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ABSTRACT 

To automate the multiresolution procedure of Kuhl and 
Wilson for modeling and simulating arrival processes that 
exhibit long-term trends and nested periodic effects (such 
as daily, weekly, and monthly cycles), we present a statis-
tical-estimation method that involves the following steps at 
each resolution level corresponding to a basic cycle: (a) 
transforming the cumulative relative frequency of arrivals 
within the cycle (for example, the percentage of all arrivals 
as a function of the day of the week within the weekly cy-
cle) to obtain a statistical model with normal, constant-
variance responses; (b) fitting a specially formulated poly-
nomial to the transformed responses; (c) performing a like-
lihood ratio test to determine the degree of the fitted poly-
nomial; and (d) fitting a polynomial of the degree 
determined in (c) to the original (untransformed) re-
sponses.  An example demonstrates web-based software 
that implements this flexible approach to handling complex 
arrival processes.  

1 INTRODUCTION 

Time-varying arrival processes are routinely encountered 
in practical applications of industrial and systems engineer-
ing techniques.  The following are typical situations in 
which the arrival rate of relevant entities depends strongly 
on time: demands for seasonal products such as lawn 
mowers; arrivals of patrons at an amusement park; arrivals 
of patients at an emergency room; and the arrivals of tele-
phone calls at a customer service center.  To analyze or 
improve system operation in such situations, discrete-event 
stochastic simulation is often the technique of choice. Con-
sequently, high-fidelity probabilistic input models are often 
needed to perform meaningful simulation experiments.  In 
the past, nonhomogeneous Poisson processes (NHPPs) 
have been used successfully to model complex time-
dependent arrival processes (Kuhl, Damerdji, and Wilson 
1997; Kuhl and Wilson 2000, 2001). 
 
An NHPP {N(t): t ≥ 0} is a counting process such that 

N(t) is the number of arrivals in the time interval (0, t]; and 
λ(t), the instantaneous arrival rate at time t, is a nonnega-
tive function of time satisfying the usual Poisson postulates 
so that the corresponding (cumulative) mean value func-
tion is given by 
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The rate or mean value function of the NHPP {N(t), t ≥ 0} 
completely characterizes the probabilistic behavior of the 
process (Çinlar 1975).  
 Both parametric and nonparametric methods have 
been developed to estimate the rate or mean value function 
of the process {N(t) : t ≥ 0} from observed data.  This pa-
per focuses on the nonparametric “multiresolution” estima-
tion method of Kuhl, Damerdji, and Wilson (1997) and 
Kuhl and Wilson (2001), where the target arrival process 
may exhibit a long-term trend as well as nested cyclic ef-
fects that do not necessarily possess the symmetry of sinu-
soidal oscillations.  For example, in developing a large-
scale simulation model of the organ-procurement and pa-
tient-registration processes for liver transplants in the 
United States, Pritsker et. al (1995) found that the arrival 
streams of liver donors and liver patients have pronounced 
long-term trends as well as asymmetric cyclic effects that 
depend on the time of year, the day of the week, and the 
hour of the day; see also Pritsker (1998). 

In the multiresolution procedure of Kuhl, Damerdji, 
and Wilson (1997) and Kuhl and Wilson (2001), we begin 
at Resolution 0 by estimating any long-term trend that is 
present in the overall observation interval [0, S].  If p cy-
clic effects are also present, then we evaluate the arrival 
process on the scale of the largest cycle (that is, the cycle 
of length  which is associated with Resolution 1) to es-
timate the major periodic features of the arrival process; 
and we assume  is an integer so that the overall ob-
servation interval consists of complete Resolution-1 cycles. 
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Then we evaluate the effects corresponding to cycles 
of progressively smaller lengths that are nested within each 
other so that at Resolution i (for i = 1, 2, …, p – 1), the as-
sociated cycle length  consists of an integral number of 
cycles of length  which are associated with Resolution 
i + 1.  Thus the cycle length  at Resolution p is the 
smallest observation subinterval over which we seek to 
model accurately the periodic behavior of the target arrival 
process.  Finally we construct the estimated mean value 
function from the estimates of all the cyclic effects as well 
as the long-term trend effect.  

ib
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Kuhl and Wilson (2001) develop a theoretical basis for 
the multiresolution procedure, but they do not provide a 
specific implementation of the procedure that can be read-
ily applied to sample data. In this paper, we develop a 
completely automated implementation of the multiresolu-
tion procedure that can be executed over the web, enabling 
users to fit their arrival processes and then generate an in-
dependent realization of the fitted process interactively 
without the need for downloading and installing the mul-
tiresolution software.   

The rest of this paper is organized as follows.  For 
completeness, in §2 we summarize the mathematical for-
mulation of the multiresolution procedure.  In §3 we pre-
sent the automated fitting procedure, which involves the 
following steps at each resolution level associated with a 
basic cycle:  

(a) making a variance stabilizing transformation (spe-
cifically, the composite of the arc-sine and square-
root transformations) of the cumulative relative 
frequency of arrivals within the cycle so as to ob-
tain normally distributed responses with a con-
stant variance;  

(b) fitting to the transformed arrival data a polyno-
mial that has been specially formulated to ensure 
it has the properties of a cumulative distribution 
function (c.d.f.);  

(c) performing a likelihood ratio test to determine the 
appropriate degree of the fitted polynomial in step 
(b); and   

(d) fitting to the original (untransformed) arrival data 
a polynomial of the degree determined in step (c).  

In §4 we present an example that illustrates the automated 
multiresolution procedure and gives some indication of the 
flexibility of this method.  In §5 we demonstrate our web-
based input modeling software by applying it to the exam-
ple detailed in §4.  Finally conclusions and recommenda-
tions for future work are summarized in §6. 

2 SUMMARY OF THE MULTIRESOLUTION 
ESTIMATION PROCEDURE 

The mean value function is fit to data observed over the 
time interval [0, S], where the data may contain a long-
term trend or p cyclic effects having periods of length bi  ( i 
= 1, 2, ..., p), respectively.  This method can be applied to 
arrival processes satisfying two key assumptions that are 
formally stated below. As an aid in explaining the signifi-
cance of these assumptions, we consider a simple example 
of an arrival process whose instantaneous arrival rate has a 
long-term trend over a time horizon of 28 days as well as 
weekly and daily cyclic effects—that is, periodic rate com-
ponents with periods of 1 week and 1 day. 
 Assumption 1. There are p distinct cycle lengths (pe-
riods) b1 > b2 > ··· > bp such that bi is an integral multiple of 
bi+1 for i = 1, 2, … , p – 1.  Moreover, we take the time ho-
rizon [0, S] such that S is an integral multiple of b1; and we 
let b0 ≡ S. 
 In our example, we take 1 day as the unit of time so 
that we have an overall time horizon of S = b0 = 28 days; 
and within each (weekly) cycle of length b1 = 7 days, there 
are (daily) cycles of length b2 = 1 day so that Assumption 1 
is satisfied.  Notice that Assumption 1 requires knowledge 
of the cycle lengths of all the cyclic effects observed in the 
arrival process; and in our experience, such information is 
often available in practical applications.  
 Assumption 2. Within the jth cycle [(  of 
length b

],)1 ii jbbj −

)(si

i (for i = 1, 2, ..., p), the arrival rate at time t is pro-
portional to a single baseline function λ , where 
s = t – (j –1) bi  is the offset from the beginning of the cy-
cle so that we have , 

and 

)(()( , jtt iji λαλ −−= ())1 , sb ijii λα=

{ }ibS /,…i ,2,1:, AA =α  are the constants of propor-
tionality for all cycles of length bi. 
 In our example, Assumption 2 requires that the rate of 
arrivals within each day should follow the same general 
profile as a function of the time of day; but in different 
days within each weekly cycle, the daily arrival rates may 
have different scaling factors { }7/,,2,1: 21,2 == bb…AAα  
to account for different numbers of expected arrivals on 
different days of the week. Similarly, Assumption 2 re-
quires that the rate of arrivals within each week should fol-
low the same general profile as a function of the time of 
the week; but in different weeks within the overall time ho-
rizon of 28 days, th  weekly arrival rates may ave differ-
ent scaling factors 

e h
{ }4/,,2,1 10 =bb…:,1 =AAα  to account 

for different numbers of expected arrivals on different 
weeks in the time horizon.  In §4 we elaborate this example 
to illustrate not only the probabilistic structure of NHPPs 
satisfying Assumptions 1 and 2 but also the general ap-
proach we take to modeling and estimation of such arrival 
processes. 
 It is easy to see that Assumption 2 holds if and only if 
the target arrival process has the following property: within 
each cycle [(j–1)bi, jbi] of length bi (i = 1, …, p), the 
buildup to time t = (j–1)bi + s (where s = t mod bi) of the 
cumulative fraction [µ(t) – µ((j–1)bi)]/[µ(jbi) – µ((j–1)bi)] 
of the expected number of arrivals in the cycle is described 
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by the same function Ri(s) of the time s that has elapsed 
since the beginning of the cycle. Thus to estimate the mean 
value function )(tµ , we first need to estimate the function  
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 At each resolution level i, we must obtain an estimator 

of the function  with the following properties: 

the initial value (0) = R
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p

i (0) = 0; the final value (biR̂

], ib
i) = 

Ri (bi
 ) = 1; and the derivative  for  and 

.  At resolution level 0, we fit a mono-

tonically increasing function , to the points 
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 At resolution level i for , we con-

struct a monotonically increasing function  to esti-
mate the cumulative percentage of arrivals that are ex-
pected to occur during the first s time units of the 
associated cycle of length b , where .  That is, 

for resolution level i we fit the function  to the points 
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for all .   ],0[ ibs∈
 At resolution p, we let { })(,,2,1: SNkk …=τ  de-
note the observed arrival times; and we define 

for k = 1, …, N(S).  Let  
denote the ordered arrival times within the level-p cycle 

.  We then fit a monotonically increasing function 

 to the points 
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subject to the usual boundary conditions that and 

. The final estimate 1)(ˆ =pp bR µ  of the mean value 
function is computed as follows: 
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where the functions { }0,1,,1,:)(ˆ …−= ppitQi  are de-
fined iteratively by  
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where the interval containing t is within each resolution is 
given by the index,  
 

tij , is the unique integer j such that . ii jbtbj <≤− )1(
 
 Although the multiresolution method proposed by 
Kuhl and Wilson (2001) does not require a specific func-
tional form for the estimator of the function at 
each level of resolution, in the next section we specify a 
complete methodology for implementing the multiresolu-
tion procedure in general applications.   

)(ˆ sRi )(sRi

3 AUTOMATED IMPLEMENTATION OF  
THE MULTIRESOLUTION PROCEDURE 

3.1 Selecting the Functional Form for Each  )(ˆ ⋅iR

The multiresolution procedure requires that each fitted 
function  is monotone and that (0) = 0 and (b)(ˆ sRi iR̂ iR̂ i) 
= 1 for i = 0, 1, …, p.  Therefore, we utilized a special form 
of a polynomial that meets these requirements—namely, a 
degree r polynomial of the form 
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for  and  = 0, 1, 2, …, p.  We constrain the co-

efficients { }
],0[ ibs∈

k

i

,1 1,: −= kk …β  in (3) to yield  for 
all .  This polynomial automatically satisfies the 
required boundary conditions.  Further, the simplest proc-
ess we can model is the one with a constant arrival rate 
over the interval [0, b

0)(ˆ >′ sRi
],0[ ibs ∈

i], which corresponds to the simplest 
form of our model (3) wherein we take r = 1 (that is, a lin-
ear mean value function). 

To estimate the function (1) by a fitted function  
of the form (3) at each resolution level i, we must determine 
the appropriate degree r of the polynomial (3) and then esti-
mate the associated polynomial coefficients β

)(ˆ sRi

1, β2, …, βr–1.  
The standard approach for solving such a problem is to per-
form regression analysis using a forward selection or back-
ward elimination procedure (Draper and Smith 1998).   
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In a forward selection procedure, we fit polynomials 
of degree r – 1 and r to the sample data; then we compute 
the mean square error for each fit and perform an appropri-
ate likelihood ratio test to determine if significant im-
provement in the fit is achieved by increasing the degree of 
the fitted polynomial from r – 1 to r.  If a significantly bet-
ter fit is obtained with the degree-r polynomial, then we 
continue the fitting procedure by incrementing the value of 
r and repeating the likelihood ratio test; otherwise, we ter-
minate the fitting  procedure, delivering r – 1 as the degree 
of the fitted polynomial. 
 However, the assumptions of classical regression 
analysis require observations of a dependent variable that 
are independent and normal with a constant variance so 
that the corresponding residuals are independent and iden-
tically distributed normal random variables.  In the case of 
fitting arrival data obtained from an NHPP that satisfies 
Assumptions 1 and 2, the observed cumulative relative fre-
quencies within each basic cycle are neither normal nor in-
dependent; moreover, such responses do not possess a con-
stant variance.  Therefore, a variance stabilizing 
transformation must be applied to the data before we try to 
use standard statistical procedures to determine an appro-
priate degree r for the function . )(ˆ sRi

3.2 Likelihood Ratio Test for Determining  
the Degree of Each  )(sRiˆ

At each resolution level i, we let 11 −≡ +iii bbm  for 
 and m  for i = p; and we seek to fit a 

polynomial function (s) of the form (3) with appropriate 
degree r to a set of points having the general form 

10 −≤≤ pi )(SNi ≡

iR̂
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as defined in §2.  For example if the resolution level i is in 
the range , then at the jth point in (4) we take 
the abscissa Z  and the ordinate W  

for j = 1, …, m .  Since W  is always a proportion, we 
exploit the variance stabilizing transformation 
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see pp. 231–238 of Box, Hunter, and Hunter (1978) and 
pp. 291–294 of Draper and Smith (1998).   

Corresponding to the dependent variable Y  defined 
by (5), we define the independent variable  

j
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and in terms of the vector of regression coefficients 
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for the degree-r polynomial 
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we postulate the following statistical model for Y as a 

function of , 
j

jX
 
 ( ) ....,,2,1for; ijrjrj mjXY =+Γ= εC  (9) 
 
If (9) is valid, then the transformation (5) yields approxi-
mately normal residuals with constant variance  so that  2σ
 

 { }ij mj ,,1: …=ε  ~  (10) ).,0( 2σN
 
Notice that in (8) we have  
 
 Γ r(0; C r) = 0   and   Γ r (1; C r) = π /2. (11) 
 

For fixed r (r = 2, 3, …), the estimator Cr
~  of the coef-

ficient vector C  isr  the solution of the following con-
strained least-squares regression problem: 
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so that (13) can be interpreted as requiring the zeros of 
the degree-(r – 1) polynomial (14) to lie outside the unit 
interval.  
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Associated with (12) is the error sum of squares 
 

  (15) ( )[∑
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for r = 1, 2, …, where we take C  ≡ (π/2) in conformance 

with (7).  Now for fixed r (r ≥ 2), C  is the maximum like-
lihood estimator of C

1
~

~
r

r when (9)–(10) hold and the residuals 
are independent; moreover, we see that 
 

 irr mSSE~2 ≡σ  (16) 
 

 is the maximum likelihood estimator of σ2 (Arnold 1981). 
Given Y ≡ [Y1, ..., Y ]

im
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the associated likelihood function is given by 
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so that the resulting log-likelihood function for the fixed 
degree r is  
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The degree r of the polynomial (8) is determined by a 

likelihood ratio test that has been adapted to constrained 
nonlinear regression.  This approach to determining r is 
based on a similar technique used by Avramidis and Wil-
son (1994) in the context of another constrained nonlinear 
regression problem.  At the outset, we assume that (8)–(10) 
hold for some value of r to be determined.  Starting with 
the degree r = 2 and computing the optimal solution Cr

~  to 
(12), we seek to test the null hypothesis that  
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(so that the degree of the polynomial (8) is at most r – 1) 
versus the alternative hypothesis that  
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(so that the degree of the polynomial (8) is at least r).  If 
(20) holds, then Theorem 4.4.4 of Serfling (1980) ensures 
that 
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where χ 2(1) is a chi-square random variable with 1 degree 
of freedom.  In view of (19), we see that  
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and in the formal algorithmic statement of our likelihood 
ratio procedure for estimating r given below, we also take 
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We perform the likelihood ratio test at the level of sig-

nificance α, where 10 << α , and the final estimate of r is  
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where  is the )1(2
1 αχ − α−1  quantile of the chi-square dis-

tribution with 1 degree of freedom.  After determining the 
degree r~ of the polynomial (8) used to fit the arrival data 
that was transformed via (5), we take the same degree r~  
for the polynomial (3) used to fit the original (untrans-
formed) arrival data defined in (4). 

Kuhl and Wilson (2000) formulated and evaluated an 
ordinary least squares (OLS) procedure for estimating the 
parametric mean value function of a NHPP and demon-
strated that the estimation accuracy and computational ef-
ficiency of the OLS procedure in this type of application is 
reasonable. The same OLS procedure is applied here. The 
likelihood ratio test algorithm is summarized in Figure 1.   

4 ILLUSTRATIVE EXAMPLE 

To illustrate the automated multiresolution procedure for 
estimating NHPPs, we elaborate the example introduced in 
§2.  Recall that, the arrival rate has a long-term trend over 
a time horizon of 28 days as well as weekly and daily cy-
clic effects.  Since the arrival process has two periodic 
components, we estimated the function (1) at the following 
levels of detail: (a) Resolution 0, corresponding to the  
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Likelihood Ratio Test Algorithm 
[1] Take the composite (5) of the arc-sine and square-

root transformations of the original arrival data (4) 
within each cycle. 

[2] Set  and check the maximum value of 1←r r~  

      If , then deliver 2≤im 1~ ←r  and stop; else set 
 and go to [3]. 2←r

[3] Compute OLS estimator Cr
~ . 

        a) Use starting value )0,~(ˆ
1−= rr CC to obtain rC~  

(e.g., to compute C2
~ , start with C ). )0,2/(π=ˆ

2

  b) Determine the estimator rC~  that minimizes 
as given by (15) subject to (13). rSSE

[4] Calculate  and . irr m/SSE~
1

2
1 −− =σ irr m/SSE~2 =σ

[5] If )1( ~
~

ln 2
12

1

2

αχ
σ
σ

−
−

≤

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





−

r

r
im , then deliver 1~ −← rr  

and stop; otherwise, set r ← r + 1 and go to [3]. 
Figure 1: Likelihood Ratio Test Algorithm 

 
long-term trend over a period of 28 days; (b) Resolution 1, 
corresponding to the cyclic rate component with a period 
of 1 week; and (c) Resolution 2, corresponding to the cy-
clic rate component with a period of 1 day.  The input data 
file contained 216 arrival times, and we specified the sig-
nificance level 10.0=α  for the likelihood ratio test (26). 
 At Resolution 0, the number of points involved in the 
fitting procedure is , excluding both endpoints.      
These 3 points correspond to the cumulative fraction of ar-
rivals observed at the end of each week.  Applying the like-
lihood ratio test of Figure 1, we see that Γ , the fitted 
function at resolution 0 for the transformed data, is a linear 
function (that is, 

30 =m

)(ˆ
0 s

0
~r

)(0 s

 = 1). Consequently, a degree-1 poly-

nomial is fit to the original data for the overall ob-
servation interval.  Figures 2 and 5 respectively show the 
fitted functions  and  at Resolution 0. 

)(ˆ0 sR

Γ̂ )(sˆ
0R

 Next, we estimate the Resolution-1 function R1(s) as-
sociated with a period of 1 week.  First the arrivals over 
each week were superimposed.  There are  points 
corresponding to the cumulative fraction of arrivals ob-
served at the end of each day.  These data are then trans-
formed and the fitting procedure is applied, resulting in a 
cubic function being fit to the data so that 

61 =m

3~
1r =

ˆ
1

. The fitted 

function at Resolution 1 for the transformed data, Γ , is 
shown in Figure 3.  A corresponding degree-3 polynomial 

is then fit to the original data, as shown in Figure 6. 

)(s

)(ˆ1 sR
 The next step in the procedure is to estimate the reso-
lution-2 function R2(s) associated with a period of 1 day. 
The  data points corresponding to the cumulative 
fraction of arrivals are superimposed over each day.  Thus 
at Resolution 2, the fitted function Γ  is a polynomial 
of degree 

2162 =m

)(ˆ
2 s

10~
2 =r  as shown in Figure 4. The corresponding 

estimated function  for the original data at Resolu-
tion 2 is shown in Figure. 7.  

)(ˆ2 sR

 The estimates of the functions for the transformed 
data are: 
Resolution 0:   

)(ˆ
0 sΓ  = 0.0560998693s  for all  s ∈ [0, 28] 

Resolution 1:   
)(ˆ

1 sΓ  = 0.552856266s–0.102613039s2+0.00795580633s3  
for  s ∈ [0, 7] 

Resolution 2:   
)(ˆ

2 sΓ  = 7.58305597s – 40.6680336s2 + 124.117729s3  

 –194.861145s4 + 137.300613s5 – 6.46647882s6 

 –25.725769s7–18.9463806s8+20.8811493s9 
 –1.64394438s10  for  s ∈ [0, 1].   
The estimates of the functions for the original data are: 
Resolution 0:   

)(ˆ0 sR  = 0.0357142857s  for  s ∈ [0, 28] 

Resolution 1:   
)(ˆ1 sR  = 0.264645542s–0.0184986202s 2 + 0.0001571824s3   

for s ∈ [0, 7] 

   Resolution 2:   
)(ˆ2 sR  = 2.54902697s – 8.86513996s2 + 28.077919s3  

 + 46.5554962s4+36.8081818s5–11.000386s6    

 –2.07357478s7 +3.56143045s8 –1.48909688s9 
 –0.0128641129s10  for  s ∈ [0 ,1]. 
 After fitting the required functions at each resolution, 
we constructed the estimated mean value function.  The fit-
ted mean value function is plotted against the observed 
cumulative number of arrivals over the entire time horizon 
[0, 28] as shown in Figure 8.  We see that the multiresolu-
tion procedure is capable of accurately estimating the mean 
value function as well as the auxiliary functions 

 from one realization of the process.  { pisRi ,,1:)( …= }
 The estimation procedure illustrated in this paper is 
controllable in the sense the user can specify the maximum 
degree of the polynomial fit to the data at each resolution, 
and the user can specify the significance level for the like-
lihood ratio test.  The above example with three resolutions 
is a fairly complex application which clearly illustrates the 
flexibility of the fitting procedure. 
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Figure 2: Resolution 0, Estimated Function for Trans-
formed Data 
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Figure 3: Resolution 1, Estimated Function for Trans-
formed Data 
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Figure 4: Resolution 2, Estimated Function for Trans-
formed Data 

 

0

0.5

1

0 7 14 21 28
Time(Days)

C
um

ul
at

iv
e 

Fr
ac

tio
n 

of
 A

rr
iv

al
s

 
Figure 5: Resolution 0, Estimated Function for Origi-
nal (Untransformed) Data 
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Figure 6: Resolution 1, Estimated Function for Original 
(Untransformed) Data 
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Figure 7: Resolution 2, Estimated Function for Original 
(Untransformed) Data 
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Figure 8:  Fitted Mean Value Function 

 
 At Resolution 0, Figure 5 shows a reasonable linear fit 
to the original (untransformed) data. Similarly, at Resolu-
tion 1, Figure 6 reveals that the fitted cubic function pro-
vides an excellent fit to the original data.  The most diffi-
cult task was to obtain an adequate approximation to the 
216 arrival times at Resolution 2.  Figure 7 shows that de-
gree-10 polynomial obtained via the estimation method of 
Figure 1 provides an excellent approximation to the distri-
bution of arrival times during the day.  Finally the fitted 
mean value function in Figure 8 demonstrates that the 
overall arrival process is accurately modeled and that the 
likelihood ratio test performed well in this application. 
 Note that the likelihood ratio test is only be applied to 
determine the degree of the polynomial approximation 

 to the function  at each resolution level i.  It is 
not designed to perform any other task in the multiresolu-
tion procedure.  

)(ˆ sRi )(sRi

5 WEB-BASED INPUT MODELING 

The multiresolution procedure described in the previous 
sections has been implemented in a web-based environ-
ment that is accessible via <http://www.rit.edu/ 
~kuhl1/simulation>.  The web site can be used to fit 
an NHPP to data using the multiresolution procedure as 
well as to generate arrival times from the NHPP that could 
be used as inputs to a simulation model.  
 The benefits of the web site include the ability for a 
simulation analyst to access the software for fitting NHPPs 
to data from anywhere in the world. In addition, the data 
analysis can be completed through the use of a web 
browser without the need to install the fitting software on 
individual computers. Furthermore, the web site can be 
used in simulation courses to teach students about NHPPs 
and data fitting without having to provide students with 
their own copy of the fitting software. 
 Figure 9 illustrates a sample screen obtained by visit-
ing the web site. 

 

 
Figure 9:  Web Based Input Modeling Software 

 
 To utilize the fitting procedure, the user will need to 
supply an ASCII (plaintext) file containing a single column 
of observed arrival times. The user will also be prompted 
for the following information about the data and the pa-
rameters for the fitting procedure: 

• The ending time of the observation interval; 
• The number of periodic (cyclic) components; 
• The period of each cyclic component; 
• The significance level α that will be used in the 

likelihood ratio test (26) for determining the de-
gree of the polynomial; and 

• The maximum degree of the polynomials to fit at 
each resolution. 

Once the user has submitted this information, the fitting 
procedure is run and the results of the fit are reported includ-
ing the fitted polynomial at each resolution, graphical results 
of the fitted data at each resolution for both the transformed 
and original data sets, and a graph of the fitted mean value 
function versus the observed cumulative arrivals.  

After fitting an NHPP to arrival data, we can use the 
web site to generate a realization of the fitted arrival proc-
ess which can in turn drive a simulation experiment. The 
resulting arrival times are written into an ASCII (plaintext) 
file in a single-column format; and the resulting file can be 
easily read into commercial simulation software packages 
during the simulation run. 

6 CONCLUSION AND RECOMMENDATIONS 

In this paper we have developed a completely automated 
procedure for estimating arrival processes that exhibit 
long-term trends and nested periodic effects.  We have also 
provided some evidence that the procedure is sufficiently 
flexible to enable accurate estimation of the mean value 
function of the target arrival process while using a rela-
tively small number of parameters that can be efficiently 
estimated from the history of process.  

http://www.rit.edu/�~kuhl1/simulation
http://www.rit.edu/�~kuhl1/simulation
http://www.rit.edu/~kuhl1/simulation
http://www.rit.edu/~kuhl1/simulation


Kuhl, Sumant, and Wilson 

 

Future extensions of the multiresolution procedure 
will include (a) a graphical user interface for invoking the 
procedure in popular simulation software systems; and (b) 
efficient software for generating independent replications 
of a fitted arrival process.  Another direction for future 
work is to develop statistical tools for validating the basic 
assumptions of the multiresolution procedure in arrival 
processes to which the procedure might be applied. 
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