5.1 and 5.2. It can be observed
in figure 5.1 that when no maintenance is performed the network deteriorates steadily
from 85.56 to 75.35. When the currently used VDOT policies were simulated, the
network improves from 85.56 to 83.57. However the network does not match the target
distribution that is aimed for as observed in figure 5.2. The modified policies that were
simulated achieve a better improvement in the network indicating that preventive

maintenance is more beneficial compared to reconstruction.

On interviewing the bridge engineers about these predictions their response was
“Considering the fact that the CoRe definitions for decks cover only 10% deterioration
in the first three condition states and girders cover much more it is logical that changes
in the girder policies will have a significantly higher impact on the network as opposed
to decks. It is also likely to achieve improvements of these magnitudes in the network
by varying the maintenance policies. However VDOT is currently in the process of
redefining the CoRe element definitions for the condition states, the transition
probabilities and cost models to suit their needs. Therefore the results should not be
attached much significance until the input data to the model has been verified and
validated” (Hackett, 2002).

47

These scenarios demonstrate the validity of the simulation model and indicate that
the model represents the bridge management process to a reasonable degree of
accuracy. Any simulation model is as accurate as the data provided to it. Therefore
even though the simulation model has been verified, the data extracted from the
PONTIS databases must be validated before any detailed analysis of the network
policies can be performed. A detailed examination and validation of the input data

followed by athorough policy analysisis beyond the scope of this study.

48

TABLE 5.1 No Maintenance Budget

Excellent| Good Fair Poor VPoor
Target Distribution 5 77 20 0 0
Year HI Excellent] Good Fair Poor VPoor |$'s Budget| $'s Left
0 85.56 17 52 27 6 0 0 0
1 84.54 15 51 30 6 0 0 0
2 83.52 9 52 32 9 0 0 0
3 82.5 7 52 31 12 0 0 0
4 81.47 6 47 35 14 0 0 0
5 80.45 4 46 38 14 0 0 0
6 79.42 1 42 44 15 0 0 0
7 78.4 0 36 48 18 0 0 0
8 77.38 0 34 44 24 0 0 0
9 76.36 0 33 43 26 0 0 0
10 75.35 0 28 46 28 0 0 0
Set Budget in Line 9 to 0 using the following line
ARRAY FUNDSMTRX 11; / {1000000 1000000 +
TABLE 5.2 VDOT Element Level Policies with Budget of 1 Million
Year HI Excellent] Good Fair Poor VPoor |$'s Budget] $'s Left
0 85.56 17 52 27 6 0 0 0
1 86.32 19 54 26 3 0 1,000,000 50
2 86.43 15 57 26 4 0 1,000,000 186
3 86.21 16 56 27 3 0 1,000,000 605
4 85.92 15 58 26 3 0 1,000,000 1,997
5 85.66 11 61 28 2 0 1,000,000 6,020
6 84.95 6 66 28 2 0 1,000,000 | 68,487
7 84.65 0 72 28 2 0 1,000,000 6,972
8 84.21 0 70 30 2 0 1,000,000 7,373
9 83.87 0 69 31 2 0 1,000,000 9,130
10 83.57 0 69 31 2 0 1,000,000 4,407
Ave yearly Expenditure 989,477

Set Budget in Line 9 to 1 million and use VDOT Policy file in line 44 using the following lines

ARRAY FUNDSMTRX 11 {1000000 1000000

ASSIGN dat OpenlnputFile["PolicyAnalysis.txt"];

h

49

TABLE 5.3 Description of M odified Deck Policies

Bare Concrete Deck (12)

Condition State purrent PONTISPQIi(.:ies : M odified Policies. :
Act No. |Maintenance Act Description Act No. [Maintenance Act Description
1 0 Do Nothing 0 |Do Nothing
2 0 Do Nothing 0 [DoNothing
Repair Spalls and Delaminations & add
3 0 Do Nothing 2 |aprotective system on entire deck
Repair Spalls and Delaminations & add a Repair Spalls and Delaminations & add
4 2 protective system on entire deck 2 |aprotective system on entire deck
Repair Spalls and Delaminations & add a Repair Spalls and Delaminations & add
5 1 protective system on entire deck 1 |aprotective system on entire deck
Unprotected Concrete Deck w/ ACOverlay (13)
Condition State _Current PONTISPQIi(?i&e _ M odified Polici&s_ _
Act No. [Maintenance Act Description Act No. |Maintenance Act Description
1 0 Do Nothing 0 [DoNothing
2 0 Do Nothing 0 |DoNothing
3 0 Do Nothing 1 |Repair substrate and replace overlay
4 2 Repair substrate and replace overlay 2 |Repair substrate and replace overlay
5 1 Repair substrate and replace overlay 1 |Repair substrate and replace overlay
Protected Concrete Deck w/AC Overlay (14)
. Current PONTIS Policies M odified Policies
Condition State - — - —
Act No. |[Maintenance Act Description Act No. |Maintenance Act Description
1 0 Do Nothing 0 |DoNothing
2 0 Do Nothing 0 |DoNothing
3 0 Do Nothing 1 |Repair substrate and replace overlay
4 2 Repair substrate and replace overlay 2 Repair substrate and replace overlay
5 1 Repair substrate and replace overlay 1 |Repair substrate and replace overlay
Protected Concrete Deck w/AC Overlay (22)
. Current PONTIS Policies M odified Policies
Condition State - — - —
Act No. |[Maintenance Act Description Act No. |Maintenance Act Description
1 0 Do Nothing 0 |Do Nothing
2 0 Do Nothing 1 |Repair spalls and delaminations
3 0 Do Nothing 1 [Repair spalls and delaminations
4 1 Repair spalls and delaminations 1 |Repair spalls and delaminations
5 1 Replace overlay 1 Replace overlay
Concrete Deck w/ Coated bars (26)
. Current PONTIS Policies M odified Policies
Condition State - — - —
Act No. |Maintenance Act Description Act No. [Maintenance Act Description
1 0 Do Nothing 0 |DoNothing
2 0 Do Nothing 1 Repair spalls and delaminations
3 0 Do Nothing 1 |Repair spalls and delaminations
Repair spallsand delaminations & add a Repair spalls and delaminations & add
4 2 protective system on entire deck 2 |aprotective system on entire deck
Repair spalls and delaminations & add a Repair spalls and delaminations & add
5 1 protective system on entire deck 1 |aprotective system on entire deck

50

TABLE 5.4 Description of Modified Girder Policies

P/S Concrete Web/Box Girder (104)

Condition Current PONTIS Policies Modified Policies
State Act No. Maintenance Act Description| Act No. Maintenance Act Description
1 0 Do Nothing 0 Do Nothing
2 0 Do Nothing 1 Seal cracks and minor patching
Clean steel and patch (and/or
3 1 Clean steel and patch (and/or seal) 1 seal)
4 2 Replace unit 2 Replace unit

Unpainted Steel Open Girder/Beam (106)

Condition Current PONTIS Policies Modified Policies
State Act No. Maintenance Act Description| Act No. Maintenance Act Description
1 0 Do Nothing 0 Do Nothing
2 0 Do Nothing 1 Clean and paint
3 1 Clean and paint 1 Clean and paint
4 1 Rehab unit 1 Rehab unit

Painted Steel Open Girder/Beam (107)

Condition Current PONTIS Policies Modified Policies
State Act No. Maintenance Act Description| Act No. Maintenance Act Description
1 0 Do Nothing 0 Do Nothing
2 0 Do Nothing 1 Surface clean
3 0 Do Nothing 1 Spot blast, clean and paint
4 2 Replace paint system 2 Replace paint system
5 1 Rehab unit 1 Rehab unit

P/S Open Girder/Beam (109)

Condition Current PONTIS Policies Modified Policies
State Act No. Maintenance Act Description| Act No. Maintenance Act Description
1 0 Do Nothing 0 Do Nothing
2 0 Do Nothing 1 Seal cracks and minor patching
3 1 Clean stell and patch (and/or seal) 1 Clean stell and patch (and/or seal)
4 2 Replace unit 2 Replace unit

Reinforced Open Girder/Beam (110)

Condition Current PONTIS Policies Modified Policies
State Act No. Maintenance Act Description| Act No. Maintenance Act Description
1 0 Do Nothing 0 Do Nothing
2 0 Do Nothing 1 Seal cracks and minor patching
Clean rebar and patch (and/or
3 1 Clean rebar and patch (and/or seal) 1 seal)
4 1 Rehab unit 1 Rehab unit

51

TABLE 5.5 VDOT Element Level Policies with Budget of 1 Million

Excellent] Good Fair Poor VPoor
Target Distribution 5 77 20 0 0
Year HI Excellent] Good Fair Poor VPoor Budget $'s left
0 85.56 17 52 27 6 0 $0 $0
1 86.32 19 54 26 3 0 $1,000,000 $50
2 86.43 15 57 26 4 0 $1,000,000 $186
3 86.21 16 56 27 3 0 $1,000,000 $605
4 85.92 15 58 26 3 0 $1,000,000 $1,997
5 85.66 11 61 28 2 0 $1,000,000 $6,020
6 84.95 6 66 28 2 0 $1,000,000 $68,487
7 84.65 0 72 28 2 0 $1,000,000 $6,972
8 84.21 0 70 30 2 0 $1,000,000 $7,373
9 83.87 0 69 31 2 0 $1,000,000 $9,130
10 83.57 0 69 31 2 0 $1,000,000 $4,407
Avg. Yearly Budget $989,477
Set Budget in Line 9 to 1 million and use VDOT Policy file in line 44 using the following lines
ARRAY FUNDSMTRX 11 {1000000 1000000 5
ASSIGN dat OpenlnputFile["PolicyAnalysis.txt"];
TABLE 5.6 Modified Deck Policies
Year HI Excellent] Good Fair Poor VPoor Budget $'s left
0 85.56 17 52 27 6 0 $0 $0
1 86.13 20 51 25 6 0 $1,000,000 $12
2 86.2 15 57 25 5 0 $1,000,000 $182
3 86.01 16 58 22 6 0 $1,000,000 $108
4 85.6 14 60 21 7 0 $1,000,000 $1,391
5 85.45 10 63 23 6 0 $1,000,000 $739
6 85.21 6 69 24 3 0 $1,000,000 $2,163
7 84.81 2 70 28 2 0 $1,000,000 $4,905
8 84.62 0 70 29 3 0 $1,000,000 $12,284
9 84.11 0 71 25 6 0 $1,000,000 $8,146
10 83.77 0 69 30 3 0 $1,000,000 $4,943
Avg. Yearly Budget $996,513

Set Budget in Line 9 to 1 million and use VDOT Policy file in line 44 using the following lines
ARRAY FUNDSMTRX 11 {1000000 1000000

ASSIGN dat OpenlinputFile["PolicyAnalysis-modifiedDeck.txt"];

52

TABLE 5.7 Modified Girder Policies

Year HI Excellentl Good Fair Poor VPoor Budget $'s left
0 85.56 17 52 27 6 0 $0 $0
1 86.6 22 52 24 4 0 $1,000,000! $27
2 87.16 21 54 23 4 0 $1,000,000! $313
3 87.54 24 54 20 4 0 $1,000,000: $2,757|
4 87.78 25 55 19 3 0 $1,000,000! $1,662
5 88.02 22 63 14 3 0 $1,000,000 $1,239
6 88.08 21 67 11 3 0 $1,000,000! $2,123
7 88.19 22 68 10 2 0 $1,000,000 $1,075
8 88.18 10 81 9 2 0 $1,000,000 $607
9 88.1 8 83 10 1 0 $1,000,000, $3,761
10 88.21 7 87 7 1 0 $1,000,000 $3,080
Avg. Yearly Budget $998,336
Set Budget in Line 9 to 1 million and use VDOT Policy file in line 44 using the following lines
ARRAY FUNDSMTRX 11 {1000000 1000000 }
ASSIGN dat OpenlnputFile["PolicyAnalysis-modifiedgirders.txt"];
TABLE 5.8 Modified Deck and Girder Policies
Year HI Excellent Good Fair Poor VPoor Budget $'s left
0 85.56 17 52 27 6 0 $0 $0
1 86.42 23 48 27 4 0 $1,000,000! $122
2 86.79 23 49 26 4 0 $1,000,000, $859
3 87.06 24 51 23 4 0 $1,000,000 $388
4 87.29 23 56 18 5 0 $1,000,000 $1,068
5 87.49 25 56 16 5 0 $1,000,000 $7,189
6 87.43 23 60 18 4 0 $1,000,000 $3,570
7 87.45 17 65 16 4 0 $1,000,000! $6,746)
8 87.36 9 76 19 4 0 $1,000,000: $8,160,
9 87.32 9 78 11 4 0 $1,000,000! $5,513
10 87.26 7 78 14 3 0 $1,000,000: $1,367|
Avg. Yearly Budget $996,532

Set Budget in Line 9 to 1 million and use VDOT Policy file in line 44 using the following lines
ARRAY FUNDSMTRX 11 {1000000 1000000

I3

ASSIGN dat OpenlnputFile["PolicyAnalysis-modifiedgirdersanddeck.txt"];

53

HI

90

88

86

84 4

82

80 ~

78 A

76 A

74

—&— CurrentVDOT Policies
—&— Modified Deck Policies

—a— Modified Girder Policies

—X— Modified Deck & Girder Policies
No maintenance Budget
T T T T T 1
0 2 4 6 8 10 12

Timeinyrs

FIGURE 5.1 - Comparison of Element Level Policies
* These results are based on experimental data obtained from the PONTIS databases of Salem District of
Virginia. However this data has not been validated and no qualitative inferences should be drawn from the

figures regarding the nature of the policies or the improvements acchieved. This figure merely validates the
accuracy and working of the Policy Analysi s Tool.

54

Current VDOT Network Projected Network after 10 yrs (VDOT Policies)

901 01
801 .
707 $ 1
o [}
601 T @1
£501 5 o
° ©
T 40 = 401
s 3
;30' E 07
>
20 Z D
101 107
0 i i i . 0 T T T T
Bxcelert God Fair Poor VRor Brodkert Gerd R Fox
Distribution Distribution
Projected Network after 10 years (Modified Deck & Girder
Policies)
907 Target Distribution
801 07
0
@ 70 7]
=) o 707
2 o7 =
[=
© ® i'; 50
g 5
§ 30 gg)_
20 Z -
10 101 ’—‘
0 T T T 1 O T T T T
Excellent Fair Poor VPoor Excelent Good Fair Poor
Distribution Distribution

FIGURE 5.2 Comparison of Actual vs. Target Distributions

55

Chapter 6

CONCLUSION and FURTHER STUDIES

6.1 RESEARCH SUMMARY AND CONCLUSION

Efficient management of the scarce resources is the most important challenge
facing bridge management personnel today. Several researchers have developed effective
policy anaysis tools to help the decision makers manage the funds effectively and

maintain bridges.

The objective of this research was to develop a suitable framework for the
application of DES as a policy analysis tool and to ensure that this framework is generic
and can be applied to a variety of networks and test out a variety of strategies.

The first step was developing a thorough understanding of the bridge management
process and the decision making process involved. This was obtained through literature
review and interviews with the experts involved. This was followed by the planning and
development of the three modules - the data module, the ssimulation module and the
policy query module, which integrate seamlessly to drive the tool. At every stage of the

devel opment expert opinion was sought to ensure that the tool was accurate.

The simulation module was developed initially based on the understanding of the
bridge management. A careful analysis of literature and the databases on Salem district of
Virginia helped in the development of the data module using text based files. The format
of these files was chosen to mimic that of the PONTIS PDI files. This ensured that the
transfer of data from the PONTIS databases into the simulation model is very easy.
However since the simulation module is not linked directly to PONTIS, a slight change in
the input file mechanism will ensure that the tool works with BRIDGIT or any other

bridge management system which satisfies the data requirements of the model.

The final and the most important module was the policy analysis which was aso
decided to be text based in a format easy to understand and change. Based on this the

56

policy analysis tool was developed using discrete event ssimulation. The different kinds of
policies that can be smulated are specified at the element level. The model queries the
preferred maintenance activities for each element in every condition state. By atering

these activities, different policies can be programmed into the mode.

The smulation model can process PONTIS data and simulate the network.
Therefore the existing methods of inspection are sufficient and the model does not have
any additional data requirements. A few test simulations were run to demonstrate the
working and validity of the model. It was observed that modifications of the policies
could yield significant improvement in the network conditions. All the simulations were
performed on a Pentium MM X processor with 96Mb RAM and Windows 2000 operating
system. The simulations processed the 102 interstate bridges and took less than a minute
demonstrating the effectiveness of the tool. Several simulations can be run and analyzed
amost instantaneously thereby bringing discrete event simulation into the realm of
practical use.

6.2 FURTHER STUDIES

The model could be extended in several directions. The first is the data
calibration. The model currently imports deterioration and cost models from the PONTIS
database. However PONTIS models are discrete value based and therefore not effective.
To capture the inherent randomness in the data, distribution models have to be developed
for the deterioration and costs. In addition the durations for the maintenance activities
have to be developed. However the detailed development of stochastic distributions for
the data is beyond the scope of this study and is recommended as the next step. This will
in turn caibrate and validate the modd for the SALEM district of Virginia thereby
transforming it from an effective yet academic tool to a complete and practical policy
analysistool.

The improvability index is based on the Health Index. Health Index fails to take
into account factors like Annual Daily Traffic (ADT), indirect costs like Traffic control
etc. In order to incorporate these factors, Virginia Department of Transportation has
developed the Maintainability Index (MI). A complete explanation of the MI and the

57

factors involved is given in Appendix |. However the M1 is based on the old NBI rating
instead of the CoRe element definition. The MI can be expanded to be based on the CoRe
element definition as an extension to the model. Then this new MI can be incorporated

into the model as the selection criterion instead of the Improvability Index.

The selection criterion needs to be improved. The selection of bridges currently is
based on the Improvability Index aone. The bridges that yield the maximum returns for
the resources consumed are selected. However typically the goa of a transportation
agency is to provide a minimum level of service in conjunction with efficient utilization
of resources. Therefore the selection criterion needs to incorporate a trigger mechanism
that selects a bridge for maintenance if the bridge condition (HI or MI) fals below a
specified value.

Another useful extension will be the development of a graphical user interface
that will make it easier for the end user to work with the model. Also an expert system
can be developed which will query the user for the different kinds of strategies and

maintenance policies.

58

10.

11.

REFERENCES

Biel J, “Expert Functions in Bridge Management Systems’, Transportation
Research Circular 498, 1999.

Cambridge Systematics Inc., “PONTIS Release 4.0 User’'s Manual”, AASHTO
Inc., Washington, August 2001.

Cesare M., Santamarina J.C., Turkstra C. J., Vanmarcke E., “Risk-Based Bridge
Management”, Journal of Transportation Engineering, Vol. 119, No.5, 1993.

Flag K.D., Lark R.J., “Integration of Reliability-Based Assessment Techniques
into an Advance BMS’, Transportation Research Circular 498, 1999.

Frangopal D.M., Enright M.P., Estes A.C., “Integration of Maintenance, Repair,
and Replacement Decisions in Bridge Management Based Reliability,
Optimization, and Life-Cycle Cost”, Transportation Research Circular 498,
1999.

Garcia-Diaz A., Liebman J.S., “Optimal Strategies for Bridge Replacement”,
Journal of Transportation Engineering, 1983.

Golabi K., Thompson P.D., Hyman W.A., “Pontis Technical Manual, a Network
Optimization System for Bridge Improvements and Maintenance”, Report to
FHWA, Cambridge Systematics/ Optima, 1992.

Gopa S, and Mgidzadeh K, “Application of Markov Decision Process to Level
of-Service-Based Maintenance Systems’, Transportation Research Record 1304,
TRB, 1991.

Green S.G. and Richardson JA., “Development of a Bridge Management System
in Alabama’, Transportation Research Circular 423, April 1994.

Hackett D. “Personal Interview in Salem with Srinath Devulapalli dated 04-21-
2002, 2002.

Hawk H., “BRIDGIT Deterioration Models’ Transportation Research Record
1490, TRB, 1995.

59

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Hyman W.A., and Hughes D.J., “Computer Model of Life-Cycle Cost Analysis of
Statewide Bridge Repair and Replacement Needs’, Transportation Research
Record 899, 1983.

Johnston D.W., Chen C., and Abed-Al-Rahim I., “Developing User Costs for
Bridge Management Systems” Transportation Research Circular 423, 1994.

Johnston D. W. and Lee JD. “Anaysis of Bridge Management Data in North
Carolinad” Transportation Research Circular 423, April 1994.

Johnston D.W. and Zia, “A Level of Service System for Bridge Evaluation”,
Transportation Research Record no. 899, 1984

Khan M.S,, “Bridge Management Systems. Past, Present, and Future’, Concrete
International, 2000.

Kim W., “A Systems Approach to Transportation Infrastructure Management:
Development of a Highway Management System for the VirginiaDOT”, A Ph.D.
Dissertation; Dept. of Civil Engineering; Virginia Polytechnic and State
University, 1996.

Kim K., “A Transportation Planning Model for State Highway Management: A
Decision Support System Methodology to Achieve Sustainable Development” A
Ph.D. Dissertation; Dept. of Civil Engineering; Virginia Polytechnic and State
University, 1998.

Kleywegt A. J., and Sinha K.C., “Tools for Bridge Management Data Analysis’
Transportation Research Circular 423, April 1994.

Larsen E.S, and Holtz J.,, “Inspection, Monitoring, and Priority-Ranking of
Bridges’, Transportation Research Circular 498, 1999.

Lauzon R.G., Sime JM., “Connecticut’'s Bridge Management Information
System” Transportation Research Circular 423, April 1994.

Law A.M., and Kelton W.D., “ Simulation Modeling and Analysis’, McGraw-Hill
2000.

Lipkus S.E., “BRIDGIT Bridge Management System Software” Transportation
60

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

Research Circular 423, April 1994.

Martinez J.C., “STROBOSCOPE — State and Resource Based Simulation of
Construction Processes’, A Ph.D. Dissertation; Dept. of Civil Engineering,
University of Michigan, 1996.

Martinez J.C., and loannou P.G., “General Purpose Systems for Effective
Congtruction Simulation”, Journal of Construction Engineering and
Management, 125(4), ASCE, 265-276, 1999.

Miyamoto A., Kawamura K., Nakamura H., “Bridge Management System and
Maintenance Optimization for Existing Bridges’, Computer-Aided Civil and
Infrastructure Engineering,15, 2000.

Mohamed H. A., Haim O.A., and Razagpur A.G., “Use of Neural Networks in
Bridge Management Systems’ Transportation Research Record 1490, TRB,
1995.

Oravec JD., “PennDOT’s Bridge Management Decision Support Process’
Transportation Research Circular 423, April 1994.

Roberts JE., Shepard R., “Bridge Management for the 21 Century”,
Transportation Research Record 1696, 1999.

Schrer W. T., Glagola D. M., “Markovian Models for Bridge Maintenance
Management”, Journal of Transportation Engineering Vol. 120, no. 1, 1994.

Shirole A. M., “Bridge Management to the Year 2000 and Beyond’
Transportation Research Circular 423, April 1994.

Shirole A. M., Winkler W.J., and Fitzpatrick M.W., “Bridge Management
Decision Support” Transportation Research Circular 423, April 1994,

Small and Cooper, “Condition of the Nation's Highway Bridges, A Look at the
Past, Present and Future”, TR News, no 194, 1998.

. Smilowitz K., Madanat S., “Optimal Inspection and Maintenance Policies for

Infrastructure Networks’, Computer-Aided Civil and Infrastructure Engineering,

15, 2000.
61

35. Sobanjo JO., “Cost Estimating Under Uncertainty: Issues in Bridge

Management” 8" International Bridge Management Conference, April 1999.

36. Thompson P.D., and Shepard R.W., “PONTIS’ Transportation Research Circular
423, April 1994.

37. Turner D. S., and Richardson J. A., “Bridge Management System and Data Needs
and Data Collection” Transportation Research Circular 423, April 1994.

38.Vitae J. D., Sinha K. C., Woods R. E., “Analysis of Optima Bridge
Programming Policies” Transportation Research Record 1561, 1996.

39. Woods R.E., “INDIANA’s Approach to a Bridge Management System”,
Transportation Research Circular 423, April 1994.

40. “1999 Status of the Nation’s Highways, Bridges, and Transit: Conditions &
Performance’, Report to Congress Executive Summary, Federal Highway
Administration, U.S Department of Transportation, 1999.

41. “Element Data Collection Manual” Virginia Transportation Research Council,
January 1996.

42. “Recording and Coding Guide for the Structure Inventory and Appraisal of the
Nation's Bridges’ Report No. FHWA-PD-96-001, U.S. Department of
Transportation, Federal Highway Administration, December 1995.

62

APPENDIX A

Element Leve Data

A magjor element is a component of a bridge (such as abutment, girders, piles etc.),

which can be further subdivided by material type (such as prestressed concrete, timber,

weathering stedl etc.). The list of elementsis given below. The X indicates the existing

possible elements of the given materia type.

BRIDGE ELEMENTS

SUPERSTRUCTURE

Material Type

Steel

Concrete

Timber

Protected

Unprotected|Other

Unptd

Ptd

P/S

Reinf

Closed Web/Box girder

Open Girder/Stringer

Stringer

XXX

Thru Truss(Bottom Chord)

Thru Truss(Excluding bottom chord

Deck Truss

XX XXX |X

XX XXX |X

Timber Truss

Arch

Cable

Floor Beam

Pin & Hanger Assembly

XXX X

XXX X

P/S - Prestressed

Unptd - Unpainted

SUBSTRUCTURE

Material Type

Steel

Concrete

Timber

Protected

Unprotected

Other

Unptd

Ptd

P/S

Reinf

Column or pile extension

X

X

X

Pier Wall

Abutment

X

Wingwall

XXX

XXX

Slope

Submerged Pile Cap/Footing

Submerged Pile Cap/Footing

Cap

Culvert

XXX

XXX X

XXX

63

Material Type
Decks/Slabs Decks Slabs
Concrete(Bare) X X
Concrete covered with fill X
Concrete unprotected w/AC overlay X X
Concrete protected with AC overlay X X
Concrete w/Thin overlay X X
Concrete w/Rigid overlay X X
Concrete w/Coated bars X X
Concrete w/cathodic protection X X
Open Grid - Steel X
Concrete Filled Grid - Steel X
Corrugated/Orthotropc/Etc X
Timber (Bare) X X
Timber w/AC Overlay X X
Material Type
Metal Concrete Timber Other

OTHERS Uncoated| Coated P/S Reinf
Strip Seal Expansion Joint X
Pourable Joint Seal X
Compression Joint Seal X
Assembly Joint Seal X
Open Expansion Joint X
Elastometric Bearing X
Movable Bearing X
Enclosed/Concealed Bearing X
Fixed Bearing X
Pot Bearing X
Disk Bearing X
Approach Slab X X
Bridge Railing X X X X X
Sidewalk X X X

SMART FLAGS

Steel Fatigue X

Pack Rust X

Deck Cracking X

Soffit of Deck X

Underside of Overhang X

Soffit w/ SIP Forms X

Settlement X

Scour X

Traffic Impact X

Section Loss X

Utilities X

Drains X

Lighting X

Roadway Over Culvert X

64

APPENDIX B

Calculation of HI

HI=(SCEV/STEV)* 100

Where TEV isthe total e ement value and CEV is the current e ement value.

TEV=Tota element quantity*failure cost of the element (FC)

CEV=S(Quantity Condition State* WF;)* FC

The condition state weighting factor WF is given by

WF=[1-(Condition State # -1)(1/(State Count —1))]

Given below is an example of the calculations of HI from Roberts and Shepard (1999)

Condition State Weighting Factor, WF

Number of Condition Weight Factor

States Statel State2 State3 State4 Stateb

3 Condition States 1 0.5 0

4 Condition States 1 0.67 0.33 0

5 Condition States 1 0.75 0.5 0.25 0

Sample Element Distribution for a Bridge

Element Description| Units [Total Quantity Statel|State2|State3|State4|State5| Unit Failure
Cost(FC)
Conc. Deck Sg. m 300 300 $600
Steel Girger m 100 61 34 5 $3,500
RC Abutment m 24 24 $7,700
RCColumn each 4 4 $9,000
Joint Seal m 24 24 $556

Determination of the bridge total element value (TEV)

Element Description |Calculation Resulting Element Value
Conc. Deck 300*$600 180,000
Steel Girder 100*$3,500 350,000
RC Abutment 24*$7,700 184,800
RC Column 4*$9,000 36,000
Joint Seal 24*$556 13,344
Total 764,144

65

Determination of the bridge current element value (CEV)

From the above calculations we see the overall HI of the bridge is given by

HI=(SCEV/STEV)* 100 = ($622,300/$764,144)* 100 = 81.4

Element Description Calculation CEV Element Health
Conc. Deck 300*0.5*600 $90,000 50
Steel Girder ((61*1.0)+(34*0.75)+(5*0.5))*3500 | $311,500 89
RC Abutment 24*1.0*7700 $184,800 100
RC Column 4*1.0*9000 $36,000 100
Joint Seal 24*0*556 $0 0
Total $622,300

66

APPENDIX C
Tables Imported From Pontis

TABLE actmodls

Data Member

Purpose

elemkey Identifies the element about which data is given
skey Identifies the state about which data is given

akey Identifies the activity about which data is given
envkey Identifies the environment about which data is given
probl Identifies the probability of returning to state 1
prob?2 Identifies the probability of returning to state 2
prob3 Identifies the probability of returning to state 3
prob4 Identifies the probability of returning to state 4
prob5 Identifies the probability of returning to state 5
unitco The cost of the maintenance activity per unit

TABLE condumdl

Data Member

Purpose

elemkey Identifies the element about which data is given
envkey Identifies the environment in which the element is
failagcyco Gives the failure cost of the element

TABLE eleminsp

Data Member

Purpose

brkey Identifies the bridge about which data is given
elemkey Identifies the element about which data is given
skey Identifies the state about which data is given
envkey Identifies the environment existing

gquantity Gives the total quantity of the element
pctstatel Gives the percentage of element in state 1
gtystatel Gives the guantity of element in state 1
pctstate?2 Gives the percentage of element in state 2
gtystate2 Gives the guantity of element in state 2
pctstate3 Gives the percentage of element in state 3
gtystate3 Gives the guantity of element in state 3
pctstate4 Gives the percentage of element in state 4
gtystate4 Gives the guantity of element in state4
pctstate5 Gives the percentage of element in state 5
gtystate5 Gives the percentage of element in state 5

67

TABLE bridge

Data Member

Purpose

brkey

Identifies the bridge about which data is given

bridge id

Gives the identifier commonly used for that bridge

TABLE ELEMDEFS

Data Member

Purpose

elemkey

Identifies the element about which data is given

statecnt

Identifies the maximum possible states for the element

68

10.

11.
12.
13.
14.
15.

16.
17.

17a.

APPENDIX D
Listing Of Stroboscope Code

/**

/* Stroboscope source file generated from Visio draw ng
d:\srin\proj\inputfiledl I\inputfilew thfunctions\debug\bridgemai ntenance. vsd

/**

/**

/* CGeneral section for problem paranmeters
LOADADDON "I nputFile.dlI";
SAVEVALUE YrsToSi nmul at e* 10;

/ Fundi ng val ues YR 1 2 3 4 5 6 7 8 9
10

ARRAY FUNDSMIRX 11 { 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000
1000000 0};

SAVEVALUE Funds 0; /Stores the available funds at any instant of tinme. |Is set /from
FUNDSMTRX every year

/ The | ower bounds of the ranges
SAVEVALUE Excel | ent 95;
SAVEVALUE Good 82;

SAVEVALUE Fair 70;

SAVEVALUE Poor 40;

/ The m ni mum del ay between successive repairs on a bridge
SAVEVALUE Del ay 3;

SAVEVALUE MaxBri dgeCount 4;

69

18.

19.

20.

21.

22.

23.

24.
25.

26.
27.

28.
29.

30.
31.

32.
33.

34.

35.
36.

37.
38.

39.

el enent s

/ DECLARATI ON FOR TRANSI TI ON PROBABI LI Tl ES

ARRAY TransProbData 800; /The transition probability data for the deterioration of
/ DECLARATI ON FOR MR&R ACTI ONS AND TRANSI TI ON PROBABI LI TI ES FOR ACTI ON TYPE 1
ARRAY Mai nt Act 1Dat a 800;

/ DECLARATI ON FOR MR&R ACTI ONS AND TRANSI TI ON PROBABI LI TI ES FOR ACTI ON TYPE 2
ARRAY Mai nt Act 2Dat a 800;

/ The preferred el ement |evel activity matrix

ARRAY Pref Mai nt Act 800 5;

/Failure cost information for every el ement

ARRAY Fai | r Cost Dat a 800;

[Array giving the maxi mum nunber of allowable states for each el enent

ARRAY St at eCnt 800;

/Variable for handling files

SAVEVALUE data O;

/Read the data fromthe PONTIS PDl files

ASSI GN data OpenlnputFile["int_actnmodls.PDI"];

CALL ReadEl enent Dat a[dat a] ;

ASSI GN data OpenlnputFile["Bridges.txt"];

CALL GetBridgelnfo[data];

ASSI GN data OpenlnputFile["El em nsp.txt"];

CALL Get El enent I nf o[data];

ASSI GN data OpenlnputFile["int_el endefs. PDI"];

70

40.

41.
42.

43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

63.

CALL Get St at eCount [dat a] ;

ASSI GN data OpenlnputFile["int_condundl.PDI"];
CALL Get Fai |l ureCost[data];

/ Read the el enent |evel policies to be inplenented
ASSI GN data OpenlnputFile["PolicyAnalysis.txt"];
CALL Get Policylnfo[data];

[R Rk ko Kk kK ko ok ok kR ko ok ok kR Kk ok ok kR ko ok ok kR ko ok kR Kk ok kR Kk Kok R R Kk Kk R kK Kk
/* Definition of resource types

COVPTYPE Bridge; /BR

SAVEPROPS Bri dge H TotEl ens RepairCost Brl D QueueFrm Last RepairedTm FHI ;

GENTYPE Counter; /CO

COMPTYPE El ement; /EL

SAVEPROPS El ement Statel State2 State3 State4 State5 Qy ID EHI Source UnitFlrCst
statecnt S1 S2 S3 S4 S5 Costl Cost2 Cost3 Cost4 Costb5 FStatel FState2 FState3 FStated FStateb;

/Variable storing the current el enent val ue

VARPROP El ement CEV 'statecnt==57?

(Statel+State2*0. 75+Stat e3*0. 5+St at e4*0. 25) *Q y*Unit Fl rCst :
st at ecnt ==4?(St at el+St at e2*0. 67+St at e3*0. 33) *Q y*Uni t Fl r Cst :
(Statel+State2*0.50)*Qy*UnitFlrCst';

/Variable storing the future el ement val ue

VARPROP El enent FEV 'statecnt==57?

(FStat el+FSt at e2*0. 75+FSt at e3*0. 5+FSt at e4*0. 25) *Q y*Unit Fl r Cst :
st at ecnt ==4?(FSt at e1+FSt at e2*0. 67+FSt at e3*0. 33) *Q y*Uni t Fl r Cst :
(FStatel+FState2*0.50)*Qy*UnitFlrCst';

/Variable storing the total repair cost of the el enent

71

64.

65.

66.
67.

68.
69.

70.

71.

72.

73.

74.
75.

76.

7.

78.

79.

80.

81.

82.

83.

VARPROP El ement RepairCst '

(St at el* Cost 1+St at e2* Cost 2+St at e3* Cost 3+St at e4* Cost 4+St at e5*Cost5) *Q y' ;

/Variable storing the total elenent val ue
VARPROP El ement TEV 'Qy*UnitFlrCst';

/Variable storing the ICratio for the bridge

VARPROP Bridge |IC 'RepairCost!=0?((FHI -H)*1000/ Repai rCost):-100";

/**

/* Definition of network nodes

covBl Creat eBri dges;
ASSEMBLER Assenbl eBri dges Bri dge;
QUEUE Bri dgeNet wor k Bri dge;
QUEUE Bri dgesToCreat e Bridge;
DI SASSEMBLER Di sassenBri dges Bri dge;
QUEUE El ements El enent;

QUEUE | nW kBri dges Bridge;
CovBI Repai r El enent s;

QUEUE Rpr dEl ement s El ement ;
COMBI Assenbl eEl ens;
ASSEMBLER AsnRpr dBri dges Bridge;
COwvBI OneYear ;

84. QUEUE YrCntr Counter;

85. QUEUE DeteriorateCntr Counter;

86. covBl Updat eBri dges;

87. QUEUE Brdgs Bri dge;

88. covBl Seper at eBri dges;

89. DI SASSEMBLER Di sassenBri dge Bri dge;

90. ASSEMBLER AssenBri dge Bridge;

91. covBl Repai r Bri dges;

92. QUEUE El enment sToCreat El enent;

93. COMBI Report;

94. QUEUE RCntr Counter;

95. QUEUE Bri dgeCount Counter;

96. [Rk R ko ko ok kK R Kk kR R Kk Rk kR Kok ko R Rk ko kR Rk kR Kk ko kR Kk kR R Kk Kk Rk R Kk
97. /* Definition of network Links

98. LI NK B3 Assenbl eBri dges Bri dgeNet work;
99. DI SASMBASELI NK B6 Di sassenBri dges | nWkBri dges;
100. LI NK B7 I nWkBri dges Assenbl eEl ens;
101. ASMBASEL | NK B8 Assenbl eEl ens AsnRprdBri dges;
102. LI NK B9 AsnRprdBri dges Bri dgeNetworKk;
103. LI NK B15 AssenBri dge Bri dgeNetwork;

73

104.
105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.
118.

1109.

120.

121.

122.

123.

LI NK
LI NK

LI NK

LI NK

ASMBASEL | NK

LI NK

LI NK

LI NK

LI NK

LI NK

LI NK

LI NK

LI NK

LI NK
LI NK

LI NK

LI NK

DUALBASEL| NK

LI NK

LI NK

B5
E2

E5

E6

B2

El

Bl

E3

E4

Cc1

c2

Cc3

4

B10
B11

B12

B13

B14

E7

B4

Repai r Bri dges Di sassenBri dges;
Di sassenBri dges El enents;

Rpr dEl enent s Assenbl eEl ens;
Assenbl eEl emrs AsnmRpr dBri dges El enent;
CreateBridges Assenbl eBri dges;
CreateBri dges Assenbl eBri dges El enment;
Bri dgesToCreate CreateBridges;

El ements RepairEl enents;

Repai r El enents RprdEl enent s

YrCntr OneYear;

OneYear YrCntr;

OneYear DeteriorateCntr;

Det eri orateCntr Updat eBri dges;

Bri dgeNet wor k Updat eBri dges;
Updat eBri dges Brdgs;

Brdgs Seperat eBri dges;
Seper at eBri dges Di sassenBri dge;

Di sassenBri dge AssenBri dge;

Di sassenBri dge AssenBridge El ement;

Bri dgeNet wor k Repai r Bri dges;

74

124.

125.
126.

127.

128.

129.

130.

131.
132.

133.

134.
I'i nks

135.
136.

137.
138.

139.

140.

141.

142.

143.
144.

LI NK EO El ement sToCreat CreateBridges;

LI NK R1 BridgeNetwork Report;

LI NK R2 Report Bri dgeNetworKk;

LI NK R3 I nWkBri dges Report;

LI NK R4 Report | nWKkBridges;

LI NK R5 RCntr Report;

LI NK C5 OneYear RCntr;

LI NK | C1 BridgeCount RepairBridges;
LI NK | C2 Assenbl eEl ens Bri dgeCount;

/**

/* Statenments to assist in the definition of attributes of CreateBridges and its rel ated

/Ensure that the elenments are matched to the correspondi ng bridges
FILTER El ensof Bri dge El ement ' Sour ce==Creat eBri dges. Bridge.Brl D ;

/Array to assist in the updating of states and future states of the elenents
ARRAY Act ProbData 5 5;

/**

/* Startup of CreateBridges

PRI ORI TY CreateBridges '500';

DRAWUNTI L Bl ' CreateBridges. Bridge. Count"';

DRAWUNTI L EO ' El enent sToCr eat . El ensof Bri dge. Count ==0" ;
DRAWNHERE EO ' Source==CreateBridges.Bridge.BrlD ;

75

145 /**

146. /* Term nation of CreateBridges

147. ONDRAW EO ASSIGN UnitFlrCst FailrCostbData[lD;
148. / ASSI GN t he appropriate cost information

149. ONDRAW EO ASSI GN Cost1

(PrefMaintAct[ID, 0] ==2)?

Get ArrayEl emrent [Mai nt Act 2Dat a[1 D], 0, 5] :
((Pref MaintAct[ID, 0]==1)"7

Get ArrayEl enent [Mai nt Act 1Data[I D], 0,5]:0)";

150. ONDRAW EO ASSI GN Cost 2 '

(Pref MaintAct[ID, 1] ==2)?

Get ArrayEl ement [Mai nt Act 2Data[| D], 1, 5] :
((PrefMaintAct[ID, 1] ==1)?

Get ArrayEl emrent [Mai nt Act 1Data[1 D], 1,5]:0)";

151. ONDRAW EO ASSI GN Cost 3 '

(PrefMaintAct[ID, 2] ==2)?

Get ArrayEl enent [Mai nt Act 2Datal | D], 2, 5] :
((PrefMaintAct[ID, 2] ==1)?

Get ArrayEl enent [Mai nt Act 1Data[l D], 2,5]:0)";

152. ONDRAW EO ASSI GN Cost 4
(PrefMaintAct[ID, 3] ==2)?
Get ArrayEl enent [Mai nt Act 2Datal | D], 3, 5] :

((Pref MaintAct[ID,3]==1)7
Get ArrayEl enent [Mai nt Act 1Data[l D], 3,5]:0)";

76

153.

154.
155.

156.
157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

ONDRAW EO ASSI GN Cost 5 '
(Pref MaintAct[ID, 4] ==2)?
Get ArrayEl emrent [Mai nt Act 2Dat a[|1 D] , 4, 5] :
((Pref MaintAct[ID, 4] ==1)"?
Get ArrayEl enent [Mai nt Act 1Data[I D], 4,5]:0)";

/ Assign the transition probailty data
ONDRAW EO ASSI GN Act ProbData 0 0 '

Pref Mai nt Act[| D, 0] ==2?
(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 0,0]):

Pr ef Mai nt Act[I D, 0] ==17

(Get ArrayEl ement [Mai nt Act 1Data[| D], 0, 0]) :
(Get ArrayEl ement [TransProbData[I D], 0,0])";
ONDRAW EO ASSI GN Act ProbData 0 1 '

Pr ef Mai nt Act [I D, 0] ==27?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 0, 1]):
Pref Mai nt Act [I D, 0] ==17

(Get ArrayEl ement [Mai nt Act 1Data[| D], 0, 1]):
(Get ArrayEl ement [TransProbData[1 D], 0,1])";
ONDRAW EO ASSI GN Act ProbData 0 2 '

Pr ef Mai nt Act [I D, 0] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 0, 2]):

77

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

Pref Mai nt Act[| D, 0] ==17?

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 0, 2]):
(Get ArrayEl ement [TransProbData[1 D], 0,2])";
ONDRAW EO ASSI GN Act ProbData 0 3 '

Pr ef Mai nt Act [I D, 0] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 0, 3]):
Pref Mai nt Act[I D, 0] ==17?

(Get ArrayEl ement[Mai nt Act 1Data[| D], 0, 3]):
(Get ArrayEl ement [TransProbData[I D], 0, 3])";
ONDRAW EO ASSI GN Act ProbData 0 4 '

Pref Mai nt Act[| D, 0] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 0, 4]):
Pr ef Mai nt Act[I D, 0] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D], 0, 4]):
(Get ArrayEl ement [TransProbData[1 D], 0,4])";
ONDRAW EO ASSI GN Act ProbData 1 0 '

Pref Mai nt Act [I D, 1] ==2?

(Get ArrayEl ement [Mai nt Act 2Data[| D], 1, 0]):

Pref Mai nt Act[| D, 1] ==17?

78

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

(Get ArrayEl ement [Mai nt Act 1Data[I D], 1, 0]) :
(Get ArrayEl ement [TransProbData[l1 D], 1,0])";
ONDRAW EO ASSI GN Act ProbData 1 1

Pref Mai nt Act [I D, 1] ==2?

(Get ArrayEl ement [Mai nt Act 2Data[| D], 1, 1]):
Pref Mai nt Act[| D, 1] ==17

(Get ArrayEl ement [Mai nt Act 1Data[1 D], 1, 1]):
(Get ArrayEl ement [TransProbData[I D], 1,1])";
ONDRAW EO ASSI GN Act ProbData 1 2

Pref Mai nt Act[| D, 1] ==2?

(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 1, 2]):
Pref Mai nt Act[I D, 1] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D], 1, 2]):
(Get ArrayEl ement [TransProbData[I D], 1,2])";
ONDRAW EO ASSI GN Act ProbData 1 3

Pref Mai nt Act[I D, 1] ==27?

(Get ArrayEl ement [Mai nt Act 2Data[| D], 1, 3]):
Pref Mai nt Act[I D, 1] ==17

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 1, 3]):

79

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

(Get ArrayEl ement [TransProbData[I D], 1,3])";
ONDRAW EO ASSI GN Act ProbData 1 4 '

Pref Mai nt Act[I D, 1] ==2?

(Get ArrayEl ement[Mai nt Act 2Data[| D], 1, 4]):
Pref Mai nt Act[I D, 1] ==17

(Get ArrayEl ement [Mai nt Act 1Data[| D], 1, 4]):
(Get ArrayEl ement [TransProbData[l1 D], 1,4])";
ONDRAW EO ASSI GN Act ProbData 2 0 '

Pref Mai nt Act [I D, 2] ==27

(Get ArrayEl ement [Mai nt Act 2Data[| D], 2, 0]) :
Pref Mai nt Act[I D, 2] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D], 2, 0]):
(Get ArrayEl ement [TransProbData[I D], 2,0])";
ONDRAW EO ASSI GN Act ProbData 2 1 '

Pref Mai nt Act[| D, 2] ==2?

(Get ArrayEl ement [Mai nt Act2Dat a[1 D] , 2, 1]):
Pref Mai nt Act [I D, 2] ==17

(Get ArrayEl ement [Mai nt Act 1Data[| D], 2, 1]):

(Get ArrayEl ement [TransProbData[I D], 2,1])";

80

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244,

245,

ONDRAW EO ASSI GN Act ProbData 2 2 '

Pref Mai nt Act[| D, 2] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 2, 2]):
Pref Mai nt Act[I D, 2] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D] , 2, 2]):
(Get ArrayEl ement [TransProbData[1 D], 2,2])";
ONDRAW EO ASSI GN Act ProbData 2 3 '

Pref Mai nt Act [I D, 2] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 2, 3]):
Pref Mai nt Act[| D, 2] ==17

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 2, 3]):
(Get ArrayEl ement [TransProbData[1 D], 2,3])";
ONDRAW EO ASSI GN Act ProbData 2 4

Pref Mai nt Act [I D, 2] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 2, 4]) :
Pref Mai nt Act[I D, 2] ==17?

(Get ArrayEl ement[Mai nt Act 1Data[| D] , 2, 4]) :
(Get ArrayEl ement [TransProbData[| D], 2,4])";

ONDRAW EO ASSI GN Act ProbData 3 0 '

81

246.

247.

248.

249.

250.

251.

252.

2583.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

Pref Mai nt Act[| D, 3] ==2?

(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 3,0]):
Pref Mai nt Act[I D, 3] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D], 3, 0]):
(Get ArrayEl ement [TransProbData[I D], 3,0])";
ONDRAW EO ASSI GN Act ProbData 3 1 '

Pref Mai nt Act[I D, 3] ==27?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 3, 1]):
Pref Mai nt Act[I D, 3] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D], 3, 1]):
(Get ArrayEl ement [TransProbData[1 D], 3,1])";
ONDRAW EO ASSI GN Act ProbData 3 2 '

Pr ef Mai nt Act [I D, 3] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 3, 2]):
Pref Mai nt Act[| D, 3] ==17

(Get ArrayEl ement [Mai nt Act 1Data[1 D], 3, 2]):
(Get ArrayEl ement [TransProbData[I D], 3,2])";
ONDRAW EO ASSI GN Act ProbData 3 3 '

Pref Mai nt Act[| D, 3] ==2?

82

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 3, 3]):
Pref Mai nt Act[| D, 3] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D], 3, 3]):
(Get ArrayEl ement [TransProbData[I D], 3,3])";
ONDRAW EO ASSI GN Act ProbData 3 4 '

Pref Mai nt Act[| D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[1 D] , 3, 4]) :
Pref Mai nt Act[I D, 3] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D] , 3, 4]):
(Get ArrayEl ement [TransProbData[1 D], 3,4])";
ONDRAW EO ASSI GN Act ProbData 4 0 '

Pr ef Mai nt Act [I D, 3] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 4, 0]) :
Pref Mai nt Act [I D, 4] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D] , 4, 0]) :
(Get ArrayEl ement [TransProbData[1D], 4,0])";
ONDRAW EO ASSI GN Act ProbData 4 1

Pref Mai nt Act [I D, 3] ==27

(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 4, 1]):

83

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

Pref Mai nt Act[| D, 4] ==17

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 4, 1]):
(Get ArrayEl ement [TransProbData[I D], 4,1])";
ONDRAW EO ASSI GN Act ProbData 4 2

Pref Mai nt Act [I D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 4, 2]):
Pref Mai nt Act[I D, 4] ==17?

(Get ArrayEl ement[Mai nt Act 1Dat a[| D] , 4, 2]):
(Get ArrayEl ement [TransProbData[| D], 4, 2])";
ONDRAW EO ASSI GN Act ProbData 4 3 '

Pref Mai nt Act[| D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 4, 3]):
Pref Mai nt Act [I D, 4] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D] , 4, 3]):
(Get ArrayEl ement [TransProbData[1 D], 4,3])";
ONDRAW EO ASSI GN Act ProbData 4 4 '

Pr ef Mai nt Act [I D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 4, 4]):

Pref Mai nt Act[| D, 4] ==17

84

303. (Get ArrayEl ement [Mai nt Act 1Dat a[| D] , 4, 4]):

304. (Get ArrayEl ement [TransProbData[1 D], 4,4])";
305. /Update the future states based on preferred el enent |evel maintenance activities
306. ONDRAW EO ASSI GN FStatel

St at el* Act Pr obDat a[0, 0] +
St at e2* Act ProbDat a[1, 0] +
St at e3* Act Pr obDat a[2, 0] +
St at e4* Act Pr obDat a[3, 0] +
St at e5* Act ProbDat a[4, 0] ' ;

307. ONDRAW EO ASSI CN FSt ate2

St at el*Act ProbDat a[0, 1] +
St at e2* Act ProbDat a[1, 1] +
St at e3* Act ProbDat a[2, 1] +
St at e4* Act ProbDat a[3, 1] +
St at e5* Act ProbDat a[4, 1] ' ;

308. ONDRAW EO ASSI GN FState3 '

St at el*Act ProbDat a[0, 2] +
St at e2* Act ProbDat a[1, 2] +
St at e3* Act ProbDat a[2, 2] +
St at e4* Act ProbDat a[3, 2] +
St at e5* Act ProbDat a[4, 2] ' ;

309. ONDRAW EO ASSI GN FState4

St at el*Act ProbDat a[0, 3] +
St at e2* Act ProbDat a[1, 3] +
St at e3* Act ProbDat a[2, 3] +
St at e4* Act ProbDat a[3, 3] +
St at e5* Act ProbDat a[4, 3] ' ;

85

310.

311.
312.

313.

314.

315.

316.

317.

318.

319.

320.
321.

322.

323.

324.

325.

326.

ONDRAW EO ASSI GN FStateb
St at el* Act Pr obDat a[0, 4] +
St at e2* Act ProbDat a[1, 4] +
St at e3* Act ProbDat a[2, 4] +
St at e4* Act ProbDat a[3, 4] +
St at e5* Act ProbDat a[4, 4] ' ;

/ Update the nunmber of elenents in the bridge
ONRELEASE E1 ASSI GN Assenbl eBri dges. Tot El ems Assenbl eBri dges. Tot El ens+1;

[H KRRk ko Kk kK ko Kok Kk kK ko Kok kR ko Kok kR ko Kok kR Kk Kok R R Kk Kok R R Kk Kok kK kK Kk Kk kK kK kK
/* Assenbly of resources in Assenbl eBri dges

/ Update the properties of the bridge

ONASSEMBLY Assenbl eBri dges ASSI GN Repai r Cost

Assenbl eBri dges. El enent . Repai r Cst . Sunval '

ONASSEMBLY Assenbl eBri dges ASSIGN HI '

Assenbl eBri dges. El enent . TEV. Sunval ! =0?

(Assenbl eBri dges. El enent . CEV. Sunval / Assenbl eBri dges. El enent. TEV. SunVval) *100: 0" ;
ONASSEMBLY Assenbl eBri dges ASSI GN FH

Assenbl eBri dges. El enent . TEV. Sunval | =0?
(Assenbl eBri dges. El enent . FEV. Sunival / Assenbl eBri dges. El enment . TEV. Sunval) *100: 0
ONASSEMBLY Assenbl eBri dges ASSI GN Last Repai redTm - (Del ay+1) ;

/**

/* Entry of resources into BridgeNetwork

86

327.

328.

329.

330.

331.

332.

338.

334.

335.

336.

337.

338.

339.

340.
i nks

341.

342.

ONENTRY Bri dgeNet wor k ASSI GN QueueFr m Bri dgeNet wor k;

VARPROP Bri dge NonDel ayedH ' ((Si mrli me-Last Repai redTnm=Del ay) & (Repair Cost <=Funds))?
a. 1C-200;

/**

/* Entry of resources into BridgesToCreate

ONENTRY Bri dgesToCreate ASSIGN Brl D BR__I NFO ResNum 1] ;

/**

/* Rel ease of disassenbl ed conponents in DisassenBridges

/**

/[* Entry of resources into Elements

/**

/* Entry of resources into I nWkBridges

ONENTRY | nW kBri dges ASSI GN QueueFrm | nW kBri dges;

/**

/* Statenents to assist in the definition of attributes of RepairElenents and its rel ated

/**

/* Startup of RepairEl enents

87

343. DURATI ON Repai r El enents ' 15/ 365" ;

344. R I S S T T T s
345. /* Term nation of RepairEl enents

346. ONRELEASE E4 ASSI GN S1 Statel,

347. ONRELEASE E4 ASSIGN S2 State2;

348. ONRELEASE E4 ASSI GN S3 St ate3;

349. ONRELEASE E4 ASSI GN S4 St at e4;

350. ONRELEASE E4 ASSI GN S5 St at eb;

351. /Get the transition probability data

352. ONRELEASE E4 ASSI GN Act ProbData 0 0 '

353. Pref Mai nt Act[| D, 0] ==2?

354. (Get ArrayEl ement [Mai nt Act 2Dat a[1 D], 0, 0]):
355. Pr ef Mai nt Act[I D, 0] ==17

356. (Get ArrayEl ement [Mai nt Act 1Data[| D], 0, 0]) :
357. (Get ArrayEl ement [TransProbData[I D], 0,0])";
358. ONRELEASE E4 ASSI GN Act ProbData 0 1 '

359. Pr ef Mai nt Act [I D, 0] ==27

360. (Get ArrayEl ement [Mai nt Act 2Data[| D], 0, 1]):
361. Pr ef Mai nt Act [| D, 0] ==17?

88

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.

373.

374.

375.

376.

377.

378.

379.

380.

(Get ArrayEl ement [Mai nt Act 1Data[| D], 0, 1]):
(Get ArrayEl ement [TransProbData[1 D], 0,1])";
ONRELEASE E4 ASSI GN Act ProbData 0 2 '

Pr ef Mai nt Act [I D, 0] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 0, 2]):
Pref Mai nt Act[| D, 0] ==17

(Get ArrayEl ement [Mai nt Act 1Data[1 D], 0, 2]):
(Get ArrayEl ement [TransProbData[I D], 0, 2])";
ONRELEASE E4 ASSI GN Act ProbData 0 3 '

Pref Mai nt Act[| D, 0] ==2?

(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 0, 3]):
Pr ef Mai nt Act[I D, 0] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D], 0, 3]):
(Get ArrayEl ement [TransProbData[I D], 0, 3])";
ONRELEASE E4 ASSI GN Act ProbData 0 4 '

Pr ef Mai nt Act [I D, 0] ==27?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 0, 4]):
Pref Mai nt Act [I D, 0] ==17

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 0, 4]):

89

381.

382.

3883.

384.

385.

386.

387.

388.

389.

390.

391.

392.

398.

394.

395.

396.

397.

398.

399.

(Get ArrayEl ement [TransProbData[I D], 0,4])";
ONRELEASE E4 ASSI GN Act ProbData 1 0 '

Pref Mai nt Act[I D, 1] ==2?

(Get ArrayEl ement [Mai nt Act 2Data[I D], 1, 0]):
Pref Mai nt Act[I D, 1] ==17

(Get ArrayEl ement [Mai nt Act 1Data[I D], 1, 0]) :
(Get ArrayEl ement [TransProbData[l1 D], 1,0])";
ONRELEASE E4 ASSI GN Act ProbData 1 1 '

Pref Mai nt Act [I D, 1] ==2?

(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 1, 1]):
Pref Mai nt Act[| D, 1] ==1?

(Get ArrayEl ement[Mai nt Act 1Data[I D], 1, 1]):
(Get ArrayEl ement [TransProbData[I D], 1,1])";
ONRELEASE E4 ASSI GN Act ProbData 1 2 '

Pref Mai nt Act[| D, 1] ==2?

(Get ArrayEl ement [Mai nt Act2Data[1 D], 1, 2]):
Pref Mai nt Act[I D, 1] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D], 1, 2]):

(Get ArrayEl ement [TransProbData[I D], 1,2])";

90

400.

401.

402.

403.

404.

405.

406.

407.

408.

4009.

410.

411.

412.

413.

414.

415.

416.

417.

418.

ONRELEASE E4 ASSI GN Act ProbData 1 3 '

Pref Mai nt Act[| D, 1] ==2?

(Get ArrayEl ement[Mai nt Act 2Data[I D], 1, 3]):
Pref Mai nt Act[I D, 1] ==17

(Get ArrayEl ement [Mai nt Act 1Data[I D], 1, 3]):
(Get ArrayEl ement [TransProbData[1 D], 1, 3])";
ONRELEASE E4 ASSI GN Act ProbData 1 4 '

Pref Mai nt Act [I D, 1] ==2?

(Get ArrayEl ement [Mai nt Act 2Data[| D], 1, 4]):
Pref Mai nt Act[| D, 1] ==17?

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 1, 4]):
(Get ArrayEl ement[TransProbData[I D], 1,4])";
ONRELEASE E4 ASSI GN Act ProbData 2 0 '

Pref Mai nt Act [I D, 2] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 2, 0]) :
Pref Mai nt Act[I D, 2] ==17?

(Get ArrayEl ement[Mai nt Act 1Data[| D], 2, 0]):
(Get ArrayEl ement [TransProbData[I D], 2,0])";

ONRELEASE E4 ASSI GN Act ProbData 2 1 '

91

419.

420.

421.

422.

423.

424.

425.

426.

427.

428.

429.

430.

431.

432.

433.

434.

435.

436.

437.

Pref Mai nt Act[| D, 2] ==2?

(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 2,1]):
Pref Mai nt Act[I D, 2] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D], 2, 1]):
(Get ArrayEl ement [TransProbData[I D], 2,1])";
ONRELEASE E4 ASSI GN Act ProbData 2 2 '

Pref Mai nt Act[I D, 2] ==27?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 2, 2]):
Pref Mai nt Act[I D, 2] ==17

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 2, 2]):
(Get ArrayEl ement [TransProbData[1 D], 2,2])";
ONRELEASE E4 ASSI GN Act ProbData 2 3 '

Pref Mai nt Act [I D, 2] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 2, 3]):
Pref Mai nt Act[| D, 2] ==17

(Get ArrayEl ement [Mai nt Act 1Data[1 D], 2, 3]):
(Get ArrayEl ement [TransProbData[I D], 2,3])";
ONRELEASE E4 ASSI GN Act ProbData 2 4 '

Pref Mai nt Act[| D, 2] ==2?

92

438.

439.

440.

441.

442.

443,

444.

445,

446.

447 .

448.

449,

450.

451.

452.

453.

454.

455.

456.

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 2, 4]) :
Pref Mai nt Act[I D, 2] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D] , 2, 4]) :
(Get ArrayEl ement [TransProbData[| D], 2,4])";
ONRELEASE E4 ASSI GN Act ProbData 3 0 '

Pref Mai nt Act[| D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[1 D], 3,0]):
Pref Mai nt Act[I D, 3] ==17

(Get ArrayEl ement [Mai nt Act 1Data[| D], 3, 0]):
(Get ArrayEl ement [TransProbData[I D], 3,0])";
ONRELEASE E4 ASSI GN Act ProbData 3 1 '

Pr ef Mai nt Act [I D, 3] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 3, 1]):
Pref Mai nt Act[I D, 3] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D] , 3, 1]):
(Get ArrayEl ement [TransProbData[1 D], 3,1])";
ONRELEASE E4 ASSI GN Act ProbData 3 2 '

Pref Mai nt Act [I D, 3] ==27

(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 3, 2]):

93

457.

458.

459.

460.

461.

462.

463.

464,

465.

466.

467.

468.

469.

470.

471.

472.

473.

474.

475.

Pref Mai nt Act[| D, 3] ==17

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 3, 2]):
(Get ArrayEl ement[TransProbData[1 D], 3,2])";
ONRELEASE E4 ASSI GN Act ProbData 3 3 '

Pref Mai nt Act [I D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 3, 3]):
Pref Mai nt Act[I D, 3] ==17?

(Get ArrayEl ement[Mai nt Act 1Data[| D], 3, 3]):
(Get ArrayEl ement [TransProbData[I D], 3,3])";
ONRELEASE E4 ASSI GN Act ProbData 3 4 '

Pref Mai nt Act[| D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 3, 4]):
Pref Mai nt Act [I D, 3] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D] , 3, 4]):
(Get ArrayEl ement [TransProbData[1 D], 3,4])";
ONRELEASE E4 ASSI GN Act ProbData 4 0 '

Pr ef Mai nt Act [I D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 4, 0]) :

Pref Mai nt Act[| D, 4] ==17

94

476.

477.

478.

479.

480.

481.

482.

483.

484,

485.

486.

487.

488.

489.

490.

491.

492.

493.

494,

(Get ArrayEl ement [Mai nt Act 1Data[| D], 4, 0]) :
(Get ArrayEl ement [TransProbData[l1 D], 4,0])";
ONRELEASE E4 ASSI GN Act ProbData 4 1 '

Pr ef Mai nt Act [I D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 4, 1]):
Pref Mai nt Act[| D, 4] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[1 D], 4, 1]):
(Get ArrayEl ement [TransProbData[I D], 4,1])";
ONRELEASE E4 ASSI GN Act ProbData 4 2 '

Pref Mai nt Act[| D, 3] ==2?

(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 4, 2]):
Pref Mai nt Act[I D, 4] ==17

(Get ArrayEl ement[Mai nt Act 1Dat a[| D] , 4, 2]):
(Get ArrayEl ement [TransProbData[I D], 4,2])";
ONRELEASE E4 ASSI GN Act ProbData 4 3 '

Pr ef Mai nt Act[I D, 3] ==27?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 4, 3]):
Pref Mai nt Act [I D, 4] ==17

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 4, 3]):

95

495.

496.

497.

498.

499.

500.

501.

502.
508.

504.

505.

(Get ArrayEl ement [TransProbData[1 D], 4, 3])";
ONRELEASE E4 ASSI GN Act ProbData 4 4 '

Pref Mai nt Act [I D, 3] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 4, 4]):
Pref Mai nt Act [I D, 4] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D] , 4, 4]):
(Get ArrayEl ement [TransProbData[1 D], 4,4])";

Update the state information of the el enent
ONRELEASE E4 ASSIGN Statel

S1* Act ProbDat a[0, 0] +
S2* Act ProbDat a[1, 0] +
S3* Act ProbDat a[2, 0] +
S4* Act Pr obDat a[3, 0] +
S5* Act ProbDat a[4, 0] ' ;

ONRELEASE E4 ASSIGN State2 '

S1* Act ProbDat a[0, 1] +
S2* Act ProbDat a[1, 1] +
S3* Act ProbDat a[2, 1] +
S4* Act ProbDat a[3, 1] +
S5* Act ProbDat a[4, 1] ' ;

ONRELEASE E4 ASSI GN State3d '

S1* Act ProbDat a[0, 2] +
S2* Act ProbDat a[1, 2] +
S3* Act ProbDat a[2, 2] +
S4* Act ProbDat a[3, 2] +

96

S5* Act ProbDat a[4, 2] ' ;
506. ONRELEASE E4 ASSIGN State4d '

S1* Act ProbDat a[0, 3] +
S2* Act ProbDat a[1, 3] +
S3* Act ProbDat a[2, 3] +
S4* Act Pr obDat a[3, 3] +
S5* Act ProbDat a[4, 3] ' ;

507. ONRELEASE E4 ASSI GN State5 '

S1* Act ProbDat a[0, 4] +
S2* Act ProbDat a[1, 4] +
S3* Act ProbDat a[2, 4] +
S4* Act ProbDat a[3, 4] +
S5* Act ProbDat a[4, 4] ' ;

508. /Update the future state information based on the preferred mai ntenance activities
5009. ONRELEASE E4 ASSI GN FStatel '

St at el* Act ProbDat a[0, 0] +
St at e2* Act ProbDat a[1, 0] +
St at e3* Act ProbDat a[2, 0] +
St at e4* Act ProbDat a[3, 0] +
St at e5* Act ProbDat a[4, 0] ' ;

510. ONRELEASE E4 ASSI GN FState2 '
St at el* Act ProbDat a[0, 1] +
St at e2* Act ProbDat a[1, 1] +
St at e3*Act ProbDat a[2, 1] +
St at e4* Act ProbDat a[3, 1] +
St at e5* Act ProbDat a[4, 1] ' ;

511. ONRELEASE E4 ASSI GN FSt ate3

97

512.

5183.

514.

515.

516.

517.
i nks

518.

519.

St at el* Act ProbDat a[0, 2] +
St at e2* Act ProbDat a[1, 2] +
St at e3* Act Pr obDat a[2, 2] +
St at e4* Act ProbDat af 3, 2] +
St at e5* Act ProbDat a[4, 2] ' ;

ONRELEASE E4 ASSI GN FState4 !
St at el* Act ProbDat a[0, 3] +
St at e2* Act ProbDat a[1, 3] +
St at e3* Act ProbDat a[2, 3] +
St at e4* Act Pr obDat a[3, 3] +
St at e5* Act ProbDat af 4, 3] ' ;
ONRELEASE E4 ASSI GN FStateb
St at el*Act ProbDat a[0, 4] +
St at e2* Act ProbDat a[1, 4] +
St at e3* Act ProbDat a[2, 4] +

St at e4* Act Pr obDat a[3, 4] +
St at e5* Act ProbDat a[4, 4] ' ;

/**

/* Entry of resources into RprdEl enents

/**

/* Statenents to assist in the definition of attributes of AssenbleElens and its rel ated

FILTER RprdBridges Bridge 1;

FI LTER RprdEl ens El enent

" RprdBri dges. HasCur sor ?(Sour ce==Rpr dBri dges. Br1 D) : (Source==B7.BrID)";

98

520.

521.

522.

5283.

524.

525.

526.

527.

528.

529.

530.

531.

532.

533.

534.

535.

536.

537.

FI LTEREXP RprdBri dges ' RprdEl enents. Rpr dEl ens. Count ==Tot El ens’ ;

/Check if all the elenents in the bridge have been repaired
VARPROP Bri dge FnshdRepair ' RprdEl enents. Rpr dEl ens. Count ==Tot El ens' ;

/Variable to match el enents and the correspondi ng bridges
VARPROP El emrent FnshdBri dge ' Sour ce==Assenbl eEl ens. Bridge.Brl D ;

/**

/* Startup of Assenbl eEl ens

ENOUGH B7 ' I nWkBri dges. RprdBri dges. Count ' ;
DRAWUNTI L B7 ' Assenbl eEl ens. Bri dge. Count ' ;

DRAWNHERE B7 ' FnshdRepai r';

DRAWUNTI L E5 ' RprdEl enments. FnshdBri dge. AveVal ==0'" ;
DRAWNHERE E5 ' FnshdBri dge' ;

/**

/* Term nati on of Assenbl eEl ens

RELEASEAMI IC2 1,

/**

/* Assenbly of resources in AsnRprdBridges

/[Update the properties of the bridge

99

538. ONASSEMBLY AsnRpr dBri dges ASSI GN Last Repai redTm Si nili ne;

539. ONASSEMBLY AsnRpr dBri dges ASSI GN Repai r Cost
540. AsnRpr dBr i dges. El enent . Repai r Cst. Sunval ' ;
541. ONASSEMBLY AsnRprdBri dges ASSIGN HI '
542. AsnRpr dBri dges. El ement. TEV. Sunval ! =0?
(AsnRprdBri dges. El enent . CEV. Sunval /
543. AsnRpr dBr i dges. El enent. TEV. Sunval *100) : 0
544, ONASSEMBLY AsnRpr dBri dges ASSIGN FHI
545, AsnRpr dBri dges. El ement. TEV. Sunval ! =0?
(AsnRprdBri dges. El enent . FEV. Sunval /
546. AsnRpr dBri dges. El enment . TEV. Sunwal *100) : 0
547. [H KRRk ko Kk kK ko Kok Kk kK ko Kok kR ko Kok kR ko Kok kR Kk Kok R R Kk Kok R R Kk Kok kK kK Kk Kk kK kK kK
548. /* Startup of OneYear
549. PRI ORI TY OneYear ' 300
550. DURATI ON OneYear '1';
551. [R Rk ko Kk kK ko Kok kK kK ko Kok kR Kk Kok kR Kk Kok R kK Kk Kok kR Kk Kok R R Kk Kok kK R Kk Kk kK kK Kk
552. /* Term nation of OneYear
553. RELEASEAMT C5 1;
554. [KKk Kk K ko K ko Kok K ko ko ko ko Rk Rk Kk Kk Kk Kk Kk ok Kk Kk Kok Kok Kok Kok Kok Kok Kok Kok Rk Kk Kk K
555. /* Entry of resources into YrCntr

100

556.

557.

558.

559.

560.

561.

562.

563.

564.

565.

566.

567.

568.

569.

570.

571.

572.

573.

574.

575.

/**

/* Entry of resources into DeteriorateCntr

/**

/* Startup of UpdateBridges

PRI ORI TY Updat eBri dges 200;

ENOUCGH B10 1,
DRAWNHERE B10 ' Si nTi ne- Last Repai redTnp=1";
DRAWUNTI L B10 O;

/**

/* Termi nation of UpdateBridges

/**

/* Entry of resources into Brdgs
/*************-k**
/* Startup of SeperateBridges

PRI ORI TY Seper at eBri dges 150;

DRAWUNTI L B12 ' Seperat eBri dges. Bri dge. Count ' ;

/**

/* Termi nation of SeperateBridges

/**

/* Rel ease of disassenbl ed conponents in DisassenBridge

101

576.

577.

578.

579.

580.

581.
582.

5883.
584.

585.

586.

587.

588.

589.

590.

591.

592.

598.

594.

595.

ONRELEASE E7 ASSI GN S1 Statel,
ONRELEASE E7 ASSI GN S2 St ate2;
ONRELEASE E7 ASSI GN S3 St at e3;
ONRELEASE E7 ASSI GN S4 St at e4,
ONRELEASE E7 ASSI GN S5 St at e5;

/Update the transition probabilities
ONRELEASE E7 ASSI GN Act ProbData 0 0 '

Pr ef Mai nt Act [I D, 0] ==27
(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 0, 0]) :

Pref Mai nt Act [I D, 0] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D], 0, 0]) :
(Get ArrayEl ement [TransProbData[l1 D], 0,0])";
ONRELEASE E7 ASSI GN Act ProbData 0 1 '

Pr ef Mai nt Act [I D, 0] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 0, 1]):
Pref Mai nt Act[| D, 0] ==17

(Get ArrayEl ement [Mai nt Act 1Data[1 D], 0, 1]):
(Get ArrayEl ement [TransProbData[I D], 0,1])";
ONRELEASE E7 ASSI GN Act ProbData 0 2 '

Pref Mai nt Act[| D, 0] ==2?

102

596.

597.

598.

599.

600.

601.

602.

603.

604.

605.

606.

607.

608.

609.

610.

611.

612.

613.

614.

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 0, 2]):
Pref Mai nt Act[| D, 0] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D], 0, 2]):
(Get ArrayEl ement [TransProbData[I D], 0, 2])";
ONRELEASE E7 ASSI GN Act ProbData 0 3 '

Pref Mai nt Act[| D, 0] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[1 D], 0, 3]):
Pr ef Mai nt Act[I D, 0] ==17

(Get ArrayEl ement [Mai nt Act 1Data[| D], 0, 3]):
(Get ArrayEl ement [TransProbData[I D], 0, 3])";
ONRELEASE E7 ASSI GN Act ProbData 0 4 '

Pr ef Mai nt Act [I D, 0] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 0, 4]):
Pref Mai nt Act [I D, 0] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D], 0, 4]):
(Get ArrayEl ement [TransProbData[1 D], 0,4])";
ONRELEASE E7 ASSI GN Act ProbData 1 0 '

Pref Mai nt Act [I D, 1] ==2?

(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 1,0]):

103

615.

616.

617.

618.

619.

620.

621.

622.

623.

624.

625.

626.

627.

628.

629.

630.

631.

632.

633.

Pref Mai nt Act[| D, 1] ==17?

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 1,0]):
(Get ArrayEl ement [TransProbData[I D], 1,0])";
ONRELEASE E7 ASSI GN Act ProbData 1 1 '

Pref Mai nt Act [I D, 1] ==2?

(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 1, 1]):
Pref Mai nt Act[I D, 1] ==17?

(Get ArrayEl ement[Mai nt Act 1Data[| D], 1, 1]):
(Get ArrayEl ement [TransProbData[I D], 1,1])";
ONRELEASE E7 ASSI GN Act ProbData 1 2 '

Pref Mai nt Act[| D, 1] ==2?

(Get ArrayEl ement[Mai nt Act 2Data[I D], 1, 2]):
Pref Mai nt Act[I D, 1] ==17

(Get ArrayEl ement[Mai nt Act 1Data[I D], 1, 2]):
(Get ArrayEl ement [TransProbData[1 D], 1,2])";
ONRELEASE E7 ASSI GN Act ProbData 1 3 '

Pref Mai nt Act [I D, 1] ==2?

(Get ArrayEl ement [Mai nt Act 2Data[| D], 1, 3]):

Pref Mai nt Act[| D, 1] ==17?

104

634.

635.

636.

637.

638.

639.

640.

641.

642.

643.

644.

645.

646.

647.

648.

649.

650.

651.

652.

(Get ArrayEl ement [Mai nt Act 1Data[I D], 1, 3]):
(Get ArrayEl ement [TransProbData[l1 D], 1,3])";
ONRELEASE E7 ASSI GN Act ProbData 1 4 '

Pref Mai nt Act [I D, 1] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 1, 4]):
Pref Mai nt Act[| D, 1] ==17

(Get ArrayEl ement [Mai nt Act 1Data[1 D], 1, 4]):
(Get ArrayEl ement [TransProbData[I D], 1,4])";
ONRELEASE E7 ASSI GN Act ProbData 2 0 '

Pref Mai nt Act[| D, 2] ==2?

(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 2,0]):
Pref Mai nt Act[I D, 2] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D], 2, 0]):
(Get ArrayEl ement [TransProbData[I D], 2,0])";
ONRELEASE E7 ASSI GN Act ProbData 2 1 '

Pref Mai nt Act[I D, 2] ==27?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 2, 1]):
Pref Mai nt Act[I D, 2] ==17

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 2,1]):

105

653.

654.

655.

656.

657.

658.

659.

660.

661.

662.

663.

664.

665.

666.

667.

668.

669.

670.

671.

(Get ArrayEl ement [TransProbData[I D], 2,1])";
ONRELEASE E7 ASSI GN Act ProbData 2 2 '

Pref Mai nt Act [I D, 2] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 2, 2]):
Pref Mai nt Act[I D, 2] ==17

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 2, 2]):
(Get ArrayEl ement [TransProbData[1 D], 2,2])";
ONRELEASE E7 ASSI GN Act ProbData 2 3 '

Pref Mai nt Act [I D, 2] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 2, 3]):
Pref Mai nt Act[I D, 2] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D], 2, 3]):
(Get ArrayEl ement [TransProbData[I D], 2,3])";
ONRELEASE E7 ASSI GN Act ProbData 2 4 '

Pref Mai nt Act[| D, 2] ==2?

(Get ArrayEl ement [Mai nt Act2Dat a[1 D] , 2, 4]) :
Pref Mai nt Act [I D, 2] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D] , 2, 4]) :

(Get ArrayEl enent [TransProbData[1 D], 2,4])";

106

672.

673.

674.

675.

676.

677.

678.

679.

680.

681.

682.

683.

684.

685.

686.

687.

688.

689.

690.

ONRELEASE E7 ASSI GN Act ProbData 3 0 '

Pref Mai nt Act[| D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Data[I D], 3, 0]):
Pref Mai nt Act[I D, 3] ==17

(Get ArrayEl ement [Mai nt Act 1Data[| D], 3, 0]):
(Get ArrayEl ement [TransProbData[1 D], 3,0])";
ONRELEASE E7 ASSI GN Act ProbData 3 1 '

Pr ef Mai nt Act [I D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 3, 1]):
Pref Mai nt Act[| D, 3] ==17

(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 3,1]):
(Get ArrayEl ement[TransProbData[I D], 3,1])";
ONRELEASE E7 ASSI GN Act ProbData 3 2 '

Pref Mai nt Act [I D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 3, 2]):
Pref Mai nt Act[I D, 3] ==17?

(Get ArrayEl ement[Mai nt Act 1Data[| D], 3, 2]):
(Get ArrayEl ement [TransProbData[I D], 3,2])";

ONRELEASE E7 ASSI GN Act ProbData 3 3 '

107

691.

692.

693.

694.

695.

696.

697.

698.

699.

700.

701.

702.

7083.

704.

705.

706.

707.

708.

709.

Pref Mai nt Act[| D, 3] ==2?

(Cet ArrayEl enent [Mai nt Act 2Data[1 D], 3, 3]):
Pref Mai nt Act[I D, 3] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D], 3, 3]):
(Get ArrayEl ement [TransProbData[I D], 3,3])";
ONRELEASE E7 ASSI GN Act ProbData 3 4 '

Pref Mai nt Act[I D, 3] ==27?

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 3, 4]):
Pref Mai nt Act[I D, 3] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D] , 3, 4]):
(Get ArrayEl ement [TransProbData[1 D], 3,4])";
ONRELEASE E7 ASSI GN Act ProbData 4 0 '

Pr ef Mai nt Act [I D, 3] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D], 4, 0]) :
Pref Mai nt Act[| D, 4] ==17

(Get ArrayEl ement [Mai nt Act 1Data[1 D], 4, 0]):
(Get ArrayEl ement [TransProbData[I D], 4,0])";
ONRELEASE E7 ASSI GN Act ProbData 4 1 '

Pref Mai nt Act[| D, 3] ==2?

108

710.

711.

712.

713.

714.

715.

716.

717.

718.

719.

720.

721.

722.

723.

724.

725.

726.

727.

728.

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 4, 1]):
Pref Mai nt Act[| D, 4] ==17

(Get ArrayEl ement[Mai nt Act 1Data[| D], 4, 1]):
(Get ArrayEl ement [TransProbData[I D], 4,1])";
ONRELEASE E7 ASSI GN Act ProbData 4 2 '

Pref Mai nt Act[| D, 3] ==2?

(Get ArrayEl ement [Mai nt Act 2Dat a[1 D] , 4, 2]) :
Pref Mai nt Act [I D, 4] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D] , 4, 2]):
(Get ArrayEl ement [TransProbData[1 D], 4,2])";
ONRELEASE E7 ASSI GN Act ProbData 4 3 '

Pr ef Mai nt Act [I D, 3] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 4, 3]):
Pref Mai nt Act [I D, 4] ==17

(Get ArrayEl ement [Mai nt Act 1Dat a[| D] , 4, 3]):
(Get ArrayEl ement [TransProbData[1D], 4, 3])";
ONRELEASE E7 ASSI GN Act ProbData 4 4 '

Pref Mai nt Act [I D, 3] ==27

(Get ArrayEl ement [Mai nt Act 2Dat a[| D] , 4, 4]):

109

729.

730.

731.

732.
733.

734.

735.

736.

Pref Mai nt Act[| D, 4] ==17
(Cet ArrayEl enent [Mai nt Act 1Data[1 D], 4, 4]):

(Get ArrayEl ement [TransProbData[|1 D], 4, 4])";

/ Update the condition state informati on of the el enent

ONRELEASE E7 ASSIGN Statel '

S1*Get ArrayEl ement [TransProbData[| D], 0, 0] +
S2* Get ArrayEl enent [TransProbDat a[| D], 1, 0] +
S3*Get ArrayEl enent [TransProbDat a[| D], 2, 0] +
S4* Get ArrayEl ement [TransProbData[1 D], 3, 0] +
S5*Get ArrayEl enent [TransProbData[| D], 4, 0] ' ;

ONRELEASE E7 ASSIGN State2 '

S1*Get ArrayEl ement [TransProbData[| D], O, 1] +
S2* Get ArrayEl ement [TransProbData[| D], 1, 1] +
S3*Get ArrayEl enent [TransProbData[| D], 2, 1] +
S4* Get ArrayEl ement [TransProbData[|1 D], 3, 1] +
S5*Get ArrayEl ement [TransProbData[1 D], 4, 1] ' ;

ONRELEASE E7 ASSI GN State3 '

S1*Get ArrayEl enent [TransProbData[| O], 0, 2] +
S2* Get ArrayEl ement [TransProbData[| D], 1, 2] +
S3*Get ArrayEl ement [TransProbData[| D], 2, 2] +
S4* Get ArrayEl ement [TransProbDat a[| D], 3, 2] +
S5*Get ArrayEl enent [TransProbData[| D], 4, 2] *;

ONRELEASE E7 ASSIGN State4 '

S1*Get ArrayEl enent [TransProbData[| D], 0, 3] +
S2* Get ArrayEl enent [TransProbData[| D], 1, 3] +
S3*Get ArrayEl ement [TransProbData[| D], 2, 3] +
S4* Get ArrayEl ement [TransProbData[| D], 3, 3] +

110

737.

738.
739.

740.

741.

742.

S5* Get ArrayEl emrent [TransProbDat a[| D] , 4, 3] ';
ONRELEASE E7 ASSIGN State5 '

S1*Get ArrayEl enent [TransProbData[| D], 0, 4] +
S2*Get ArrayEl enent [TransProbData[| D], 1, 4] +
S3*Get ArrayEl enent [TransProbDat a[| D], 2, 4] +
S4* Get ArrayEl enent [TransProbDat a[| D], 3, 4] +
S5* Get ArrayEl emrent [TransProbDat a[| D] , 4, 4] ' ;

/Update the future state information of the el ement
ONRELEASE E7 ASSIGN FStatel

St at el* Act ProbDat a[0, 0] +

St at e2* Act ProbDat a[1, 0] +

St at e3* Act ProbDat a[2, 0] +

St at e4* Act ProbDat a[3, 0] +

St at e5* Act ProbDat a[4, 0] ' ;

ONRELEASE E7 ASSIGN FState2
St at el* Act ProbDat a[0, 1] +
St at e2* Act ProbDat a[1, 1] +
St at e3* Act ProbDat af 2, 1] +
St at e4* Act ProbDat a[3, 1] +
St at e5* Act ProbDat a[4, 1] ' ;

ONRELEASE E7 ASSI GN FState3
St at el*Act ProbDat a[0, 2] +
St at e2* Act ProbDat a[1, 2] +
St at e3* Act ProbDat a[2, 2] +
St at e4* Act Pr obDat a[3, 2] +
St at e5* Act ProbDat af 4, 2] ' ;

ONRELEASE E7 ASSIGN FState4 '
St at el*Act ProbDat a[0, 3] +
St at e2* Act ProbDat a[1, 3] +
St at e3* Act ProbDat a[2, 3] +
St at e4* Act Pr obDat a[3, 3] +

111

St at e5* Act ProbDat a[4, 3] ' ;

743. ONRELEASE E7 ASSIGN FStateb
St at el* Act ProbDat a[0, 4] +
St at e2* Act ProbDat a[1, 4] +
St at e3* Act ProbDat a[2, 4] +
St at e4* Act ProbDat a[3, 4] +
St at e5* Act ProbDat a[4, 4] ' ;

744 /**
745. /* Assenbly of resources in AssenBridge
746. / Updating the condition information of the bridge
747. ONASSEMBLY AssenBri dge ASSI GN Repai r Cost
748. AssenBri dge. El enment . Repai r Cst . Sunval ' ;
749. ONASSEMBLY AssenBridge ASSIGN H '
AssenBri dge. El enent . TEV. Sunval ! =0?(
750. (AssenBri dge. El enent . CEV. Sunval /
751. AssenBri dge. El enent . TEV. Sunval) *100): 0' ;
752. ONASSEMBLY AssenBri dge ASSIGN FH '
AssenBri dge. El ement . TEV. Sumval ! =0?(
753. (AssenBri dge. El enent . FEV. Sunval /
754. AssenBri dge. El enent . TEV. Sunval) *100) : 0" ;
755 /**
756. /* Statenments to assist in the definition of attributes of RepairBridges and its rel ated
i nks

112

757.
758.

759.
100" ;

760.
761.
762.

763.

/**

/* Startup of RepairBridges

FI LTER Best Exc Bridge ' NonDel ayedHl ==Br i dgeNet wor k. NonDel ayedHI . MaxVal & NonDel ayedHI ! =-

SEMAPHORE Repai rBridges ' (BridgeNetwork. Cur Count +I nW kBri dges. Cur Count ==Br __Count) ';
PRI ORI TY Repai r Bri dges 20;
ENOUGH B4 ' Bri dgeNet wor k. Best Exc. Count & Bri dgeNet wor k. Best Exc. Repai r Cost . AveVal <=Funds"' ;

DRAWNHERE B4 ' NonDel ayedHl ==Bri dgeNet wor k. NonDel ayedHI . MaxVal & NonDel ayedHI ! =- 100 &

Repai r Cost <=Funds" ;

764.
765.

766.

767.

768.

769.

770.

771.
772.

773

DRAWUNTI L B4 Repai rBri dges. Bri dge. Count ;
DRAWORDER B4 - NonDel ayedHI ;

ONDRAW B4 ASSI GN Funds Funds- Repair Cost ;

/**

/* Termi nation of RepairBridges

/**

/* Entry of resources into El enentsToCreat

/Enter the information of the el enments upon creation
ONENTRY El enent sToCreat ASSIGN I D El __I NFO ResNum 1, 0] ;

ONENTRY El enent sToCreat ASSIGN Qy El I NFJ ResNum 1, 2] +EI __ | NFO ResNum

1, 4] +El __INFO ResNum 1, 6] +El __I NFO ResNum 1, 8] +El __I| NFO ResNum 1, 10] ;

113

774.

775.

776.

777.

778.

779.

780.

781.
782.
783.
784.

785.
786.
787.
788.
789.
790.
791.

792.

793.

ONENTRY El enent sToCreat ASSIGN Statel El __|I NFO ResNum 1, 1]/ 100;
ONENTRY El ement sToCreat ASSIGN State2 El __ | NFQ ResNum 1, 3]/ 100;
ONENTRY El enent sToCreat ASSIGN State3 El __ | NFOQ ResNum 1, 5]/ 100;
ONENTRY El enent sToCreat ASSIGN State4 El __ | NFQ ResNum 1, 7]/ 100;
ONENTRY El enent sToCreat ASSIGN State5 El __ | NFQ ResNum 1, 9]/ 100;
ONENTRY El enent sToCreat ASSI GN Source El __ I NFQ ResNum 1, 11];

ONENTRY El enment sToCreat ASSI GN statecnt StateCnt[I1D];

/**

/* Statenents to assist in the definition of attributes of Report and its related |inks

/Statistical collector for getting the information about the bridges
Bl NCOLLECTOR HI Col | ector 100 0 100;

ENOUGH R3 "1';
ENOUGH R1 1;
DRAWUNTI L R1 '0",;

ONDRAW R1 COLLECT HI Col | ector HI;
DRAWUNTI L R3 '0";

ONDRAW R3 COLLECT HI Col | ector HI;

/**

/* Startup of Report

[Qutputs the appropriate information to the screen every year of sinmulation tine

114

794.

PRI NT St dQut put

"Year\t\t AverageH \t\t Excel l ent\t\t Good\t\tFai r\t\tPoor\t\tVPoor\tFundsAll ocated\tFundsLft\n";

795.

796.
797.
798.
799.
800.
801.
802.
803.
804.
805.
Funds;

806.
807.

808.
809.

810.
811.
812.
813.
814.

815.

816.

PRI ORI TY Report ' 100';

BEFOREDRAWS Report CALL Reset[H Coll ector];

ONSTART Report PRINT StdOutput "%it. 0f 9%d5. 2f %45. Of 94.2. Of %d 2. Of %12. Of 942. Of \ t "

Si nili me

HI Col | ect or . AveVal

HI Col | ect or. nSanpl es- Hi t sAt Or Bel owBi n[HI Col | ect or, Excel | ent]

Hi t sAt Or Bel owBi n[HI Col | ect or, Excel | ent] - Hi t sAt Or Bel owBi n[HI Col | ect or, Good]

Hi t sAt Or Bel owBi n[HI Col | ect or, Good] - Hi t sAt Or Bel owBi n[HI Col | ect or, Fai r]

Hi t SAt Or Bel owBi n[HI Col | ect or, Fai r] - Hi t sAt Or Bel owBi n[HI Col | ect or, Poor]

Hi t sAt Or Bel owBi n[HI Col | ect or, Poor];

ONSTART Report PRI NT StdQutput "9%2.0f9%d2. 0f \ n" (Sinili me! =0?FUNDSMIRX[Si nili me- 1] : 0)

/**

/* Termination of Report

/ Restore the bridges back in the network
REL EASEVWHERE R2 ' QueueFr me=Bri dgeNet wor k' ;

REL EASEWHERE R4 ' QueueFr m==I nW kBri dges' ;

/ Restore the funds at the beginning of every sinulation year
ONEND Report ASSI GN Funds FUNDSMTRX[Si nili ne] ;

/**

/* Entry of resources into RCntr

/**

/* Initialization of Queues, Running the Simulation, Presenting Results

115

817.
818.
819.
820.
821.
822.
823.
824.

825.
826.

/Create the bridges
INIT BridgesToCreate Br__Count;
/Create the el enents

INIT El enentsToCreat El __ Count;

INNT YrCntr 1;
INNT RCntr 1;

[/ Maxi mum nunber of bridges which can be worked on sinultaneously

INI T BridgeCount MaxBri dgeCount ;

S| MULATEUNTI L Si mTi me>Yr sToSi nul at e;
| REPORT;

116

N AWM E

21.

22.
23.
24.
25.
26.

27.

28.
29.

30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

APPENDIX E
Listing Of DIl Code

/1 ADD-ON DLL to Stroboscope Simulation Software
/1

/1 Progranmer: Sri nat h Devul apal

/1 OSs: W ndows 2000 Prof essi ona

/1l System Pentium 111 500, 128 MB Menory
/1 Conpiler: Vi sual C++ 6.0, Service Pack 4
/1 Last nodified: March 27th, 2002

/1

/111 This is an add-on to Stroboscope which enables it to
//read data frompredifined files
/1 The list of Stroboscope supported commands are
/'l ReadEl enent Dat a()
/1 CloselnputFile()
/11 sEOF()
/'l ReadEl enent Dat a(doubl e dFil el dentifier);
/1 GetBridgel nfo(double dFileldentifier);
/1 GetEl ement|nfo(double dFileldentifier);
/'l Get St at eCount (doubl e dFileldentifier);
/1l GetFailureCost(double dFileldentifier);
/'l GetPolicylnfo(double dFileldentifier);

/1 Assunptions: The InputFiles are present in the working
directory

[11f not the full path of the files needs to be sepcified

/1 The InputFiles are in the Pontis Data Interchange format

/1 This format is based on the PDI files generated by

/I PONTI' S software Version 4.

/I Five Arrays called TransProbData, MintAct1Data,
Mai nt Act 2Dat a

/1 FailrCostData StateCnt have been defined in the
St roboscope node

[lcalling this DLL

/1 The maxi mum number of brisges supported is 10000 and is
defi ned by MaxBridge

/1 The maxi mum | ength of the Bridge ID supported is given by
Max| DLengt h=50

#i ncl ude<st di o. h>

#i ncl ude<string. h>

#i ncl ude<f stream h>

#i ncl ude<af xwi n. h>

#i ncl ude<af xcol | . h>

#i ncl ude<af xt enpl . h>

/1 #i nclude "s:\w n32app\strobos\sdk\strobosc. h"

/| #i ncl ude <strobosc. h>

#i nclude "C:\Program Fi | es\ strobosc\ SDK\ strobosc. h"
#i ncl ude<i o. h>

117

41.

42.
43.
44,

45.
46.
47.
48.
49.
50.

51.

52.
53.
54.
55.

56.

57.

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.

72.
73.
74.

75.
76.
77.

78.
79.

AddOn

/! Function prototypes for the functions registered by the

doubl e _stdcall OpenlnputFile(double InputFileNane);
doubl e _stdcall Cl oselnputFile(double InputFileNane);
double _stdcall |sEOF(double Fileldentifier);

doubl e _stdcall ReadEl enent Dat a(doubl e dFileldentifier);
doubl e _stdcall GetBridgelnfo(double dFileldentifier);
doubl e _stdcall GCetEl enentlnfo(double dFileldentifier);
doubl e _stdcall Get StateCount(double dFileldentifier);
doubl e _stdcall GetFail ureCost(double dFileldentifier);
doubl e _stdcall GetPolicylnfo(double dFileldentifier);

int _stdcall DiscardLine(const char* szArgunents);
/1 defining the global variables
[lifstreanr fstreanpointer;

char szScrat ch[MAX_STATEMENT_LENGTH] ;
char szScrat ch2[MAX_STATEMENT _LENGTH] ;

/1 Class for converting a Double to an ifstream pointer and

vi ce versa

/1

cl ass CDoubl eAndl f streanPtr

{

private:

uni on

{ doubl e m d;

struct

{ i fstreant moptr;

i nt mcheckVal

b

b

publi c:

CDoubl eAndl f streanPtr (doubl e d)
: m d(d)

{}

CDoubl eAndl fstreanPtr (i fstreant ptr)
: mptr(ptr)

{}

operator double () const {return md;}
operator ifstreant () const{return mptr;}

s

doubl e gl b_Dbl Transfer;
doubl e _stdcall Dbl Transfer(){return gl b_Dbl Transfer;}

118

80. //Default function where all the functions and statenents
need to be registered

81. int _stdcall StroboAddOnlnit(const char* szMdel Nanme)

82. {

83. /[/Print in the error device that Stroboscope has | oaded the
Addon

84. Print ToStdError("\nlnputFile Add-On for Stroboscope");

85. Print ToStdError("\nBy Srinath Devul apalli and Julio
Marti nez\n");

86. // Regi ster with Stroboscope the statenents

87. RegsSt at ement (" DI SCARDLI NE", Di scar dLi ne);

88. /1 Register with Stroboscope the functions

89. RegFuncti on(" Openl nput Fil e", Openl nputFile, 1, TRUE) ;

90. RegFuncti on("Cl osel nputFil e", Cl osel nput Fil e, 1, FALSE) ;

91. RegFuncti on("1sEOF", | sEOF, 1, FALSE) ;

92. RegFuncti on(" Dbl Transfer__", Dbl Transfer, 0, FALSE) ;

93. RegFuncti on(" ReadEl enent Dat a", ReadEl enent Dat a, 1, FALSE) ;

94. RegFuncti on(" Get Bri dgel nfo", Get Bri dgel nfo, 1, FALSE) ;

95. RegFuncti on(" Get El enent | nf 0", Get El enent | nf o, 1, FALSE) ;

96. RegFuncti on(" Get St at eCount ", Get St at eCount, 1, FALSE) ;

97. RegFuncti on(" Get Fai | ureCost", Get Fai | ureCost, 1, FALSE) ;

98. RegFuncti on(" Get Pol i cyl nfo", Get Pol i cyl nfo, 1, FALSE) ;

99. return true;

100. }//end StroboAddOnl nit

101. /1 Class for managi ng the open input files

102. /I Maintains a list of all open input files.

103. /1 Closes any open input files using the destructor

104. cl ass ManageFi | ePoi nters

105. {

106. private:

107. ifstreant* Fil eStreamArray; /'l Array of open file pointers

108. i nt count;

1009. publi c:

110. ManageFi | ePoi nters();

111. ~ManageFi | ePoi nters();

112. i fstreant AddFi | e(doubl e I nputFil eNane);

113. doubl e Cl oseFil e(doubl e I nput Fil eNane) ;

114. int ReturnPosition(ifstreant fstreanpointer);

115. } FPoi nterArray;

116. /1 Default constructor ManageFil ePointers

117. /| Paraneters: None

118. /lCalls: None

119

1109. /] Cal | edBy: None

120. /1 Pre: None

121. /| Post : The object is initialized

122. ManageFi | ePoi nters: : ManageFi | ePoi nters()

123. {

124. Fi |l eStreamArray=NULL

125. count =0;

126. };

127. /] Default destructor

128. /| Paraneters: None

129. /lCalls: None

130. /] Cal | edBy: None

131. /1] Pre: ManageFi | ePoi nters object exists

132. /| Post : The obj ect has been dereferenced
properly

133. ManageFi | ePoi nters: : ~ManageFi | ePoi nters()

134. {

135. i f(FileStreamArray! =NULL)

136. {

137. /1 Cl ose the open files

138. for(int i=0;i<count;++i)

139. (FileStreamArray[i])->cl ose();

140. /I der ef erence objects

141. delete[] FileStreanmArray;

142. Fi |l eStreamArray=NULL

143. count =0;

144. }

145. };

146. /I ManageFi | ePoi nters:: AddFi | e(doubl e | nput Fi | eNane)

147. /| Paraneters: I nput Fi | eNarme doubl e val ue of file nane
passed from Stroboscope

148. /IlCalls: None

149. /] Cal | edBy: Openl nputFil e

150. [l Pre: ManageFi | ePoi nters object exists.

151. /| Post : The I nputfile has been opened and
added to the array

152. i fstream® ManageFil ePoi nters:: AddFi | e(doubl e | nput Fi | eNane)

153. {

154. strncpy(szScratch, Convert Doubl eToStri ng(|l nput Fi | eNane) , MAX_
STATEMENT _LENGTH) ;

155. i fstream® fstreanpointer = new ifstream

156. /1 Open the file and add its pointer to the |ist of open
files

157. (*fstreanpointer).open(szScratch,ios::nocreate|ios::in);

158. if ((*fstreanmpointer).fail())

159. {

120

160. i f (strlen(szScratch)==(MAX_STATEMENT LENGTH- 1))

161. Print ToStdError("\nToo Long a file name. Specify a file nane
shorter than 4096 characters");

162. el se

163. PrintToStdError("\nlnput File not found");

164. return NULL

165. };

166. i fstreanm** tenp=new ifstreant|count+1];

167. i f(tenp==NULL)

168. {

169. PrintToStdError("\nToo many open input files. Unable to
all ocate nmenory");

170. return NULL

171. }

172. /1 Add the new file to the array

173. for(int i=0;i<count;++i)

174. temp[i]=Fil eStreamArrayl[il];

175. i f(FileStreamArray! =NULL)

176. del ete[] FileStreamArray;

177. Fil eStreamArray=t enp;

178. t enp[count] =f st r eanpoi nt er

179. count ++;

180. return fstreanpointer

181. };

182. /1 ManageFi | ePoi nters:: ReturnPosition(ifstreant
f streanpoi nter)

183. /I Returns the position of the file pointer in the array if
t he

184. /1file has been opened. -1 otherw se

185. /| Paraneters: f streanpoi nter

186. /1

187. i nt ManageFi | ePoi nters:: ReturnPosition(ifstreant
f st reanpoi nt er)

188. {

189. int position=-1

190. for(int i=0;i<count;++i)

191. if(FileStreamArray[i]==fstreanpointer)

192. posi ti on=i

193. return position

194. };

195. /1 ManageFi | ePoi nters:: CloseFil e()

196. /| Paraneters: I nput Fi | eNarme doubl e val ue of file
poi nter passed by Stroboscope

197. /lCalls: None

198. /1 Cal |l edBy: Cl oselnputFile

121

199. /1] Pre: ManageFi | ePoi nters obj ect exists.
200. /| Post : The Inputfile has been cl osed and
renoved fromthe array

201. doubl e ManageFi | ePoi nters:: Cl oseFil e(doubl e | nput Fi | eNane)

202. {

203. i fstreant fstreanpointer=
(i fstreanr) CDoubl eAndl f streanPtr (I nput Fi | eNane) ;

204. i nt position=ReturnPosition(fstreanpointer);

205. /lcheck if file is open

206. i f(position==-1)

207. {

208. Print ToStdError("\ nNot previously Open Input File. Use
Openl nputFile");

209. StrbMat hError (" Cl osel nput Fil e", STR_DOVAI N) ;

210. return false

211. };

212. /lclose the file

213. f st reanpoi nt er->cl ose();

214. // Renpbve its pointer fromthe array

215. i fstreant** tenp=new ifstreant|count-1];

216. i f(tenmp==NULL)

217. return false

218. for(int i=0;i<position;++i)

219. tenp[i]=FileStreamArray[i];

220. for(i=position;i<count;++i)

221. tenp[i]=FileStreamArray[i +1];

222. delete[] FileStreamArray;

223. Fil eStreamArray=t enp;

224. count - -;

225. return true;

226. };

227. /1 The function registered with Stroboscope as OpenlnputFile

228. /| Takes the name of the file as INPUT and returns the
fstream poi nter

229. /lafter typecasting it as a double. To use the pointer
again need to

230. //type cast the double back to ifstreanf

231. /| Par anet er: I nput Fi | eNane St roboscope nane
of the input file

232. /I Ret ur ns: A doubl e whi ch when typecast to
i fstream gives the

233. /1 i fstream pointer to the input
file

234. /Il Calls: ManageFi | ePoi nters:: AddFil e

235. doubl e _stdcall OpenlnputFile(double InputFileNane)

122

236. {

237. i fstreant
f st reanpoi nt er =FPoi nt er Array. AddFi | e(| nput Fi | eNane) ;

238. i f(fstreanpoi nter==NULL)

239. {

240. St rbMat hError (" Openl nput Fi | e", STR_DOVAI N) ;
241. return false;

242, }

243. return (CDoubl eAndl fstreanPtr)fstreanpoi nter
244, }//end OPENI NPUTFI LE

245, /1 The function registered with Stroboscope as

Cl oselnputFile

246. doubl e _stdcall C osel nputFil e(doubl e InputFil eNane)

247. {

248. doubl e status=FPoi nterArray. Cl oseFil e(l nputFil eNane);

249, i f(status==0)

250. {

251. StrbMat hError (" Cl osel nput Fil e", STR_DOVAI N) ;

252. return false

253. }

254. return true,

255. }

256. /1 The function registered with Stroboscoope as | SEOF

257. /| Paraneters: Fileldentifier When typecast to
i fstream gi ves

258. /1 a
pointer to the file

259. // Ret ur ns: true if EOF fal se otherw se

260. doubl e _stdcall |sEOF(double dFileldentifier)

261. {

262. i fstreant fstreanpointer=
(i fstreanr)CDoubl eAndl fstreanPtr(dFil eldentifier);

263. i nt position=FPointerArray. ReturnPosition(fstreanpointer);

264. [/ Check if file has not been opened

265. i f(position==-1)

266. {

267. PrintToStdError("\nNot previously Open Input File. Use
Openl nputFil e");

268. St rbMat hEr ror (" ReadDat a", STR_DOMAI N) ;

123

269. return false
270. };

271. [l'ifstreant
f st reanpoi nt er =CDoubl eAndl fstreanPtr (dFil el dentifier);

272. (*fstreanpointer).eatwhite();

273. i f((*fstreanpointer). peek()==EOF)

274. return 1,

275. return O,

276. }

277. /1 The statement registered with Stroboscope as DI SCARDLI NE

278. /I Function: Renmoves a line fromthe input file
stream

279. /1 Can be used to ignore
conment s

280. /1

281. int _stdcall DiscardLine(const char* szArgunments)

282. {

283. char *szFileldentifier,*Scratch

284. strncpy(szScratch, szArgunment s, MAX_STATEMENT_LENGTH) ;

285. Scrat ch=szScr at ch

286. szFileldentifier = Extract Argunment (Scratch);

287. if(!strlen(szFileldentifier))

288. {

289. Print ToStdError("\nM ssing File lIdentifier");

290. return fal se

291. }

292. [1ifstreant
f st reanpoi nt er =CDoubl eAndl| f st reanPtr (Eval uat eExpressi on(szFi | el de
ntifier));

293. i fstreant fstreanpointer=

(i fstreanr) CDoubl eAndl f st reanPt r (Eval uat eExpr essi on(szFil el denti f
ier));

294. i nt position=FPoi nterArray. ReturnPosition(fstreanpointer);

295. i f(position==-1)

296. {

297. PrintToStdError("\nNot previously Open Input File. Use
Openl nputFil e");

298. St rbMat hEr ror (" ReadDat a", STR_DOMAI N) ;

299. return fal se

300. };

301. (*fstreanpointer).ignore(MAX_ STATEMENT_LENGTH, '\ n');

302. return 1,

303. }

124

304. /1 The function registered with Stroboscope as
ReadEl enent Dat a

305. /| Paraneters: None

306. /1 Assunpti ons: The data files are present in the
current directory.

307. /1 The el ement data files have a
'.elm extension

308. /I Ret urns: If the operation was succesful or
not

309. doubl e _stdcall ReadEl ement Dat a(doubl e dFil el dentifier)

310. {

311. i fstreant fstreanpointer=
(i fstreanr)CDoubl eAndl fstreanPtr(dFil eldentifier);

312. i nt position=FPointerArray. ReturnPosition(fstreanpointer);

313. [lcheck if file has not been opened

314. i f(position==-1)

315. {

316. Print ToStdError("\nNot previously Open Input File. Use
Openl nputFile");

317. St rbMat hEr ror (" ReadDat a", STR_DOMAI N) ;

318. return false

319. };

320. // The tenmporary arrays in which the values read fromthe
files are stored.

321. /1 Once the file is read the values are sent to Stroboscope
usi ng the

322. /I appropriate Stroboscope statenents

323. doubl e (*TransProbData)[5][6];

324. doubl e (*Mai nt Act 1Data)[5][8];

325. doubl e (*Mai nt Act 2Data)[5][8];

326. Tr ansPr obDat a=new doubl e[800] [5] [6] ;

327. Mai nt Act 1Dat a=new doubl e[800] [5] [8] ;

328. Mai nt Act 2Dat a=new doubl e[800] [5] [8] ;

329. /[llnitialize the arrays

330. for(int i=0;i<800; ++i)

331. for(int j=0;j<5;++)

332. for(int k=0; k<6; ++k)

333. TransProbData[i][]][Kk]=0;

334. for(i=0;i<800; ++i)

335. for(int j=0;j<5;++)

336. for(int k=0; k<8; ++k)

337. Mai nt Act 1Data[i][j][k] =0;

125

338.
339.
340.
341.

342.
343.
344.
345.

346.
347.
348.

349.
350.
351.
352.
353.

354.

355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.

370.
371.
372.
373.

374.
375.
376.
377.
378.
379.
380.
381.
382.

for(i=0;i<800; ++i)
for(int j=0;j<5;++j)
for(int k=0; k<8; ++k)

Mai nt Act 2Data[i][]][k] =0;

(*fstreanpointer).eatwhite();

char sVal ue[MAX_STATEMENT_LENGTH] ;

(*fstreanpoi nt er)>>sVal ue;

/] fstreanpoi nter->getline(sVal ue, MAX_STATEMENT_LENGTH) ;

/'l check for the beginning of the data table
whi | e(strcnp(sVal ue, "ACTMODLS") ! =0)
(*fstreanpoi nt er)>>sVal ue;

while(!l sEOF(dFil el dentifier))

{

doubl e el em D, statel D, acti onl D, envl D;

doubl e probl, prob2, prob3, prob4, prob5, cost, opti munfrac;
char ch;

// Read the appropriate data fromthe data file

(*fstreanpoi nt er)>>sVal ue;

(*fstreanpointer)>>ch;

/1 (*fstreanpoi nter)>>ch;

f streanpoi nter>getline(sVal ue, MAX_STATEMENT_LENGTH, ' "');
el em D=at of (sVal ue);

/1 (*fstreanpoi nter)>>el em D

(*fstreanpointer)>>ch;

fstreanpoi nter>getline(sVal ue, MAX_ STATEVMENT_LENGTH, """);
st at el D=at of (sVal ue) ;

(*fstreanpointer)>>ch;

f streanpoi nter>getline(sVal ue, MAX_STATEMENT_LENGTH, """);
acti onl D=at of (sVal ue);

(*fstreanpointer)>>ch;

fstreanpoi nter>get!ine(sVal ue, MAX_STATEMENT_LENGTH, " "') ;
envl D=at of (sVal ue) ;

(*fstreanpoi nter)>>ch;
(*fstreanpoi nt er)>>sVal ue;
(*fstreanpoi nt er)>>sVal ue;
(*fstreanpoi nter)>>ch;

f st reanpoi nter >get | i ne(sVal ue, MAX_STATEMENT_LENGTH, ' "') ;
probl=at of (sVal ue);

(*fstreanpoi nter)>>ch;

f st reanpoi nter>getline(sVal ue, MAX_STATEMENT_LENGTH, """);
pr ob2=at of (sVal ue);

(*fstreanpoi nter)>>ch;

f st reanpoi nter >get | i ne(sVal ue, MAX_STATEMENT_LENGTH, ' "') ;
pr ob3=at of (sVal ue);

(*fstreanpointer)>>ch;

126

383. fstreanpoi nter>getline(sVal ue, MAX_STATEMENT_LENGTH, '

384. pr ob4=at of (sVal ue);

385. (*fstreanpointer)>>ch;

386. f st reanpoi nt er>get | i ne(sVal ue, MAX_STATEMENT_LENGTH, ' "') ;

387. pr ob5=at of (sVal ue);

388. (*fstreanpointer)>>ch;

389. fstreanpoi nter->getline(sVal ue, MAX_STATEMENT_LENGTH, ' ""');

390. cost =at of (sVal ue);

391. (*fstreanpoi nt er)>>sVal ue;

392. (*fstreanpoi nter)>>ch;

393. f st reanpoi nt er->getli ne(sVal ue, MAX_STATEMENT_LENGTH, """);

394. opt i munf rac=at of (sVal ue) ;

395. (*fstreanpoi nter)>>ch;

396. f streanpoi nter->getline(sVal ue, MAX_STATEMENT_LENGTH, ' ""');

397. doubl e I tcost =at of (sVal ue) ;

398. // Now place this data in the appropriate array

399. i f(envl D==2)

400. {

401. [*if(optimnfrac>0.8)

402. {

403. sprintf(szScratch, "ASSI GN Pref Mai nt Act [%] [%]
o%d",int(elemD),int(statelD),int(actionlD));

404. Execut eSt at ement (szScrat ch) ;

405. }*/

406. i f(actionl D==2)

407. {

408. Mai nt Act 2Data[int(elem D)][int(statel D)-1][0] =probl/ 100;

409. Mai nt Act 2Data[int(elem D)][int(statel D)-1][1] =prob2/100;

410. Mai nt Act 2Data[int(elem D)][int(statel D)-1][2] =prob3/100;

411. Mai nt Act 2Data[int(elem D)][int(statel D)-1][3] =prob4/ 100;

412. Mai nt Act 2Data[int(elem D)][int(statel D)-1][4] =prob5/100;

413. /1if(cost>0)

414. Mai nt Act 2Data[int(elem D)][int(statel D)-1][5]=cost;

415. [1if(ltcost>0)

416. /1 Mai nt Act 2Data[int(elem D)][int(statelD)-1][6]=Itcost;

417.

418. el se if(actionl D==1)

419. {

420. Mai nt Act 1Data[int(elem D)][int(statel D)-1][0] =probl/100;

421. Mai nt Act 1Data[int(elem D)][int(statel D)-1][1] =prob2/100;

422. Mai nt Act 1Data[int(elem D)][int(statel D)-1][2] =prob3/100;

423. Mai nt Act 1Data[int(elem D)][int(statel D)-1][3] =prob4/100;

424. Mai nt Act 1Data[int(elem D)][int(statelD)-1][4]=prob5/100;

425, /1if(cost>0)

426. Mai nt Act 1Data[int(elem D)][int(statel D)-1][5]=cost;

427. [1if(ltcost>0)

428. /1 Mai nt Act 1Data[int(elem D)][int(statelD)-1][6] =Itcost;

429. }

430. el se if(actionl D==0)

")

127

431.
432.
433.
434.
435.
436.
437.
438.

439.
440.
441.

442.
443.

444,
445,

'l SEOF(dFil el dentifier))
446.

447 .

448.

data read
449,
450.
451.
452.
453.
454,
455,
456.
457.
458.
459.

% ",i,j,k, TransProbDatal[i][j][k]);
460.

461.
462.
463.

464.

465.
466.
467.
468.
469.
470.
471.
472.

{

TransProbData[int(elem D)]J[int(statel D)-1][0]=probl/100
TransProbData[int(elem D)][int(statel D)-1][1] =prob2/100
TransProbDat a[int(elem D)][int(statel D)-1][2] =prob3/ 100
TransProbData[int(elem D)]J[int(statel D)-1][3]=prob4/100
TransProbData[int(elem D)]J[int(statel D)-1][4]=prob5/100
[1if(ltcost>0)

/1 TransProbData[int(elem D)][int(statelD)-1][5]=ltcost;

(*fstreanpoi nt er)>>sVal ue;

/1skip until beginning of next table is found
whi | e(strcnp(sVal ue, "ACTMODLS") ! =0 &&

(*fstreanpoi nter)>>sVal ue;
b
/I Wite appropriate Stroboscope statenments to transfer the

/linto Stroboscope

/I For TransProbDat a

for(i=0;i<800; ++i)

{

/I Create the 2-d array
sprintf(szScratch,"ARRAY trans__ %l 5 6",i);
Execut eSt at ement (szScrat ch) ;

for(int j=0;j<5;++)

for(int k=0; k<=5; ++k)

{

sprintf(szScratch,"ASSIGN trans__ % % %

Execut eSt at ement (szScr at ch) ;

}

sprintf(szScratch,"ASSI GN TransProbData % trans__ %" ,i,i);
Execut eSt at ement (szScrat ch) ;

1

/1 For Maint Act 1Dat a

for(i=0;i<800; ++i)

{

//create the appropriate 2-d array
sprintf(szScratch,"ARRAY maintl_ % 5 7",i);
Execut eSt at ement (szScrat ch) ;

for(int j=0;]j<5;++)

for(int k=0; k<7; ++k)

128

473. {

474. sprintf(szScratch,"ASSIGN naintl__% % %
%",i,j,k, MaintAct1Data[i][j][K]);

475. Execut eSt at enent (szScr at ch) ;

476. }

477. sprintf(szScratch, "ASSI GN Mai nt Act 1Dat a %
maintl_ %d",i,i);

478. Execut eSt at ement (szScrat ch) ;

479. };

480. /| For Mai nt Act 2Dat a

481. for(i=0;i<800; ++i)

482. {

483. sprintf(szScratch,"ARRAY maint2__ % 5 7",i);

484. Execut eSt at ement (szScrat ch) ;

485. for(int j=0;j<5;++)

486. for(int k=0; k<7; ++k)

487. {

488. sprintf(szScratch,"ASSIGN naint2__ %l % %
%",i,j,k, MaintAct2Datali][j][Kk]);

489. Execut eSt at enent (szScr at ch) ;

490. }

491. sprintf(szScratch, "ASSI GN Mai nt Act 2Dat a %
maint2__ %",i,i);

492, Execut eSt at ement (szScrat ch) ;

493. }s

494. del ete [] TransProbDat a;

495, del ete [] Mai nt Act 1Dat a;

496. del ete [] Mai nt Act 2Dat a;

497. return true;

498. }

499, /1 Counts the nunber of bridges and creates themin
St r oboscope

500. const MaxBri dges=10000;//defi nes the maxi mum nunber of
bri sges supported

501. const Maxl| DLengt h=50;

502. i nt Brcount=0; /' keeps track of the nunber of bridges
created

503. char Brl D[MaxBri dges] [Maxl DLength]; //storest the Bridge
ID s

504. doubl e _stdcall GetBridgel nfo(double dFileldentifier)

505. {

506 i fstreant fstreanpointer=

(i fstreanr)CDoubl eAndl fstreanPtr(dFil eldentifier);

507. i nt position=FPointerArray. ReturnPosition(fstreanpointer);

129

508. /I Check if file has not been opened

509. i f(position==-1)

510. {

511. Print ToStdError("\nNot previously Open Input File. Use
Openl nputFile");

512. St rbMat hEr ror (" ReadDat a", STR_DOMAI N) ;

513. return false

514. };

515. (*fstreanpointer).eatwhite();

516. char sVal ue[MAX_STATEMENT _LENGTH] ;

517. (*fstreanpoi nt er)>>sVal ue;

518. whi | e(strcnp(sVal ue, "BRI DGE") ! =0)

519. (*fstreanpoi nt er)>>sVal ue;

520. whil e(! 1 sECF(dFil el dentifier))

521. {

522. // char tenp[100];

523. char ch;

524. /1 fstreanpoi nter->getline(szScratch, MAX_STATEMENT LENGTH) ;

525. (*fstreanpoi nter)>>ch

526. f streanpoi nter-
>getli ne(szScrat ch, MAX_STATEMENT_LENGTH, " "');

527. strcpy(BrlI D[Brcount], szScratch);

528. Br count ++;

529. (*fstreanpoi nter)>>szScratch

530. whil e(!'l sEOF(dFil el dentifier) &&
(strcnp(szScratch, "BRI DGE") ! =0))

531. (*fstreanpoi nter)>>szScratch

532. }

533. sprintf(szScratch, " ARRAY BR__|I NFO %", Brcount) ;

534. Execut eSt at ement (szScrat ch) ;

535. /[/write the bridge information to Stroboscope

536. for(int i=0;i<Brcount;++i)

537. {

538. sprintf(szScratch,"ASSIGN BR_INFO %d \"%s\"",i,BrlDi]);

539. Execut eSt at ement (szScrat ch) ;

540. }s

541. sprintf(szScratch, " SAVEVALUE Br__Count %", Brcount);

542. Execut eSt at ement (szScrat ch) ;

543. return 1,

544. }

545, /I Extracts the element information fromthe input file

130

546. //Returns 1 if succesful, - if not

547. /| Paraneters: dFileldentifies - the Stroboscope
identifier of the file

548. doubl e _stdcall GetEl enmentlnfo(double dFileldentifier)

549. {

550. const MaxEl enent s=500000;

551. const MaxBri dgel DLt =50;

552. double (*El ermentInfo)[11];

553. El ement I nfo = new doubl e[MaxEl ement s] [11];

554. char (*Bridgel D)[MaxBridgel DLt] = new
char [MaxEl ement s] [MaxBri dgel DLt] ;

555. i nt count =0;

556. i nt pos=0;

557. i fstreant fstreanpointer=
(i fstreanr)CDoubl eAndl fstreanPtr(dFil eldentifier);

558. i nt position=FPointerArray. ReturnPosition(fstreanpointer);

559. //Check if the file is not open

560. i f(position==-1)

561. {

562. PrintToStdError("\nNot previously Open Input File. Use
Openl nputFil e");

563. St rbMat hEr ror (" ReadDat a", STR_DOMAI N) ;

564. return false;

565. };

566. (*fstreanpointer).eatwhite();

567. char sVal ue[MAX_STATEMENT_LENGTH] ;

568. (*fstreanpoi nt er)>>sVal ue;

569. whi |l e(strcnp(sVal ue, "ELEM NSP") ! =0)

570. (*fstreanpoi nt er)>>sVal ue;

571. whil e(! 1 sECF(dFil el dentifier))

572. {

573. doubl e state;

574. /1 doubl e el ement| D, pctstatel, qtystatel, pctstate2, qtystate2;

575. /I doubl e

pctstate3, qtystate3, pctstate4, qgtystated, pctstateb, gtyst ate5;
576. char ch;

577. (*fstreanpoi nter)>>ch
578. fstreanpointer-
>get | i ne(szScrat ch, MAX_STATEMENT_LENGTH, " "');
579. strcpy(Bridgel D[count],szScratch);
580. f streanpoi nter-

>get | i ne(szScrat ch, MAX_STATEMENT_LENGTH, "\ n');

131

581. f streanpoi nter-
>getline(szScratch, MAX_STATEMENT _LENGTH, '\ n');

582. (*fstreanpoi nter)>>ch;
583. f st reanpoi nt er -

>getline(szScratch, MAX_ STATEVENT _LENGTH, """);
584. El ement I nf o[count][0] =at of (szScrat ch);
585. (*fstreanpointer)>>ch;
586. f streanpoi nter-

>getline(szScratch, MAX_ STATEMENT LENGTH, ' "");
587. st at e=at of (szScrat ch);
588. f st reanpoi nt er -

>getline(szScratch, MAX_ STATEMENT_LENGTH, "\ n"');
589. f streanpoi nter-

>getl i ne(szScrat ch, MAX_STATEMENT_LENGTH, "\ n"');
590. f streanpoi nter-

>get | i ne(szScrat ch, MAX_STATEMENT_LENGTH, "\ n');
591. f streanpoi nter-

>getline(szScratch, MAX_STATEMENT _LENGTH, '\ n');
592. f streanpoi nter-

>getline(szScratch, MAX_STATEMENT_LENGTH, '\ n");
593. f streanpoi nter-

>getl i ne(szScrat ch, MAX_STATEMENT_LENGTH, "\ n"');
594. (*fstreanpointer)>>ch;
595. f streanpoi nter-

>getline(szScratch, MAX_ STATEMENT LENGTH, ' "");
596. El ement I nf o[count][1] =at of (szScr at ch) ;
597. (*fstreanpointer)>>ch;
598. f streanpoi nter-

>getline(szScratch, MAX_STATEMENT_LENGTH, """);
599. El ement I nf o[count][2] =at of (szScr at ch);
600. (*fstreanpoi nter)>>ch;
601. f streanpoi nter-

>get | i ne(szScratch, MAX_STATEMENT _LENGTH, ' "");
602. El ement I nf o[count] [3] =at of (szScr at ch) ;
603. (*fstreanpoi nter)>>ch;
604. f streanpoi nter-

>getli ne(szScrat ch, MAX_STATEMENT_LENGTH, """);
605. El ement I nf o[count][4] =at of (szScr at ch);
606. (*fstreanpointer)>>ch;
607. f streanpoi nter-

>get | i ne(szScratch, MAX_STATEMENT _LENGTH, ' "");
608. El ement | nf o[count] [5] =at of (szScrat ch);
609. (*fstreanpoi nter)>>ch;
610. f streanpoi nter-

>get | i ne(szScrat ch, MAX_STATEMENT_LENGTH, " "');
611. El ement | nf o[count] [6] =at of (szScr at ch);

132

612.
613.

(*fstreanpointer)>>ch;
f streanpoi nter-

>getline(szScratch, MAX_STATEMENT _LENGTH, ' "");

614.

615.
616.

El ement I nf o[count][7] =at of (szScrat ch);

(*fstreanpointer)>>ch
f streanpoi nter-

>get | i ne(szScrat ch, MAX_STATEMENT_LENGTH, ' "');

617.

618.
619.

El ement | nf o[count][8] =at of (szScr at ch);

(*fstreanpointer)>>ch
f st reanpoi nt er -

>getline(szScratch, MAX_STATEVENT _LENGTH, """);

620.

621.
622.

El ement I nf o[count][9] =at of (szScrat ch);

(*fstreanpoi nter)>>ch
f streanpoi nter-

>get | i ne('szScrat ch, MAX_STATEMENT _LENGTH, ' "')

623. El ement | nf o[count][10] =at of (szScr at ch) ;

624. count ++;

625. (*fstreanpoi nt er)>>sVal ue;

626. whi l e(strcnp(sVal ue, "ELEM NSP") ! =0 &&
'l sEOF(dFil el dentifier))

627. (*fstreanpoi nt er)>>sVal ue;

628. }

629. sprintf(szScratch,"ARRAY El __I NFO %d 13", count);

630. Execut eSt at enent (szScr at ch) ;

631. for(int i=0;i<count;++i)

632. {

633. for(int j=0;j<11;++j)

634. {

635. sprintf(szScratch,"ASSIGN El _ I NFO %d %
% ",i,j,Elementinfo[i][j])

636. Execut eSt at ement (szScr at ch) ;

637. }

638. sprintf(szScratch,"ASSIGN El __INFO % 11
\"os\"",i,BridgelDi]);

639. Execut eSt at ement (szScrat ch) ;

640. }s

641. del ete []El enentl nfo;

642. del ete []Bridgel D;

643. sprintf(szScratch, "SAVEVALUE El _ Count %", count);

644. Execut eSt at ement (szScrat ch) ;

645. return 1,

133

646. }

647. // Extracts the state information for each el enent type
648. /| Paraneters: The Stroboscope identifier for the input
file
649. /1
650. doubl e _stdcall GCetStateCount(double dFileldentifier)
651. {
652. i nt StateCount[800];
653. i fstreant fstreanpointer=
(i fstreant) CDoubl eAndl fstreanPtr (dFil eldentifier);
654. i nt position=FPointerArray. ReturnPosition(fstreanpointer);
655. i f(position==-1)
656. {
657. Print ToStdError("\nNot previously Open Input File. Use
OpenlnputFile");
658. St r bMat hEr r or (" ReadDat a", STR_DOMAI N) ;
659. return fal se;
660. };
661. (*fstreanpointer).eatwhite();
662. char sVal ue[MAX_STATEMENT_LENGTH] ;
663. (*fstreanpoi nt er)>>sVal ue;
664. whi | e(strcnp(sVal ue, " ELEMDEFS") ! =0)
665. (*fstreanpoi nt er)>>sVal ue;
666. while(!l sEOF(dFil el dentifier))
667. {
668. int ID
669. char ch;
670. [l (*fstreanpoi nter)>>sVal ue;
671. (*fstreanpointer)>>ch;
672. f streanpoi nter-
>get | i ne(szScratch, MAX_STATEMENT _LENGTH, ' "");
673. | D=at of (szScrat ch);
674. fstreanpoi nter->getline(szScratch, MAX_ STATEVMENT_LENGTH) ;
675. fstreanpoi nter->getline(szScratch, MAX_STATEMENT_LENGTH) ;
676. fstreanpoi nter->getline(szScratch, MAX_ STATEMENT_LENGTH) ;
677. fstreanpoi nter->getline(szScratch, MAX_ STATEMENT_LENGTH) ;
678. fstreanpoi nter->getline(szScratch, MAX_STATEMENT_LENGTH) ;
679. fstreanpoi nter->getline(szScratch, MAX_STATEMENT_LENGTH) ;
680. fstreanpoi nter->getline(szScratch, MAX_STATEMENT_LENGTH) ;
681. f streanpoi nt er->getline(szScratch, MAX_STATEMENT_LENGTH) ;
682. fstreanpoi nter->getline(szScratch, MAX_ STATEVENT _LENGTH) ;
683. fstreanpoi nter->getline(szScratch, MAX_ STATEVMENT_LENGTH) ;
684. fstreanpoi nter->getline(szScratch, MAX_STATEMENT_LENGTH) ;
685. fstreanpoi nter->getline(szScratch, MAX_ STATEMENT_LENGTH) ;

134

686. (*fstreanpoi nter)>>ch

687. f streanpoi nter-
>getline(szScratch, MAX_STATEMENT _LENGTH, ' "");
688. St at eCount [| D] =at of (szScr at ch) ;
689. (*fstreanpoi nt er)>>sVal ue;
690. whi |l e(strcnp(sVal ue, "ELEMDEFS") ! =0 &&
'l sEOF(dFil el dentifier))
691. (*fstreanpoi nt er)>>sVal ue;
692. };
693. for(int i=0;i<800; ++i)
694. {
695. sprintf(szScratch,"ASSI GN StateCnt %d
%" ,i, StateCount[i]>0?StateCount[i]:0);
696. Execut eSt at ement (szScrat ch) ;
697. }
698. return 1,
699. }
700. /I Extracts the failure cost information fromthe input file
701. /| Paraneters: dFileldentifier - The Stroboscope
identifier of the input file
702. /I Returns: true if succesful, false otherw se
703. /1
704. doubl e _stdcall GetFail ureCost(double dFileldentifier)
705. {
706. doubl e Fai |l ureCost[800] ={0};
707. i fstreant fstreanpointer=
(i fstreanr)CDoubl eAndl fstreanPtr(dFil eldentifier);
708. i nt position=FPointerArray. ReturnPosition(fstreanpointer);
709. i f(position==-1)
710. {
711. Print ToStdError("\nNot previously Open Input File. Use
Openl nput Fil e");
712. St r bMat hEr ror (" ReadDat a", STR_DOMAI N) ;
713. return false
714. }s
715. (*fstreanpointer).eatwhite();
716. char sVal ue[MAX_STATEMENT_LENGTH] ;
717. (*fstreanpoi nt er)>>sVal ue;
718. /I while(strcnp(sVal ue, " EXPCNDUC") ! =0)
719. whi |l e(strcnp(sVal ue, " CONDUMDL") ! =0 &&
'l sEOF(dFil el dentifier))
720. (*fstreanpoi nt er)>>sVal ue;

135

721. whil e(! 1 sEOCF(dFil el dentifier))

722. {

723. char ch;

724. int 1D

725. /1 (*fstreanpoi nter)>>sVal ue;

726. fstreanpoi nter->getline(szScratch, MAX_ STATEVMENT_LENGTH) ;

727. (*fstreanpoi nter)>>ch

728. f streanpoi nter-
>getline(szScratch, MAX_ STATEMENT LENGTH, ' "");

729. | D=at of (szScr at ch) ;

730. f st reanpoi nt er->getline(szScratch, MAX_STATEMENT_LENGTH) ;

731. fstreanpoi nter->getline(szScratch, MAX_ STATEVENT _LENGTH) ;

732. fstreanpoi nter->getline(szScratch, MAX_ STATEVMENT_LENGTH) ;

733. (*fstreanpoi nter)>>ch

734. f streanpoi nter-
>get | i ne(szScrat ch, MAX_STATEMENT_LENGTH, " "');

735. i f(atof(szScratch)>0)

736. Fai | ureCost [| D] =at of (szScr at ch) ;

737. (*fstreanpoi nt er)>>sVal ue;

738. whi |l e(strcnp(sVal ue, " CONDUMDL") ! =0 &&
I'l sSEOF(dFil el dentifier))

739. (*fstreanpoi nt er)>>sVal ue;

740. }

741. for(int i=0;i<800; ++i)

742. {

743. sprintf(szScratch,"ASSI GN Fai |l r Cost Data %d
% ",i,FailureCost[i]>0?FailureCost[i]:0);

744, Execut eSt at ement (szScrat ch) ;

745. }

746. return 1;

747. }

748. /1 double _stdcall GetPolicylnfo(double dFileldentifier)

749. // Reads the policy information fromthe input file

750. /| Paraneters: dFileldentifier - The file pointer
from whi ch

751. /1 the formatted policy
information is read

752. /1] Pre: dFileldentifier points to an
open Policy file

753. /1 The format of the policy file
is ACTID '"\'t' Action Action Action Action Action

754. /1 The specified action
i nformati on nmust be in actnodls file

755. doubl e _stdcall GetPolicylnfo(double dFileldentifier)

756. {

136

757. i fstreant fstreanpointer=
(i fstreant) CDoubl eAndl f streanPtr (dFil eldentifier);

758. i nt position=FPointerArray. ReturnPosition(fstreanpointer);

759. i f(position==-1)

760. {

761. PrintToStdError("\nNot previously Open Input File. Use
Openl nputFil e");

762. St r bMat hEr ror (" ReadDat a", STR_DOMAI N) ;

763. return fal se

764. };

765. (*fstreanpointer).eatwhite();

766. char ch=(*fstreanpointer). peek();

767. while(!'IseOF(dFileldentifier))

768. {

769. while(ch=="/")

770. {

771. f st reanpoi nt er->getline(szScratch, MAX_STATEMENT_LENGTH) ;

772. fstreanpoi nter->eatwhite();

773. ch=f st reanpoi nt er - >peek();

774. }s

775. int ID, actionl, action2, action3, acti on4, acti on5;

776. (*fstreanpoi nter)>> D>>acti onl>>acti on2>>acti on3>>acti on4>>
actionb;

777. sprintf(szScratch, "ASSI GN Pref Mai nt Act % 0O
%", 1D, actionl);

778. Execut eSt at ement (szScrat ch) ;

779. sprintf(szScratch, "ASSI GN Pref Mai nt Act % 1
%", | D, action2);

780. Execut eSt at ement (szScrat ch) ;

781. sprintf(szScratch, "ASSI GN Pref Mai nt Act % 2
%", | D, action3);

782. Execut eSt at ement (szScrat ch) ;

783. sprintf(szScratch, "ASSI GN Pref Mai nt Act % 3
%", 1D, acti on4);

784. Execut eSt at ement (szScrat ch) ;

785. sprintf(szScratch, "ASSI GN Pref Mai nt Act % 4
%", | D, acti on5);

786. Execut eSt at ement (szScrat ch) ;

787. fstreanpoi nter->eatwhite();

788. ch=f st r eanpoi nt er - >peek() ;

789. };

790. return true;

791. }s

137

APPENDIX F

Vdot Element Level Policies

Unit

Costs
"Bare Concrete Deck” 0
121 0 Do Nothing 89.02
12 11 Add aprotective system
122 0 Do Nothing 0
12 2 1 Repair spalls and delaminations 284.17
12 2 2 Add aprotective system 73.63
12 3 0 Do Nothing 0
12 3 1 Repair spalls and delaminations 307.74
12 3 2 Repair spalls and delaminations and add a protective system on entire deck 129.17
12 4 0 Do Nothing 0
12 4 1 Repair spalls and delaminations 158.01
12 4 2 Repair spalls and delaminations and add a protective system on entire deck 151.23
1250 Do Nothing 0
12 5 1 Repair spalls and delaminations and add/or a protective system on entire deck 242.19
12 5 2 Replace deck 301.5
"Unp Conc Deck/AC Ovl"
131 0 Do Nothing 0
132 0 Do Nothing
13 2 1 Repair potholes and substrate 337.99
13 30 Do Nothing 0
13 3 1 Repair potholes and substrate 180.3
13 3 2 Replace overlay and repair substrate 226.04
134 0 Do Nothing 0
13 4 1 Repair potholes and substrate 96.55
13 4 2 Repair substrate and replace overlay 186.43
135 0 Do Nothing 0
13 5 1 Repair substrate and replace overlay 67.27
13 5 2 Replace deck 3311
"P Conc Deck/Rigid Ov"
22 1 0 Do Nothing 0

138

22 2 0 Do Nothing 0
22 21 Repair spalls and delaminations 29.82
22 30 Do Nothing 0
22 3 1 Repair spalls and delaminations 68.89
22 4 0 Do Nothing 0
22 4 1 Repair spalls and delaminations 95.58
22 4 2 Replace overlay 115.39
22 50 Do Nothing 0
22 51 Replace overlay 80.73
22 5 2 Replace deck 346.6
"Conc Deck/Coatd Bars'
261 0 Do Nothing 0
26 11 Add aprotective system 180
26 2 0 Do Nothing 0
26 2 1 Repair spalls and delaminations 52.53
26 2 2 Add aprotective system 180
26 3 0 Do Nothing 0
26 3 1 Repair spalls and delaminations 30.68
26 3 2 Repair spalls and delaminations and add a protective system on entire deck 79.65
26 4 0 Do Nothing 0
26 4 1 Repair spalls and delaminations 83.96
26 4 2 Repair spalls and delaminations and add a protective system on entire deck 113.77
26 50 Do Nothing 0
26 5 1 Repair spalls and delaminations and add/or a protective system on entire deck 108.28
26 5 2 Replace deck 187.62
"P/S Conc Closed Web/Box Girder"
104 1 0 Do Nothing 0
328.08
104 2 0 Do Nothing 0
104 2 1 Seal cracks and minor patching 82.02
328.08
104 3 0 Do Nothing 0
104 3 1 Clean steel and patch (and/or seal) 164.04
328.08

139

104 4 0 Do Nothing 0
104 4 1 Rehab unit 350
104 4 2 Replace unit 328.08
"Unpainted Steel Open Girder/Beam"
106 1 0 Do Nothing 0
108.27
902.23
106 2 0 Do Nothing 0
106 2 1 Clean and paint 108.27
110
106 3 0 Do Nothing 0
106 3 1 Clean and paint 108.27
1000
106 4 0 Do Nothing 0
106 4 1 Rehab unit 108.27
106 4 2 Replace unit 1246.72
"Painted Steel Open Girder/Beam”
107 1 0 Do Nothing 0
107 1 1 Surface clean 215.28
1000
107 2 0 Do Nothing 0
107 2 1 Surface clean 215.28
107 2 2 Clean and paint 220
107 3 0 Do Nothing 0
107 3 1 Spot blast, clean, and paint 215.28
220
107 4 0 Do Nothing 0
107 4 1 Spot blast, clean, and paint 215.28
107 4 2 Replace paint system 500
107 5 0 Do Nothing 0
107 5 1 Rehab unit 215.28
107 5 2 Replace unit 1500
"P/S Conc Open Girder/Beam"
109 1 0 Do Nathing 0
328.08

140

109 2 0 Do Nothing 0
109 2 1 Seal cracks and minor patching 82.02
328.08
109 3 0 Do Nathing 0
109 3 1 Clean steel and patch (and/or seal) 164.04
328.08
109 4 0 Do Nothing 0
109 4 1 Rehab unit 350
109 4 2 Replace unit 328.08
"Reinforced Conc Open Girder/Beam”
110 1 0 Do Nothing 0
328.08
110 2 0 Do Nothing 0
110 2 1 Seal cracks and minor patching 82.02
328.08
110 3 0 Do Nathing 0
110 3 1 Clean rebar and patch (and/or seal) 164.04
328.08
110 4 0 Do Nothing 0
110 4 1 Rehab unit 350
110 4 2 Replace unit 328.08
"Painted Steel Column or Pile Extension"
202 1 0 Do Nothing 0
202 1 1 Surface clean 275
2000
202 2 0 Do Nothing 0
202 2 1 Surface clean 275
202 2 2 Clean and paint 280
202 3 0 Do Nothing 0
202 3 1 Spot blast, clean, and paint 275
280
202 4 0 Do Nothing 0
202 4 1 Spot blast, clean, and paint 275
202 4 2 Replace paint system 500

141

202 5 0 Do Nothing 0
202 5 1 Rehab unit 275
202 5 2 Replace unit 1000
"Reinforced Conc Column or Pile Extension"
205 1 0 Do Nothing 0
2000
205 2 0 Do Nothing 0
205 2 1 Seal cracks and minor patching 500
2000
205 3 0 Do Nothing 0
205 3 1 Clean rebar and patch (and/or seal) 750
2000
205 4 0 Do Nothing 0
205 4 1 Rehab unit 1000
205 4 2 Replace unit 2000
"Reinforced Conc Pier Wall"
210 1 0 Do Nothing 0
9742.78
210 2 0 Do Nothing 0
210 2 1 Seal cracks and minor patching 1075.23
9742.78
210 3 0 Do Nothing 0
210 3 1 Clean rebar and patch (and/or seal) 1552.17
9742.78
210 4 0 Do Nothing 0
210 4 1 Rehab unit 3857.05
210 4 2 Replace unit 9742.78
"Reinforced Conc Abutment”
215 1 0 Do Nothing 0
2560.17
215 2 0 Do Nothing 0
215 2 1 Seal cracks and minor patching 330.81
2560.17
215 3 0 Do Nothing 0

142

215 3 1 Clean rebar and patch (and/or seal) 767.62
2560.17
215 4 0 Do Nothing 0
215 4 1 Rehab unit 1700
215 4 2 Replace unit 2560.17
"Reinforced Conc Cap"
234 1 0 Do Nothing 0
328.08
234 2 0 Do Nothing 0
234 2 1 Seal cracks and minor patching 82.02
328.08
234 3 0 Do Nothing 0
234 3 1 Clean rebar and patch (and/or seal) 164.04
328.08
234 4 0 Do Nothing 0
234 4 1 Rehab unit 350
234 4 2 Replace unit 328.08
"Timber Cap"
235 1 0 Do Nothing 0
328.08
235 2 0 Do Nothing 0
235 2 1 Rehab and/or protect unit 16.4
328.08
235 3 0 Do Nothing 0
235 3 1 Rehab unit 164.04
235 3 2 Replace unit 328.08
235 4 0 Do Nothing 0
235 4 1 Rehab unit 350
235 4 2 Replace unit 328.08
"Pourable Joint Seal"
301 1 0 Do Nothing 0
196.85
301 2 0 Do Nothing 0
301 2 1 Clean joint and replace seal 65.62
196.85

143

301 3 0 Do Nothing 0
301 3 1 Clean joint, patch spalls, and replace seal 114.83
"Compression Joint Seal"
302 1 0 Do Nothing 0
328.08
302 2 0 Do Nothing 0
302 2 1 Patch/remove and reseal/clean joint 82.02
328.08
302 3 0 Do Nothing 0
302 3 1 Replace gland and/or patch spalls 147.64
302 3 2 Replace joint 328.08
" Assembly Joint/Seal (modular)”
303 1 0 Do Nothing 0
1500
303 2 0 Do Nothing 0
303 2 1 Rehab unit 328.08
1500
303 3 0 Do Nothing 0
303 3 1 Rehab unit 656.17
303 3 2 Replace unit 1500
"Open Expansion Joint"
304 1 0 Do Nothing 0
196.85
304 2 0 Do Nothing 0
304 2 1 Rehab unit 82.02
196.85
304 3 0 Do Nothing 0
304 3 1 Rehab unit 147.64
304 3 2 Replace unit 196.85
"Elastomeric Bearing"
310 1 0 Do Nothing 0
325
310 2 0 Do Nothing 0
310 2 1 Reset bearings 75

144

325

310 3 0 Do Nothing 0
310 3 1 Reset bearings 350
310 3 2 Replace unit and reset girders 325
"Moveable Bearing (roller, sliding, etc.)" 0
311 1 0 Do Nothing 150
400
311 2 0 Do Nothing 0
311 2 1 Clean and paint or reset bearings and/or rehab supports 150
200
311 3 0 Do Nothing 0
311 3 1 Rehab supports or bearings 150
311 3 2 Replace unit 250
"Enclosed/Conceal ed Bearing"
313 1 0 Do Nothing 0
150
400
313 2 0 Do Nothing 0
313 2 1 Clean and paint or reset bearings and/or rehab supports 150
200
313 3 0 Do Nothing 0
313 3 1 Rehab supports or bearings 150
313 3 2 Replace unit 250
"Reinforced Conc Approach Slab w/ or w/o AC Ovly"
321 1 0 Do Nothing 0
575
1500
321 2 0 Do Nothing 0
321 2 1 Perform mudjacking operations 575
750
321 3 0 Do Nothing 0
321 3 1 Place overlay 575
321 3 2 Replace unit 750
321 4 0 Do Nothing 0

145

321 4 1 Replace unit 575
1000
"Metal Bridge Railing - Uncoated"
330 1 0 Do Nothing 0
16.4
164.04
330 2 0 Do Nothing 0
330 2 1 Clean and restore coating 16.4
50
330 3 0 Do Nothing 0
330 3 1 Clean and restore coating 16.4
330 3 2 Replace unit 75
330 4 0 Do Nothing 0
330 4 1 Rehab unit 16.4
330 4 2 Replace unit 100
"Reinforced Conc Bridge Railing"
331 1 0 Do Nothing 0
328.08
331 2 0 Do Nothing
331 2 1 Seal cracks, minor patching 32.81
328.08
331 3 0 Do Nothing 0
331 3 1 Clean rebar and patch (and/or seal) 82.02
328.08
0
331 4 0 Do Nothing 0
331 4 1 Rehab unit 164.04
331 4 2 Replace unit 328.08
"Other Bridge Railing"
333 1 0 Do Nothing 0
350
333 2 0 Do Nothing 0
333 2 1 Rehab unit 62.04
350
333 3 0 Do Nothing 0
333 3 1 Rehab unit 164.04

146

333 3 2 Replace unit 350
"Metal Bridge Railing - Coated"
334 1 0 Do Nothing 0
16.4
164.04
334 2 0 Do Nothing 0
334 2 1 Clean and coat 16.4
25
334 3 0 Do Nothing 0
334 3 1 Clean and coat 16.4
50
334 4 0 Do Nothing 0
334 4 1 Rehab unit 16.4
334 4 2 Replace unit 100
334 5 0 Do Nothing
334 5 1 Rehab unit
334 5 2 Replace unit

147

APPENDIX G
Functions Provided By DII

Function Name

Purpose/Use

OpenlnputFile()

Opens afile for reading data from it. Requires the name of the file
to be opened as a parameter. Returns a Stroboscope handle

(pointer) for extracting the data from the file

CloselnputFile()

Closes afile which has been opened for reading. Requires the

Stroboscope handle of the open file as a parameter

Checks if the end of file has been reached while reading the input

ISEOF() _
file
Reads the PONTIS element data definitions from the specified
file and imports this data to Stroboscope. Assumes that the input
ReadElementData() | _
file has been opened and the file uses PONTIS Data I nterchange
(PDI) format.
_ Extracts the bridge network information from the specified file.
GetBridgelnfo()

Assumes that the file has been opened and it uses PDI format.

GetElementinfo()

Extracts the individual element condition information from the
inspection reports. Assumes that the input file has been opened

and uses PDI format for storing information

GetStateCount()

Extracts the number of condition states defined for each element
definition

GetFailureCost()

Extracts the failure cost information for the element condition
states

GetPolicylnfo()

Extracts the element level policies to be implemented in the
network from the specified file and imports this information to the
model. Assumes that the file has been opened before and the
format metches the format of the Policy Analysis guidelines

specified.

148

APPENDIX H

Listing Of Policy AnalysisFile

/| "Bare Concrete Deck"
1200021

/ "Unp Conc Deck/AC OvI "
0021

Conc Deck/ AC Ovl y"
0021

Conc Deck/ Thin Ovl"
0011

Conc Deck/Rigid Ov"
0011

|/ "Conc Deck/ Coatd Bars"
2600021

/ "Conc Deck/ Cat hodi c"
2701211

/ "Steel Deck/Open Gid"
2800221

/ "Steel Deck/Conc Gid"
29 00111

/ "Steel Deck - Corrugated/ Orthotropic/Etc."
3000211

[/ "Tinber Deck - Bare"

~~
opgpoUvoToO

3100100

["Tinmber Deck - w AC Overl ay"

3201100

["Concrete Slab - Bare"

3801211

/ "Concrete Slab - Unprotected w AC Overl ay"
3900101

/ "Concrete Slab - Protected w AC Overl ay"
4000111

/ "Concrete Slab - Protected w Thin Overl ay"
4400011

["Concrete Slab - Protected w Rigid Overlay”
48 00011

/ "Concrete Slab - Protected w Coated Bars"
5201211

/ "Concrete Slab - Protected w Cathodic Systent
5301211

/ " Ti nber Sl ab"

5400100

/["Tinmber Slab - w AC Overl ay"

56 00100

/ "Reinforced Concrete Sidewal k"

92 00000

[/ "Ti mber Sidewal k"

9400000

/ "Defines those open grid steel sidewal ks protected”

149

98 00000

/ "Unpainted Steel Cl osed Wb/ Box G rder”
10111110

/["Painted Steel C osed Web/Box G rder”
10211111

/ "Alum num C osed G rder"

10300000

/["PI'S Conc Closed Web/Box G rder"
10400120

/ "Reinforced Concrete C osed Wbs/Box G rder"
10501120

/ "Unpainted Steel Open G rder/Beant

106 00110

/ "Painted Steel Open G rder/Beant

107 00021

/ "P/'S Conc Open G rder/ Beant
10900120

/ "Reinforced Conc Open G rder/ Beant
11000110

/["Tinber Open G rder/Beant

111 01120

/ "Unpainted Steel Stringer"
11211110

/ "Painted Steel Stringer"

11311111

/ "P/I'S Conc Stringer"

11501120

/ "Reinforced Conc Stringer"

116 0 11 2 0

["Tinber Stringer"

117 01120

/ "Unpainted Steel Bottom Chord Thru Truss"
12011110

/ "Painted Steel Bottom Chord Thru Truss"
12111111

/ "Unpainted Steel Thru Truss (excl. bottomchord)"
12511110

/ "Painted Steel Thru Truss (excl. bottom chord)"”
126 1 1111

/ "Unpainted Steel Deck Truss"
13011110

/["Painted Steel Deck Truss"
13111111

["Tinber Truss/Arch"

13501120

/ "Unpainted Steel Arch"

14011110

/["Painted Steel Arch”

141 11111

/["PI'S Conc Arch”

143 01120

150

/ "R/ Conc Arch"

144 01120

/ "OQther Arch"

14501120

/ "Cable - Uncoated (not enbedded in concrete)"
146 1 111 0

/ "M sc Cable Coated"

147 11111

/ "Unpainted Steel Floor Beant
15111110

/ "Painted Steel Floor Beant

15211111

/ "PI'S Conc Fl oor Beant

154 01120

/ "Reinforced Conc Fl oor Beant

15501120

[/ "Tinber Floor Beant

156 01120

/ "Unpainted Steel Pin and/or Pin and Hanger Assenbly"
16011110

/ "Painted Steel Pin and/or Pin and Hanger Assenbly"
16111111

/ "Unpainted Steel Columm or Pile Extension"
20011110

/ "Painted Steel Columm or Pile Extension"
20200021

/ "PI'S Conc Colum or Pile Extension"
20401110

/ "Reinforced Conc Colunn or Pile Extension"
20600110

[/ "Tinber Colum or Pile Extension"
206001110

/ "Reinforced Conc Pier Vall"

21000110

[/ "Qther Material Pier Vall"

211 01110

/ " Reinforced Conc Abutnent”

21500110

[" Tinmber Abutnent”

216 01110

["OQther Material Abutnent”

21701110

/ "Reinforced Conc Submerged Pile Cap/Footing"
22001110

/ "Unpainted Steel Submerged Pile"
22511110

/["PI'S Conc Subnerged Pile"

226 01110

/ "Rei nforced Conc Subnerged Pile"

227 01110

[/ "Tinber Subnerged Pile"

151

22801110

/ "Unpainted Steel Cap"
23011110

/ "Painted Steel Cap"
23111111

!/ "PI'S Conc Cap"

23301120

/ "Rei nforced Conc Cap"
23400110

[/ "Tinber Cap"

23 00110

/ "Unpainted Steel Culvert"
24001110

/ "Reinforced Concrete Cul vert"
241 01110

["Tinber Culvert"

242 01110

["Other Culvert"

243 01110

/ "Protected Sl ope"

286 00000

[/ "Unprotected Sl ope"

286 0000O

/ "Reinforced Concrete Wngwal | s"
295 0000 O

[/ "Ti mber Wngwalls"

296 0 0 00O

["Qther Material Wngwalls"
297 0 0 00O

/["Strip Seal Expansion Joint"
30001200

[/ "Pourable Joint Seal"
30101200

/ " Conpression Joint Seal"
30201200

/["Assenbly Joint/Seal (nodular)"
30301200

/["Open Expansion Joint"
30401200

/ "El astomeric Bearing"
31000200

/ "Moveabl e Bearing (roller, sliding, etc.)"
31100100

/ "Encl osed/ Conceal ed Beari ng"
31200100

/ "Fixed Bearing"
31300100

/ "Pot Bearing"

31400100

/ "Di sk Bearing"

31500100

152

/["P/'S Concrete Approach Slab w or w o/ AC Ovly"
32000110

/ "Reinforced Conc Approach Slab w or wo AC Ovly"
32100010

/ "Metal Bridge Railing - Uncoated"
33000110

/ "Reinforced Conc Bridge Railing"
33100010

[/ "Tinber Bridge Railing"
33201100

["OQther Bridge Railing"
33300100

/ "Metal Bridge Railing - Coated"
33400012

/ "Steel Fatigue SnFl ag”

356 0 00 0O

/ "Pack Rust Smart Fl ag"

357 00000

/ "Deck Cracking SnFl ag"
35800000

/["Soffit of Concrete Deck or Slab"
359 00000

/ "Settl enment SnFlag"
36000000

/ "Scour Smart Flag"

361 00000

["Traf Inmpact SnFl ag"

362 00000

/ "Section Loss SnFl ag"
36300000

["Wilities"

70000000

/ "Drains Smart Fl ag"
70200000

/ "Lighting"

70300000

/ "Roadway Over Culvert™
70400000

/ "Concrete Deck Overhang Under-si de"
706 000 0O

/["Soffit with Stay In Place Forns"
707 00000

["Concrete slab Covered with Fill"
73800000

153

APPENDIX |
Calculation of Maintainability I ndex

MI=ADTS+ STTS+ DCTS+ SCTS+ SBCTS+ PCTS+ RCTS+ DATS+ TCCTS+
3RTS+ PTS+ FPTS

Where

ADTSis Annual Daily Traffic Total Score and is given by

ADTS= ADT/500 (Annual Daily Traffic obtained from survey information)

STTS s Superstructure Type Total Score and is given by

STTS = Monolithic Score + Pin/Link Score + Fracture Critical Score + Truss Score +
Timber Deck Score

Monolithic Score u
;

Pin/Link Score :) .. .
. t - 15if condition exists
Fracture Critical Scorey = _
7 Oif not
Truss Score

i
Timber Deck Score b

DCTSis Deck Condition Total Score and is given by

DCTS = Deck Rating* 3 (Deck Rating is obtained from NBI inspection data)
SCTS s Superstructure Condition Total Score and is given by

SCTS= Superstructure Rating* 3 (Super structure Rating obtained from NBI)

SBCTS is Substructure Condition Total Score and is given by
SBCTS= Substructure Condition Rating* 3 (Substructure rating obtained from NBI data)

PCTSis P/C Score (Paint & Scour) and is given by

PCTS= Scour Score + Paint Score + Joint Score + Wearing Surface Score
i 10if Scour Rating =3

Scour Score = : Oif Scour Rating >=5
}' 5 otherwise

154

Paint Score U 110if Rating=C
Joint Score ;',: : 5if Rating =P
Wearing Surface Scorey | O otherwise

RCTS is Repair Cost Total Score and is given by

RCTS= -Repair Cost/10,000 (Repair Cost is estimated repair cost

DATSis Deck Area Total Score and is given by

DATS= Existing Length* Existing Width/1000

TCCTSis Traffic Control Conditions Total Score and is given by
i 5if Traffic Control Conditions= G

TCCTS = |l 3if Traffic Control Conditions= A
',1' Oif Traffic Control Conditions= P

3RTSis 3R Total Score and is given by

i 5if meets 3R condition
3RTCS = % 3if does not meet traffic condition but can be converted to 3R
1 0if cannot be converted to 3R

PTSis Posting Total Score and is given by
i 5if PostingisN

PTS = |l 3if PostingisY and Srengthening Candidate isY
',1' O otherwise

FPTSis Future Plans Total Score and is given by

i 5if Replacement Planned isN
FPTS=% 3if Re placement Planned isP
1 0if Re placement Planneed isU

155

VITA

Srinath Devulapalli was born in Machilipatnam, India on July 3% 1979. He
received his primary and secondary education at Aurobindo High school in Hyderabad.
After graduating from high school in 1996, he started to pursue his baccalaureate degree
in civil engineering at the Indian Institute of Technology, Madras. During the course of
his undergraduate education he became interested in ssimulation and project management
aspects of construction. After graduating in 2000, he chose to pursue his academic
interests at VirginiaTech and worked towards his M.S degree. At the time of completing
his thesis, he hopes to continue his academic endeavor by pursuing a master’s degree in

computer science.

156

