
UNIVERSITY OF CINCINNATI 
 
 
Date:___________________ 

 
 
I, _________________________________________________________, 
hereby submit this work as part of the requirements for the degree of: 

 

in: 

 

It is entitled: 
 

  

 

 

 
 
 

This work and its defense approved by: 
 
 

Chair: _______________________________
 _______________________________
 _______________________________
 _______________________________
 _______________________________

 



EÆ
ient Analysis of Rare Events Asso
iatedwith Individual Bu�ersin a Tandem Ja
kson Network
A thesis submitted to theDivision of Resear
h and Advan
ed Studiesof the University of Cin
innatiin partial ful�llment of the requirements for the degree ofMASTER OF SCIENCEin the Department ofMe
hani
al,Industrial and Nu
lear Engineeringof the College of Engineering, University of Cin
innatiMar
h 2004byRamya DhamodaranB.E. (Industrial Engineering)Anna University, Chennai, TN, INDIA.June 2001Thesis Advisor and Committee Chair: Dr. Bru
e Shultes



ABSTRACTFor more than a de
ade, importan
e sampling has been a popular te
hnique forthe eÆ
ient estimation of rare event probabilities. This thesis presents an ap-proa
h for applying balan
ed likelihood ratio importan
e sampling to estimaterare event probabilities in tandem Ja
kson networks. The rare event of interest isthe probability that the 
ontent of the se
ond bu�er in a two node tandem Ja
ksonnetwork rea
hes some high level before it empties. Heuristi
 importan
e samplingdistributions are derived that 
an be used to estimate this over
ow probabilityin 
ases where the �rst bu�er 
apa
ity is �nite and in�nite. In the proposedmethods, the transition probabilities of the embedded dis
rete-time Markov 
hainare modi�ed dynami
ally to bound the overall likelihood ratio of ea
h 
y
le. Theproposed importan
e sampling distributions di�er from previous balan
ed likeli-hood ratio methods in that they are spe
i�ed as fun
tions of the 
ontents of thebu�ers. When the �rst bu�er 
apa
ity is in�nite, the proposed importan
e sam-pling estimator yields bounded relative error ex
ept when the �rst server is thebottlene
k. In the latter 
ase, numeri
al results suggest that the relative erroris linearly bounded in the bu�er size. When the �rst bu�er 
apa
ity is �nite,empiri
al results indi
ate that the relative errors of these importan
e samplingestimators are bounded independent of the bu�er size when the se
ond server isthe bottlene
k and bounded linearly in the bu�er size otherwise.





ACKNOWLEDGEMENTSI take this opportunity to extend my sin
ere thanks and appre
iation to manypeople who made this thesis possible.First and foremost, I would like to thank my parents Vasantha and Dhamodaranfor all their prayers, love and support throughout my life.I express my sin
ere gratitude towards my advisor, Dr.Bru
e Shultes for his 
on-tinuous guidan
e, motivation and �nan
ial support. I thank him in parti
ular forspending time at length to dis
uss the issues 
on
erning my resear
h and helpingme out with them. I also greatly appre
iate his e�orts in helping me with thedo
umentation of this thesis.I would like to thank Dr. Sam Anand and Dr. Emmanuel Fernandez for takingtheir valuable time to review my thesis and serve in my thesis 
ommittee.I am thankful to my friends in the Operations Resear
h lab, for their help duringthe 
ourse of this work.I would like to express my sin
ere thanks to my brother Ravishankar, sisterSripriya and brother-in-law Mohan, who provided 
onstant en
ouragement, sup-port and took 
are of me in many aspe
ts. I would also like to thank my 
ousins,Swaminathan and Srividya for all the a�e
tion, 
amaraderie and 
aring they pro-vided. I am also grateful towards the help and support provided by my friends inCin
innati.



Contents
1 Introdu
tion 41.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . 72 Ba
kground 92.1 Importan
e Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 102.2 Comparing approa
hes . . . . . . . . . . . . . . . . . . . . . . . . 132.2.1 Asymptoti
 Properties . . . . . . . . . . . . . . . . . . . . 132.2.2 Varian
e Redu
tion Ratio . . . . . . . . . . . . . . . . . . 142.3 Balan
ed Likelihood Ratio Approa
hes . . . . . . . . . . . . . . . 143 Tandem Queues 173.1 In�nite First Bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . 181



3.1.1 Initial Event Likelihood Ratio . . . . . . . . . . . . . . . . 213.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 223.1.3 Asymptoti
 Behavior in In�nite First Bu�er Case . . . . . 233.2 Finite First Bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Numeri
al Results 345 Con
lusions 41

2



List of Tables
4.1 Estimates of 
1 in Example 1 (�; �1; �2 = 1; 4; 2) with b =1 . . . 374.2 Estimates of 
1 in Example 2 (�; �1; �2 = 1; 2; 3) with b =1 . . . 374.3 Estimates of 
1 in Example 3 (�; �1; �2 = 3; 4; 6) with b =1 . . . 374.4 Estimates of 
1 in Example 4 (�; �1; �2 = 1; 2; 2) with b =1 . . . 384.5 Estimates of 
1 in Example 1 (�; �1; �2 = 1; 4; 2) with b = 9 . . . . 384.6 Estimates of 
1 in Example 2 (�; �1; �2 = 1; 2; 3) with b = 9 . . . . 384.7 Estimates of 
1 in Example 3 (�; �1; �2 = 3; 4; 6) with b = 9 . . . . 394.8 Estimates of 
1 in Example 4 (�; �1; �2 = 1; 2; 2) with b = 9 . . . . 394.9 Estimates of 
0 with b =1 . . . . . . . . . . . . . . . . . . . . . 404.10 Estimates of 
0 with b = 9 . . . . . . . . . . . . . . . . . . . . . . 40

3



Chapter 1
Introdu
tion
Performan
e measures of highly reliable systems are hard to 
ompute sin
e theydepend upon the o

urren
e of rare events. Tandem Ja
kson networks (for an in-trodu
tion to Ja
kson networks see Chapter 1, Serfozo 1999) serve as a simpli�edmodel for analyzing rare events in many reliable systems su
h as swit
hed tele
om-muni
ation networks, manufa
turing systems and 
omputer networks. Systemperforman
e measures su
h as the probability that the system size or a spe
i�
queue length ex
eeds a given level are needed to a

urately assess system reliabil-ity, parti
ularly the time until one of these events o

urs.Standard Monte Carlo simulation is ineÆ
ient in produ
ing a

urate estimatesof rare event probabilities sin
e it requires prohibitively long run lengths. Instandard Monte Carlo simulation, the sto
hasti
 behavior of the system is notmodi�ed to for
e the rare event to o

ur and the rare event is not observed very4



often. Consequently, the number of simulation trials required to get a pre
iseestimate of the probability of the rare event is very large.
1.1 Literature ReviewImportan
e sampling is gaining popularity as an eÆ
ient method for analyzingrare events in queueing and reliability systems (see Asmussen and Rubinstein 1995,Glynn and Iglehart 1989, Heidelberger 1995). The main idea of importan
e sam-pling is to for
e a simulation to observe a rare event frequently. The appli
ation ofimportan
e sampling involves simulating the model using an auxiliary distributiondesigned to make the system experien
e rare events of interest more often. Theauxiliary distribution modi�es the sto
hasti
 behavior of the system su
h thatevents that lead towards a rare event are more likely to happen and thus moresamples hit the rare event. The sample values obtained by using the auxiliarydistribution are then adjusted by using likelihood ratios in order to a

ount forthe modi�
ations to the sto
hasti
 pro
ess leading to an unbiased estimator. Theauxiliary distribution should be formed su
h that varian
e redu
tion is a
hievedwhen 
ompared to standard Monte Carlo simulation.An importan
e sampling distribution that yields a 
onstant value for everysample (zero-varian
e importan
e sampling) is almost impossible be
ause it re-quires perfe
t knowledge of the quantity being estimated. Kuruganti and Stri
k-land (1997) identify properties that 
hara
terize zero-varian
e importan
e sam-5



pling distributions and use them to develop a method to 
ompute an optimal mea-sure for a tandem queueing system. Juneja (1993, 2001) develops these propertiesas a basis for identifying asymptoti
ally optimal importan
e sampling distribu-tions.Large deviations theory has been used for deriving and analyzing importan
esampling estimators. Using large deviations theory, a heuristi
 
hange of measurewas derived for estimating the probability that total system size ex
eeds a givenlevel before returning to zero in tandem Ja
kson networks (see Parekh and Wal-rand 1989). This exponential twisting or tilting 
hange of measure inter
hangesthe arrival rate and the smallest servi
e rate in the network. This heuristi
 waslater analyzed by Glasserman and Kou (1995) who established ne
essary and suf-�
ient 
onditions for the asymptoti
 eÆ
ien
y of this heuristi
 importan
e sam-pling estimator. An adaptive importan
e sampling method for estimating over
owprobabilities by minimizing the 
ross-entropy between a zero-varian
e distributionand the proposed importan
e sampling distribution has been developed (de Boeret al. 2000). Re
ently, de Boer, Kroese and Rubinstein (2002) proposed a modi-�ed approa
h whi
h utilizes an optimal tilting parameter to estimate the over
owprobability in three stages.The balan
ed likelihood ratio approa
h to importan
e sampling (see Alexopou-los and Shultes 1998, 2001) was developed for analyzing system performan
e infault-tolerant repairable systems. This approa
h has been used to derive impor-tan
e sampling estimators for limiting system unavailability and mean time to6



system failure that yield bounded relative error. Shultes (2002) applied this ap-proa
h to estimate the system over
ow probability in tandem Ja
kson networks.This method yields a zero varian
e importan
e sampling distribution for a singlenode system. For systems with more than one node, this method yields asymp-toti
ally eÆ
ient results with some restri
tions on the model parameters.The rare event studied in this thesis is the bu�er over
ow probability at these
ond node in a two node tandem Ja
kson network. An exponential tilting te
h-nique was developed by Kroese and Ni
ola to estimate this over
ow probability(see Kroese and Ni
ola 2002). These authors exponentially tilt a Markov additivepro
ess representation of the system to derive an importan
e sampling estimator.Their distribution is state dependent in that it depends on the 
ontents of the�rst bu�er.
1.2 Contributions of this thesisIn this thesis work, an importan
e sampling distribution for estimating the over-
ow probability at the se
ond node in a two node tandem Ja
kson network is de-rived using balan
ed likelihood ratio approa
h. The proposed distributions haveguaranteed varian
e redu
tion over standard Monte Carlo methods. The proposeddistributions depend on the 
ontents of the bu�ers and 
an be applied to any set ofarrival and servi
e rates. When the �rst bu�er is in�nite, the proposed estimatoris asymptoti
ally optimal ex
ept when the �rst server is bottlene
k. In the latter7




ase, numeri
al results indi
ate that the relative error is linearly bounded in thebu�er size.Chapter 2 presents the model studied and provides an overview of importan
esampling and the balan
ed likelihood ratio approa
h. Chapter 3 provides detailsof the proposed method for the in�nite and �nite �rst bu�er 
ases. Chapter4 
ontains experimental results. Con
lusions and future resear
h dire
tions arepresented in Chapter 5.
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Chapter 2
Ba
kground
Consider a tandem Ja
kson network with two nodes. Customers arrive at the �rstqueue a

ording to a Poisson pro
ess with rate �. The servi
e time of a 
ustomerat the �rst node is exponential with rate �1, independent of the input pro
essand servi
e time at the se
ond node. The output pro
ess of the �rst queue formsthe input pro
ess of the se
ond queue. The servi
e time at the se
ond node isexponential with rate �2, whi
h is also independent of the input pro
ess and servi
etime at the �rst node. Without loss of generality, assume that � + �1 + �2 = 1:The queueing system is assumed to be stable, i.e., � < min(�1; �2).Let X(t) and Y (t) denote the number of 
ustomers at the �rst and se
ondnode at time t, respe
tively (in
luding 
ustomers in servi
e). Let b denote the sizeof the �rst bu�er, whi
h may be �nite or in�nite. The quantity of interest is theprobability (
) that the number of 
ustomers in the se
ond queue rea
hes some9



high level B 2 IN before hitting 0. We wish to estimate this probability giventhat the system starts in state (X(0) = 0; Y (0) = 0) or (X(0) = 1; Y (0) = 1).These probabilities are denoted as 
0 and 
1 respe
tively. To estimate 
0 (
1), thesimulation 
y
le starts from (0,0) ((1,1)) and ends when either the se
ond queuerea
hes B or zero.The system 
an be modeled as a Markov pro
ess with system state Z(t) =(X(t); Y (t)). Let r(t) = �+ 1 (X(t) > 0)�1 + 1 (Y (t) > 0)�2denote the total rate of event transitions out of Z(t). The bu�er over
ow prob-ability depends upon the embedded dis
rete-time Markov 
hain whose one-steptransition probabilities at time t are: �=r(t) the probability the next event is anarrival, 1 (X(t) > 0)�1=r(t) the probability that the next event is a servi
e 
om-pletion at node one, and 1 (Y (t) > 0)�2=r(t) the probability that the next eventis a servi
e 
ompletion at node two.
2.1 Importan
e SamplingLet 
 denote the set of all 
y
les and for ea
h ! 2 
, let �(!) denote the largestnumber of 
ustomers at the se
ond node within the 
y
le. Consider an indi
ator

10



fun
tion, � (!), whi
h is de�ned as follows:� (!) = 8>><>>: 1 if � (!) = B0 if � (!) < BThe bu�er over
ow probability of interest (
i; i = 0; 1) 
an be written as
i = EP [� (!)℄where the subs
ript P denotes sampling from the probability measure P . Instandard Monte Carlo simulation, 
i 
an be estimated by drawing N independentsamples under the probability measure P as follows:�
i = 1N NXj=1 � (!j)The estimator �
i is an unbiased estimator of 
i and EP [�
i℄ = 
i. The varian
e of�
i is 
i (1� 
i)/N . By using the 
entral limit theorem, a 
on�den
e interval for�
i 
an be 
onstru
ted as �
i � z�=2 p
i (1� 
i)/N , where z�=2 is 100(1� �/2)%quantile for a standard normal distribution. The number of samples required toa

urately estimate 
i is very large sin
e the event of interest is very rare.Under importan
e sampling, an alternative estimator is used to estimate 
isu
h that the rare event is experien
ed more often. The probability P (!) ofobserving the 
y
le ! is the produ
t of one-step transition probabilities. A new11



importan
e sampling distribution P 0 is de�ned su
h that P (!) > 0 =) P 0(!) >0 and 
i = X!2
� (!) P (!)P 0 (!) P 0 (!)= X!2
� (!) L(!)P 0 (!)where the likelihood ratio L(!) is the Radon-Nikodym derivative of P with respe
tto P 0. The likelihood ratio L(!) 
an be de
omposed into a produ
t of one-steptransition event likelihood ratios asso
iated with ea
h individual event within the
y
le. An unbiased estimator 
̂ for 
 
an then be obtained by drawing N inde-pendent samples under the probability measure P 0 and multiplying the samplesby the 
orresponding likelihood ratios. Thus,
̂i = 1N NXj=1 � (!j) L (!j)When EP 0 �� (!)2 L (!)2� < 1, a 
on�den
e interval for 
̂i 
an be 
onstru
tedas des
ribed earlier using the 
entral limit theorem. The probability measureP 0 should be sele
ted su
h that the varian
e of the estimator is minimized. Ingeneral, P 0 should be 
hosen su
h that EP 0 � � (!)2 L (!)2� < EP � � (!)2� toobtain varian
e redu
tion.
12



2.2 Comparing approa
hes2.2.1 Asymptoti
 PropertiesThe asymptoti
 eÆ
ien
y of an estimator 
an be quanti�ed by 
onsidering therelative error of the estimator. Relative error is de�ned as the ratio of the standarddeviation of the estimator over its expe
ted value. Bounded relative error refersto the behavior of the estimator as the quantity to be estimated approa
hes zerowhi
h o

urs by varying a rarity parameter for the system under study. In thismodel, the quantity of interest 
i approa
hes zero as the bu�er size is in
reased toin�nity. An estimator yields bounded relative error if the relative error remainsbounded as the quantity to be estimated approa
hes zero. This implies that, thesample size required to a
hieve a desired level of a

ura
y remains bounded in thelimit, whi
h is the best possible result.An estimator is said to be asymptoti
ally eÆ
ient if the relative error growsat a sub-exponential rate as the quantity to be estimated approa
hes zero. Thismeans that the number of samples grows at a sub-exponential rate to a
hieve thedesired a

ura
y. An estimator is said to have linearly bounded relative errorwhen the number of samples required to a
hieve a �xed relative error in
reaseslinearly in bu�er size B. For importan
e sampling estimators, bounded relativeerror implies asymptoti
 eÆ
ien
y.
13



2.2.2 Varian
e Redu
tion RatioTo 
ompare the performan
e of two importan
e sampling estimators, we needto take into a

ount varian
e redu
tion and the 
omputational e�ort required toa
hieve that redu
tion. The varian
e redu
tion ratio (VRR) measures the trade-o� between varian
e redu
tion and the asso
iated 
omputational 
ost. VRRs are
omputed by multiplying a ratio of the varian
es of two estimators by a ratio ofthe 
orresponding 
omputational e�ort, i.e., simulation time or number of eventssampled to generate that varian
e. Typi
ally, VRRs are estimated empiri
allyby simulation. If the VRR is less than one, then the approa
h in the numeratoris more eÆ
ient and a VRR greater than one implies that the approa
h in thedenominator is more eÆ
ient.
2.3 Balan
ed Likelihood Ratio Approa
hesThe proposed importan
e sampling method is based on the balan
ed likelihoodratio approa
h. This approa
h was originally proposed to estimate the reliabilityof fault-tolerant repairable systems (see Alexopoulos and Shultes 2001) and waslater adapted to estimate system over
ow probabilities in tandem-Ja
kson net-works (see Shultes 2002). The importan
e sampling distribution for estimatingthe bu�er over
ow probability is based on the 
on
ept of 
ontrolling the event like-lihood ratios within the 
y
les. A key feature of this approa
h is that likelihoodratios asso
iated with 
y
les are for
ed to be bounded from above by one.14



The appli
ation of the balan
ed likelihood ratio approa
h to estimate 
0 and
1 pro
eeds as follows. Classify all system events into 2 
lasses: events that movethe system towards bu�er over
ow and events that move the system away frombu�er over
ow. Arrival events and servi
e 
ompletion events at the �rst nodebelong to the �rst 
ategory and servi
e 
ompletion events at the se
ond node fallinto the se
ond 
ategory. The balan
ed likelihood ratio method balan
es the eventlikelihood ratios asso
iated with events from these two 
lasses.Every servi
e 
ompletion event at the se
ond node must be pre
eded by anarrival event and a servi
e 
ompletion event at the �rst node. The produ
t ofthese three event likelihood ratios 
an be for
ed to be one for all 
ustomers.This assignment 
auses likelihood ratios asso
iated with 
y
les to be boundedbelow one. The proposed method has the following basi
 balan
ed likelihoodratio properties established by Shultes (2002).� Every event that moves the system 
loser to the rare event (arrival andservi
e 
ompletion at the �rst node) has one 
orresponding event (servi
e
ompletion at the se
ond node) that e�e
tively 
an
els out the events thatmoved the system 
loser to over
ow.� Events that would 
omplete a 
y
le before the system experien
es a rareevent have zero probability in the importan
e sampling distribution.� If the events that move the system 
loser to bu�er over
ow are for
ed tobe more likely, then the 
orresponding future event whi
h would move the15



system away from over
ow is for
ed to be less likely.To summarize, ea
h 
ustomer in the system experien
es a series of events.Ea
h event a

umulates an event likelihood ratio. At any given time, the produ
tof the event likelihood ratios a

umulated for a 
ustomer is less than one. Whenthe 
ustomer leaves the system, the produ
t of the 
orresponding event likelihoodratios be
omes one. The overall likelihood ratio of a 
y
le is obtained by multi-plying the a

umulated event likelihood ratios of all the 
ustomers in the systemwhen the 
y
le ends. Sin
e the a

umulated likelihood ratio of all 
ustomers inthe system is below one, the overall likelihood ratio of the 
y
le is bounded fromabove by one.

16



Chapter 3
Tandem Queues
Balan
ed likelihood ratio methods for estimating the probabilities 
0 and 
1 whenthe �rst bu�er 
apa
ity is in�nite and �nite are des
ribed in Se
tions 3.1 and3.2 respe
tively. The importan
e sampling distribution is the same for estimatingboth 
0 and 
1. However, the method for estimating 
0 in
ludes 
ases whi
hdo not o

ur while estimating 
1, i.e., when the starting state is (1,1). Hen
e,without loss of generality, the importan
e sampling distributions are des
ribed forthe starting state (0,0).Customer arrival events and servi
e 
ompletion events at the �rst node gen-erate event likelihood ratios. These event likelihood ratios are used as multipliersfor biasing the probability of servi
e 
ompletion at the se
ond node. Let la(i)denote the ith arrival event likelihood ratio and ls(i) denote the ith �rst nodeservi
e 
ompletion event likelihood ratio. The importan
e sampling distribution17



is formed su
h that the 
ontent of the se
ond bu�er rea
hes the bound B in all
y
les. The idea is to avoid paths whi
h fail to experien
e the rare event withinthe 
y
le.The proposed importan
e sampling distribution depends on the sample pathfor the pro
ess fZ(t); t � 0g. Importan
e sampling probabilities are time de-pendent, but at any time within the simulation only three importan
e samplingprobabilities are relevant. Let �0 denote the importan
e sampling probability ofan arrival event. Let �01 and �02 denote the importan
e sampling probabilities ofservi
e 
ompletion events at the �rst and se
ond nodes respe
tively.
3.1 In�nite First Bu�erThe importan
e sampling approa
h des
ribed in Se
tion 2.2 is dire
tly applied tothe in�nite �rst bu�er 
ase. There are four 
ases to 
onsider: (1) The system isempty, (2) All 
ustomers are at the �rst node, (3) All 
ustomers are at the se
ondnode, and (4) Customers are at both nodes in the system.Case 1: The system is empty. The next event is a 
ustomer arrival withprobability one. The event likelihood ratio for this event is repla
ed by l0a = �=(�+ �2) in the implementation be
ause an arrival event likelihood ratio of onedoes not allow the servi
e 
ompletion probability asso
iated with this arrival tobe redu
ed. This initial likelihood ratio is used to bias the servi
e 
ompletionprobability of this �rst 
ustomer at node one. It is easy to show that this deviation18



from the basi
 balan
ed likelihood ratio approa
h maintains established likelihoodratio properties.Case 2: All 
ustomers in the system are at the �rst node, i.e., the systemstate is (X(t); Y (t) = x; 0) for t � 0 and some x 2 IN. In this 
ase, the nextevent 
ould be either a 
ustomer arrival or a servi
e 
ompletion at the �rst node.Deviating from the original balan
ed likelihood ratio des
ription, the importan
esampling probability for a servi
e 
ompletion event at the �rst node is redu
edto in
rease the arrival probability. The importan
e sampling probabilities in this
ase are: �01 = la(x) � �1�+ �1� ; and�0 = 1� �01:Case 3: All 
ustomers in the system are at the se
ond node, i.e., the systemstate is (X(t); Y (t) = 0; y) for t � 0 and some y 2 IN. In this 
ase, the next event
ould be either a 
ustomer arrival or a servi
e 
ompletion at the se
ond node. Theimportan
e sampling probabilities when y > 1 are:�02 = la(y) ls(y) � �2�+ �2� ; and�0 = 1� �02:
19



The servi
e 
ompletion event is not allowed when y = 1 if the rare event has notyet o

urred within the 
y
le. In this latter 
ase, the 
ustomer arrival probabilityis one.Case 4: Customers in the system are at node one and node two, i.e., thesystem state is (X(t); Y (t) = x; y) for t � 0 and some x; y 2 IN2. The importan
esampling probabilities in this 
ase when y > 1 derive from:�02 = la(x+ y) ls(y) � �2�+ �1 + �2� :The remaining probability (1� �02) is split between the 
ustomer arrival eventand servi
e 
ompletion event at the �rst node based on the number of 
ustomersin the system.Let �s and �a denote the fra
tion of the importan
e sampling probability(1� �02) assigned to the servi
e 
ompletion at the �rst node and the arrival eventrespe
tively. The importan
e sampling probabilities for the arrival event and theservi
e 
ompletion at node one are:�01 = �s (1� �02) ; and�0 = �a (1� �02) :When the system size is lesser than or equal to the bound B, the servi
e 
om-pletion probability at the �rst node is not biased ex
ept when the �rst server is20



the bottlene
k. When the �rst server is the bottlene
k, the importan
e samplingdistribution in
reases the servi
e 
ompletion probability at the �rst node by allo-
ating a fra
tion of (1� �02) for this purpose depending on the state of the system.Thus, when x + y � B;�s = 8>><>>: max�0:5; �11� �02� if �1 < �2�11� �02 if �1 � �2When the system size is greater than the bound B, the importan
e samplingprobabilities allo
ated to the arrival event and the servi
e 
ompletion at nodeone are proportional to the respe
tive rates � and �1. Thus, when x + y > B;�s = �1�+ �1 and �a = 1� �s:
3.1.1 Initial Event Likelihood RatioWhen the system is in state (1; 0), the initial likelihood ratio l0a = �= (�+ �2) isobtained by looking ahead one stage. At this point, we need a value less thanone, to bias the servi
e 
ompletion probability of the 
ustomer at node one. Thelikelihood ratio of an arrival event, when the system moves from state (0; 1) to(1; 1) would be l0a = �= (�+ �2) (as explained in Case 3). This likelihood ratiois not required to bias the servi
e probability when the system is in state (1; 1)be
ause �02 is set to zero in order to prevent the 
y
le from ending before the21



rare event o

urs. Hen
e, this event likelihood ratio 
an be used for l0a when thesystem is in state (1; 0).
Remark 1 While estimating 
1, the starting state of the system is (1,1). In this
ase, the arrival likelihood ratio for the �rst and se
ond 
ustomer is one. So,when the system is in state (0; 2), the arrival likelihood ratio of one does not allowthe se
ond node servi
e 
ompletion probability asso
iated with this arrival to beredu
ed. Hen
e, in this 
ase the value of la(2) is repla
ed by l0a = �= (�+ �2) bylooking ahead one stage when the system is in state (0; 2) as des
ribed earlier.3.1.2 ImplementationDe�ne two sta
ks: La for storing arrival event likelihood ratios and Ls for storinglikelihood ratios for servi
e 
ompletion events at the �rst node. Initially ea
hsta
k 
ontains one multiplier, l0a = �=(� + �2) is on sta
k La and l0s = 0 is onsta
k Ls where the 0 guarantees that the 
y
le does not end without observing abu�er over
ow event. After ea
h arrival event, the event likelihood ratio (�=�0)is pushed onto sta
k La. After ea
h servi
e 
ompletion event at the se
ond node,one likelihood ratio from ea
h sta
k is removed. For ea
h servi
e 
ompletion eventat the �rst node, the event likelihood ratio (�1=�01) is pushed onto sta
k Ls if thesystem is in state (x; y) for some x 2 IN, y 2 IN and a likelihood ratio is removedfrom sta
k La when the system state is (x; 0) for some x 2 IN.22



3.1.3 Asymptoti
 Behavior in In�nite First Bu�er CaseThe proposed balan
ed likelihood ratio method for
es ea
h 
y
le to visit the rareevent. Hen
e, the likelihood ratio of a 
y
le L(!), 
onsists of event likelihoodratios 
omputed up to the time there are B 
ustomers at the se
ond node. Themethod also for
es likelihood ratios for servi
e 
ompletion events at se
ond nodeto 
an
el the event likelihood ratios for the 
orresponding arrival and �rst nodeservi
e 
ompletion events. Hen
e, the overall likelihood ratio for a 
y
le is theprodu
t of the likelihood ratios of arrival events and servi
e 
ompletion events atthe �rst node asso
iated with the 
ustomers in the system when the rare eventhappens. L(!) has the following form,L(!) =  x+BYi=1 la(i)! BYj=1 ls(j)! (3.1)where la(i) is the ith arrival event likelihood ratio in La and ls(j) is the jth �rstnode servi
e 
ompletion event likelihood ratio in Ls. For notational purposes,let L1(!) denote the �rst term  x+BYi=1 la(i)! and L2(!) denote the se
ond term BQj=1 ls(j)!. Note that the system state is (x;B) when the system hits the rareevent. As des
ribed earlier in the implementation, the event likelihood ratios ofarrival and servi
e 
ompletion events at the �rst node are stored in two separatesta
ks La and Ls respe
tively. The number of likelihood ratios in the sta
k La isequal to the number of 
ustomers in the system (x+B). The number of likelihoodratios in the sta
k Ls is equal to the number of 
ustomers at the se
ond node (B).23



Let Lm � max! L(!) be a upper bound on the likelihood ratio of a 
y
le whileestimating 
1. From (3.1),Lm � L1(!)L2(!) for all ! 2 
: (3.2)A value for Lm 
an be found by �nding upper bounds on L1(!) and L2(!).Lemma 1. The produ
t of �rst node servi
e 
ompletion likelihood ratios (L2(!))is bounded from above by one.Proof. The maximum possible value for the term L2(!) 
an be obtained by de-termining the maximum possible likelihood ratios ls(j) for all j = 1 toB. Bythe 
onstru
tion of the proposed balan
ed likelihood ratio method, the maximumpossible likelihood ratio for the servi
e 
ompletion event at �rst node is boundedfrom above by one. Hen
e, L2(!) � 1.
Let M(i) � la(i) denote the upper bound for the ith arrival event likelihoodratio. Then, an upper bound for L1(!) 
an be obtained by  x+BYi=1 M(i)!. Thus,L1(!) �  x+BYi=1 M(i)! (3.3)Lemma 2. When �1 � �2, an upper bound for the ith arrival event likelihood
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ratio is,
M(i) = 8>>>><>>>>: ��+ �2 � �2M(i� 1) when i > 3� (�+ �2)�2 + ��2 + �22 when i = 3Proof. The ith arrival event likelihood ratio is generated in one of the following
ases: (1) System state is (0; i�1). (2) System state is (i�2; 1). (3) System stateis (x; y), where y > 1 and x + y = i � 1. Note that 
ases 1 and 3 are the samewhen i = 3.Let a1,a2,a3 denote the ith arrival event likelihood ratio in 
ases 1, 2 and 3respe
tively. The maximum possible ith arrival event likelihood ratio is M(i) =max(a1; a2; a3).Case 1: The original arrival event probability in this 
ase is �/(�+ �2). Theimportan
e sampling probability for this arrival is1 � �2�+ �2 la(i� 1) ls(i� 1) :As des
ribed earlier in Lemma 1, the value of ls(j) for all j is bounded from aboveby one. la(i � 1) is the (i � 1)th arrival event likelihood ratio in La. The arrivalevent likelihood ratio is the largest when the importan
e sampling probability forthe arrival event is at its smallest value. So, in order to get the maximum value fora1, la(i�1) should be the maximum possible (i�1)th arrival event likelihood ratio25



used in the simulation. The arrival event likelihood ratio used in the simulationfor la(2) is l0a = �= (�+ �2) (explained in Remark 1). This value remains the samethroughout the simulation in all 
y
les for la(2) . Hen
e, when i = 3,a1 = �/(� + �2)1 � �2�+ �2 l0aand when i > 3 a1 = �/(�+ �2)1 � �2�+ �2 M(i� 1) : (3.4)
Case 2: The original arrival probability in this 
ase is equal to�/(�+ �1 + �2): The importan
e sampling probability for arrival is equal to1 � �1 � �02. Sin
e there is only one 
ustomer at �rst node, �02 = 0. Thus,for all i � 3, a2 = �/(�+ �1 + �2)1 � �1 : (3.5)Case 3: The original arrival probability in this 
ase is equal to�/(�+ �1 + �2). The importan
e sampling probability for an arrival event isequal to 1� �1 � �02. The importan
e sampling probability for a servi
e 
omple-tion event at the se
ond node, �02 isla(i� 1) ls(y � 1) � �2�+ �1 + �2� :26



The value of ls(y � 1) is substituted by its upper bound value of one. The valueof la(i� 1) should be the maximum possible (i� 1)th arrival event likelihood ratioused in the simulation in order to get the maximum value of a3. Thus,a3 = �/(�+ �1 + �2)1 � �1 � �M(i� 1) �2�+ �1 + �2� :
Rearranging the terms and using the fa
t that �+�1+�2 = 1, we �nd that,when i = 3; a1 = ��+ �2 � �2(l0a) and when i > 3; a1 = a3 = ��+ �2 � �2(M(i� 1)) :For all i � 3, a2 = �=(�+ �2) :Hen
e, when �1 � �2,M(i) = max(a1; a2) = ��+ �2 � �2(l0a) = � (�+ �2)�2 + ��2 + �22 ; for i = 3and M(i) = max(a1; a2; a3) = ��+ �2 � �2M(i � 1) ; for i � 3 :

Remark 2 When �1 < �2, the maximum likelihood ratio M(i) 
an be found ina similar way. Spe
i�
ally, the values of a1 and a2 in 
ases 1 and 2 are the same27



as in (3.4) and (3.5) respe
tively. The form of a3 
hanges when the �rst server isthe bottlene
k. This is be
ause, the importan
e sampling probability of the �rstnode servi
e 
ompletion 
hanges depending on the state of the system.Lemma 3. To get an upper bound on L1(!), the number of arrival event likeli-hood ratios should be B.Proof. The produ
t of arrival event likelihood ratios is bounded by, L1(!) � x+BYi=1 M(i)!.As mentioned earlier, the number of arrival likelihood ratios in any 
y
le shouldbe greater than or equal to the bu�er size B. Consider the �rst 
ase when thenumber of 
ustomers in the system is equal to the bu�er size B when the 
y
leends by hitting the rare event (system state is X(t); Y (t) = 0; B). In this 
ase,L1(!) is bounded by BQi=1M(i), where M(i) is the maximum possible value for itharrival event likelihood ratio.Consider the se
ond 
ase when the system 
ontains more than B 
ustomerswhen the 
y
le ends. This means that x > 0 and the system is in state(X(t); Y (t) = x;B). L1(!) in this se
ond 
ase is bounded by x+BQi=1 M(i): Thisis equal to  BYi=1M(i)!  x+BYk=B+1M(k)! :By 
onstru
tion of the balan
ed likelihood ratio method, all arrival event likeli-28



hood ratios are bounded from above by one. Thus, � x+BQk=B+1M(k)� is boundedfrom above by one and implies that the bound for L1(!) in the se
ond 
ase be-
omes lesser by multiplying the term � x+BQk=B+1M(k)�. Hen
e, to get an upperbound on L1(!), the number of arrival event likelihood ratios should be equal tothe bu�er size B.Using Lemmas 2 and 3, when �1 � �2, the produ
t of arrival event likelihoodratios L1(!) is bounded by L1(!) � BYi=1M(i) : (3.6)Lemma 4. When �1 � �2, a upper bound for the maximum likelihood ratio of a
y
le is Lm = (�+ �2) (�B�2)B�1Xk=0 �B�1�k�k2 :
Proof. Using Lemma 1, L2(!) � 1.From (3.6), L1(!) � BYi=1M(i). The arrival event likelihood ratio for the �rst andse
ond 
ustomer is one. Hen
e, M(i) = 1 for i = 1; 2. Using Lemma 2, themaximum possible value for ith arrival event likelihood ratio is,M(i) = ��+ �2 � �2(la(i� 1)) ; i > 2:29



Thus, L1(!) is,
(1) (1)� � (�+ �2)�2 + ��2 + �22� ::::::0BBB� � kPp=0�k�p �p2k+1Pp=0 �k+1�p �p2

1CCCA :::::0BBB�� B�2Pp=0 �B�2�p �p2B�1Pp=0 �B�1�p �p2
1CCCA :

Simplifying the terms,L1(!) � BYi=1M(i) = (�+ �2) (�B�2)B�1Xk=0 �B�1�k�k2 :
Using the bounds for L1(!) and L2(!), we get

L1(!)L2(!) � (1)0BBBBB�(�+ �2) (�B�2)B�1Xk=0 �B�1�k�k2
1CCCCCA (3.7)

Using (3.2) and (3.7), yields the desired result.Theorem 1. The proposed importan
e sampling distribution a
hieves boundedrelative error when �1 � �2.Proof. The relative error (RE) is de�ned as the ratio of the standard deviation ofthe estimator over its expe
ted value. The maximum likelihood ratio of a 
y
leis an upper bound for the standard deviation of the estimator. Lemma 4 impliesthat, the standard deviation of the proposed estimator � (
̂1) is bounded from30



above by Lm = (�+ �2) (�B�2)B�1Xk=0 �B�1�k�k2 :
The rare event of interest is an exponentially rare event, i.e, 
1 has exponentialde
ay rate. Spe
i�
ally, Remark 3.5 in Kroese and Ni
ola (2002) states that 
1is proportional to e�sB when the �rst node has in�nite 
apa
ity. They have alsoproven that if �1 � �2, 
1 = d �B where d is a positive 
onstant and � = �/�2(see Lemma A.5 and Remark 3.6 in Kroese and Ni
ola (2002)).The relative error of the proposed BLR method satis�es,

RE �
0BBBBB�(�+ �2)�B�2B�1Xk=0 �B�1�k�k2

1CCCCCAd � ��2�B :
Simplifying the right hand side leads to,

RE � (�+ �2)d �2 0BBB� �B2B�1Pk=0 �B�1�k�k2
1CCCA :
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Hen
e,
limB!1 � (
̂1)
1 � (�+ �2)d �2 0BBB� �B2B�1Pk=0 �B�1�k�k2

1CCCA � 1:
Thus, when �1 � �2 the proposed importan
e sampling estimator has boundedrelative error.
3.2 Finite First Bu�erThe balan
ed likelihood ratio method for estimating the probability of bu�erover
ow in the se
ond node when the �rst bu�er has �nite 
apa
ity is des
ribedbelow. The approa
h is similar to the in�nite �rst bu�er 
ase.Assume the system starts from state (0; 0). The same four 
ases as in thein�nite �rst bu�er 
ase are 
onsidered. For 
ases 1, 2 and 3, i.e., when the systemis empty and when the system state is (x; 0) and (0; y) for some x; y 2 IN2, theimportan
e sampling distribution is the same as in the in�nite �rst bu�er 
ase.When the system is in state (x; y) for some x; y 2 IN2, the importan
e samplingprobabilities derive from the same starting point as before:�02 = la(x+ y) ls(y) � �2�+ �1 + �2� :As before, the remaining probability (1� �02) is split between the 
ustomer arrival32



event and the servi
e 
ompletion event at the �rst node based on the number of
ustomers in the system. Sin
e the �rst node has a �nite 
apa
ity b, the fra
tion �sof the importan
e sampling probability (1� �02) assigned to the servi
e 
ompletionat node one is in
reased, relative to the in�nite �rst bu�er 
ase, by a fa
tor 
 whi
hdepends on the number of 
ustomers at the �rst node. However, if �1 > �2 thenthis modi�
ation is not ne
essary, so 
 = 0 in this spe
ial 
ase. The importan
esampling probabilities for 
ustomer arrival events and servi
e 
ompletion at nodeone are: �01 = (�s + 
) (1� �02) ; and�0 = 1� �01 � �02;where �s is de�ned as before and
 = xb � �1�+ �1 � �s� :The method 
an be implemented in the same way as that of the in�nite �rstbu�er 
ase using two sta
ks: La for storing arrival event likelihood ratios and Lsfor storing likelihood ratios of servi
e 
ompletion events at �rst node.
33



Chapter 4
Numeri
al Results
Experimental results for four, two node tandem Ja
kson network examples arepresented. In the �rst example, the se
ond server is the bottlene
k (�1 > �2),in the se
ond and third examples the �rst server is the bottlene
k (�1 < �2) andin the fourth example the servi
e rates at the two nodes are equal. Results fromexperiments that estimate the probability that the 
ontents of the se
ond bu�errea
h the bound B before rea
hing zero starting from state (1; 1) and (0; 0) arepresented for both �nite and in�nite �rst bu�er 
ases. These 
ases 
ome dire
tlyfrom Kroese and Ni
ola (2002). The rates in the tables 
an be normalized so thatthe normalized rates sum to one.The result from ea
h simulation experiment is based on 1,000,000 
y
les. Cy-
les end when the se
ond node experien
es bu�er over
ow or when the se
ondnode empties. Ea
h simulation run provides an estimate for the over
ow prob-34



ability (Mean), a 95% 
on�den
e interval halfwidth (Halfwidth) and the relativeerror (RE), i.e., standard deviation divided by mean. Computation times (CPU)are displayed in terms of average number of events per 
y
le. The tables in-
lude estimates of the over
ow probabilities obtained by applying the exponential
hange of measure te
hnique (K-N) presented by Kroese and Ni
ola (2002). Thenumeri
al values for these probabilities presented by Kroese and Ni
ola (2002) arealso provided. The numeri
al values 
an be obtained by using the algorithm out-lined in Garvels and Kroese (1999). The results from the two methods (BLR andexponential 
hange of measure) are 
ompared using Varian
e Redu
tion Ratios(VRRs). If the VRR is less than one, then the K-N method is more eÆ
ient andthe BLR method is more eÆ
ient if the VRR is greater than one . All simulationswere implemented in C and run on an HP C3600 workstation.Tables 1-4 display the results for the estimates of the probability 
1 for thein�nite �rst bu�er 
ases. Tables 5-8 display the results for the estimates of theprobability 
1 for 
ases where the �rst bu�er is limited to nine 
ustomers. Tables9 and 10 present the estimates of the probability 
0 for all four examples for thein�nite and �nite �rst bu�er 
ases respe
tively.The relative error of the BLR method is bounded independent of the bu�ersize when the se
ond server is the bottlene
k in both �nite and in�nite bu�er
ases. For the in�nite �rst bu�er 
ase, this is 
onsistent with Theorem 1. In theother two 
ases, i.e., when the �rst server is the bottlene
k and when the servi
erates at both nodes are equal, the relative error appears to be linearly bounded.35



Based on the numeri
al results, the BLR method is more eÆ
ient than the K-Nmethod when the bu�er at the �rst node is in�nite. In 
ontrast, the K-N methodis more eÆ
ient than the BLR method for B larger than 25 in the �nite �rst bu�er
ases. This is not surprising given that the BLR relative errors are only linearlybounded in this 
ase while the relative errors for the K-N method are bounded.The BLR method yields similar results when used to estimate the over
owprobabilities 
0 and 
1. The K-N method also yields similar results ex
ept whenthe �rst server is the bottlene
k and its 
apa
ity is in�nite in whi
h 
ase therelative error in
reases sharply with B. Kroese and Ni
ola (2002) have suggestedthat a di�erent 
hange of measure is needed in this 
ase when the starting stateis (0,0).
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Table 4.1: Estimates of 
1 in Example 1 (�; �1; �2 = 1; 4; 2) with b =1Bu�ersize Numeri
al Method Mean Halfwidth RE CPU VRR20 1.43e-06 BLR 1.43e-06 1.26e-09 0.45e-03 85 3.8K-N 1.43e-06 3.20e-09 1.13e-03 51 |25 4.47e-08 BLR 4.47e-08 3.95e-11 0.45e-03 110 3.8K-N 4.51e-08 1.00e-10 1.13e-03 65 |50 1.33e-15 BLR 1.33e-15 1.18e-18 0.45e-03 235 3.8K-N 1.35-15 3.01e-18 1.13e-03 136 |60 1.30e-18 BLR 1.30e-18 1.15e-21 0.45e-03 285 3.8K-N 1.33e-18 2.95e-21 1.13e-03 164 |100 1.18e-30 BLR 1.18e-30 1.05e-33 0.45e-03 485 3.8K-N 1.22e-30 2.72e-33 1.13e-03 276 |
Table 4.2: Estimates of 
1 in Example 2 (�; �1; �2 = 1; 2; 3) with b =1Bu�ersize Numeri
al Method Mean Halfwidth RE CPU VRR20 2.05e-11 BLR 2.05e-11 5.24e-14 1.30e-03 70 9.2K-N 2.05e-11 1.97-13 4.89e-03 46 |25 4.61e-14 BLR 4.61e-14 1.35e-16 1.49e-03 89 9.1K-N 4.63e-14 5.07e-16 5.59e-03 57 |50 4.31e-27 BLR 4.30e-27 1.93e-29 2.29e-03 186 8.5K-N 4.28e-27 7.27e-29 8.66e-03 112 |60 2.96e-32 BLR 2.96e-32 1.49e-34 2.57e-03 224 8.4K-N 2.94e-32 5.62e-34 9.76e-03 133 |100 8.60e-53 BLR 8.58e-53 6.02e-55 3.58e-03 378 8.4K-N 8.49e-53 2.32e-54 13.8e-03 218 |
Table 4.3: Estimates of 
1 in Example 3 (�; �1; �2 = 3; 4; 6) with b =1Bu�ersize Numeri
al Method Mean Halfwidth RE CPU VRR20 1.35e-08 BLR 1.35e-08 3.54e-13 1.34e-03 97 6.6K-N 1.35e-08 1.38e-20 5.20e-03 42 |25 1.97e-10 BLR 1.97e-10 5.95e-13 1.54e-03 125 6.4K-N 1.98e-10 2.33e-12 5.99e-03 52 |50 2.20e-19 BLR 2.20e-19 1.03e-21 2.39e-03 264 6.1K-N 2.22e-19 4.13e-21 9.49e-03 101 |60 6.54e-23 BLR 6.53e-23 3.46e-25 2.70e-03 320 6.0K-N 6.68e-23 1.39e-24 10.7e-03 120 |100 6.79e-37 BLR 6.79e-37 5.08e-39 3.80e-03 541 5.8K-N 6.96e-37 2.05e-38 15.2e-03 194 |37



Table 4.4: Estimates of 
1 in Example 4 (�; �1; �2 = 1; 2; 2) with b =1Bu�ersize Numeri
al Method Mean Halfwidth RE CPU VRR20 2.79e-07 BLR 2.79e-07 7.84e-10 1.43e-03 94 1.9K-N 2.78e-07 1.59e-09 2.90e-03 43 |25 7.66e-09 BLR 7.68e-09 2.33e-11 1.55e-03 122 1.8K-N 7.67e-09 4.67e-11 3.10e-03 54 |50 1.56e-16 BLR 1.56e-16 5.92e-19 1.93e-03 256 1.6K-N 1.56e-16 1.16e-18 3.79e-03 107 |60 1.38e-19 BLR 1.38e-19 5.55e-22 2.04e-03 308 1.6K-N 1.39e-19 1.08e-21 3.99e-03 127 |100 9.62e-32 BLR 9.60e-32 4.45e-34 2.39e-03 518 1.5K-N 9.58e-32 8.63e-34 4.59e-03 208 |
Table 4.5: Estimates of 
1 in Example 1 (�; �1; �2 = 1; 4; 2) with b = 9Bu�ersize Numeri
al Method Mean Halfwidth RE CPU VRR20 1.43e-06 BLR 1.43e-06 1.27e-09 0.45e-03 85 3.8K-N 1.43e-06 3.20e-09 1.13e-03 51 |25 4.45e-08 BLR 4.45e-08 3.99e-11 0.45e-03 110 3.7K-N 4.48e-08 9.99e-11 1.13e-03 65 |50 1.30e-15 BLR 1.30e-15 1.21e-18 0.47e-03 235 3.5K-N 1.32e-15 2.99e-18 1.13e-03 136 |60 1.26e-18 BLR 1.26e-18 1.19e-21 0.48e-03 285 3.5K-N 1.29e-18 2.92e-21 1.13e-03 164 |100 1.12e-30 BLR 1.11e-30 1.10e-33 0.49e-03 485 3.3K-N 1.12e-30 2.66e-33 1.17e-03 277 |
Table 4.6: Estimates of 
1 in Example 2 (�; �1; �2 = 1; 2; 3) with b = 9Bu�ersize Numeri
al Method Mean Halfwidth RE CPU VRR20 1.89e-11 BLR 1.88e-11 4.15e-14 1.12e-03 68 2.8K-N 1.87e-11 8.69e-14 2.37e-03 43 |25 3.76e-14 BLR 3.76e-14 1.00e-16 1.37e-03 87 1.8K-N 3.76e-14 1.75e-16 2.37e-03 53 |50 1.25e-27 BLR 1.25e-27 6.90e-30 2.83e-03 182 0.4K-N 1.25e-27 5.80e-30 2.37e-03 107 |60 5.06e-33 BLR 5.00-33 7.48e-35 9.62e-03 221 0.1K-N 5.06e-33 2.35e-35 2.37e-03 128 |100 1.38e-54 BLR 1.39-54 2.48e-56 9.12e-03 371 0.04K-N 1.37e-54 6.39e-57 2.37e-03 214 |38



Table 4.7: Estimates of 
1 in Example 3 (�; �1; �2 = 3; 4; 6) with b = 9Bu�ersize Numeri
al Method Mean Halfwidth RE CPU VRR20 1.15e-08 BLR 1.15e-08 2.74e-11 1.21e-03 91 1.6K-N 1.15e-08 5.12e-11 2.27e-03 41 |25 1.41e-10 BLR 1.40e-10 3.89e-13 1.41e-03 117 1.2K-N 1.41e-10 6.25e-13 2.27e-03 52 |50 3.89e-20 BLR 3.88e-20 1.93e-22 2.54e-03 246 0.3K-N 3.88e-20 1.73e-22 2.27e-03 103 |60 5.84e-24 BLR 5.85e-24 3.57e-26 3.11e-03 299 0.2K-N 5.89e-24 2.61e-26 2.27e-03 124 |100 2.98e-39 BLR 2.99e-39 3.87e-41 6.61e-03 506 0.1K-N 2.98e-39 1.33e-41 2.27e-03 207 |

Table 4.8: Estimates of 
1 in Example 4 (�; �1; �2 = 1; 2; 2) with b = 9Bu�ersize Numeri
al Method Mean Halfwidth RE CPU VRR20 2.56e-07 BLR 2.56e-07 3.29e-10 0.65e-03 96 3.8K-N 2.55e-07 9.56e-10 1.91e-03 43 |25 6.40e-09 BLR 6.40e-09 9.98e-12 0.79e-03 125 2.5K-N 6.42e-09 2.40e-11 1.91e-03 54 |50 6.34e-17 BLR 6.34e-17 1.84e-19 1.48e-03 268 0.7K-N 6.33e-17 2.37e-19 1.91e-03 110 |60 3.99e-20 BLR 3.99e-20 1.40e-22 1.79e-03 324 0.5K-N 3.99e-20 1.49e-22 1.91e-03 132 |100 6.24e-33 BLR 6.25e-33 3.92e-35 3.20e-03 552 0.1K-N 6.21e-33 2.33e-35 1.91e-03 221 |
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Table 4.9: Estimates of 
0 with b =1Bu�ersize Example Method Mean Halfwidth RE CPU VRR50 1 BLR 7.40e-16 1.40e-18 0.97e-03 230 1.0K-N 7.40e-16 2.05e-18 1.41e-03 112 |2 BLR 1.03e-26 9.80e-29 4.86e-03 188 18.4K-N 9.06e-27 5.54e-28 31.1e-03 108 |3 BLR 3.86e-19 3.10e-21 4.10e-03 267 10.4K-N 3.82e-19 1.65e-20 22.1e-03 98 |4 BLR 1.54e-16 5.97e-19 1.98e-03 256 4.0K-N 1.54e-16 1.93e-18 6.39e-03 98 |100 1 BLR 6.56e-31 1.23e-33 0.96e-03 480 1.0K-N 6.56e-31 1.82e-33 1.41e-03 224 |2 BLR 2.39e-52 5.76e-54 12.3e-03 380 17.8K-N 2.22e-52 3.29e-53 75.7e-03 207 |3 BLR 1.23e-36 1.87e-38 7.72e-03 543 11.8K-N 1.23e-36 1.09e-37 45.4e-03 187 |4 BLR 9.51e-32 4.53e-34 2.43e-03 518 2.5K-N 9.59e-32 1.18e-33 6.28e-03 187 |
Table 4.10: Estimates of 
0 with b = 9Bu�ersize Example Method Mean Halfwidth RE CPU VRR50 1 BLR 7.23e-16 1.40e-18 0.99e-03 233 1.0K-N 7.35e-16 2.06e-18 1.43e-03 111 |2 BLR 1.96e-27 1.16e-29 3.02e-03 185 1.9K-N 1.96e-27 2.15e-29 5.61e-03 103 |3 BLR 5.59e-20 3.05e-22 2.79e-03 251 0.8K-N 5.64e-20 4.30e-22 3.89e-03 100 |4 BLR 5.89e-17 1.78e-19 1.54e-03 269 1.0K-N 5.86e-17 2.89e-19 2.52e-03 101 |100 1 BLR 6.21e-31 1.23e-33 1.00e-03 483 1.0K-N 6.45e-31 1.83e-33 1.45e-03 225 |2 BLR 2.16e-54 3.93e-56 9.27e-03 374 0.2K-N 2.18e-54 2.41e-56 5.65e-03 204 |3 BLR 4.30e-39 6.10e-41 7.23e-03 512 0.1K-N 4.33e-39 3.29e-41 3.88e-03 199 |4 BLR 5.83e-33 3.86e-35 3.38e-03 554 0.3K-N 5.78e-33 2.85e-35 2.51e-03 200 |
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Chapter 5
Con
lusions
This paper presents a balan
ed likelihood ratio importan
e sampling approa
h forestimating the over
ow probability of the se
ond bu�er in a two node tandemJa
kson network. The proposed importan
e sampling distributions depend on thestate of the system. The importan
e sampling estimator is asymptoti
ally eÆ
ientwith bounded relative error when the �rst bu�er 
apa
ity is in�nite ex
ept whenthe �rst server is the bottlene
k. This has been proved formally and 
orroboratedusing numeri
al results. When the �rst server is the bottlene
k, numeri
al resultsindi
ate that the relative error is linearly bounded in the bu�er size. Empiri
aleviden
e indi
ates that the BLR method outperforms existing importan
e sam-pling distributions when the �rst node bu�er is in�nite. More work is neededto determine why the BLR method struggles when the �rst node bu�er is �nite.The proposed methods 
an be readily extended to estimate individual bu�er over-41




ow probabilities in tandem Ja
kson networks with more than two nodes. Theproposed method 
an also be used to estimated bu�er over
ow probabilities innon-Markovian networks.
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