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ABSTRACTFor more than a deade, importane sampling has been a popular tehnique forthe eÆient estimation of rare event probabilities. This thesis presents an ap-proah for applying balaned likelihood ratio importane sampling to estimaterare event probabilities in tandem Jakson networks. The rare event of interest isthe probability that the ontent of the seond bu�er in a two node tandem Jaksonnetwork reahes some high level before it empties. Heuristi importane samplingdistributions are derived that an be used to estimate this overow probabilityin ases where the �rst bu�er apaity is �nite and in�nite. In the proposedmethods, the transition probabilities of the embedded disrete-time Markov hainare modi�ed dynamially to bound the overall likelihood ratio of eah yle. Theproposed importane sampling distributions di�er from previous balaned likeli-hood ratio methods in that they are spei�ed as funtions of the ontents of thebu�ers. When the �rst bu�er apaity is in�nite, the proposed importane sam-pling estimator yields bounded relative error exept when the �rst server is thebottlenek. In the latter ase, numerial results suggest that the relative erroris linearly bounded in the bu�er size. When the �rst bu�er apaity is �nite,empirial results indiate that the relative errors of these importane samplingestimators are bounded independent of the bu�er size when the seond server isthe bottlenek and bounded linearly in the bu�er size otherwise.
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Chapter 1
Introdution
Performane measures of highly reliable systems are hard to ompute sine theydepend upon the ourrene of rare events. Tandem Jakson networks (for an in-trodution to Jakson networks see Chapter 1, Serfozo 1999) serve as a simpli�edmodel for analyzing rare events in many reliable systems suh as swithed teleom-muniation networks, manufaturing systems and omputer networks. Systemperformane measures suh as the probability that the system size or a spei�queue length exeeds a given level are needed to aurately assess system reliabil-ity, partiularly the time until one of these events ours.Standard Monte Carlo simulation is ineÆient in produing aurate estimatesof rare event probabilities sine it requires prohibitively long run lengths. Instandard Monte Carlo simulation, the stohasti behavior of the system is notmodi�ed to fore the rare event to our and the rare event is not observed very4



often. Consequently, the number of simulation trials required to get a preiseestimate of the probability of the rare event is very large.
1.1 Literature ReviewImportane sampling is gaining popularity as an eÆient method for analyzingrare events in queueing and reliability systems (see Asmussen and Rubinstein 1995,Glynn and Iglehart 1989, Heidelberger 1995). The main idea of importane sam-pling is to fore a simulation to observe a rare event frequently. The appliation ofimportane sampling involves simulating the model using an auxiliary distributiondesigned to make the system experiene rare events of interest more often. Theauxiliary distribution modi�es the stohasti behavior of the system suh thatevents that lead towards a rare event are more likely to happen and thus moresamples hit the rare event. The sample values obtained by using the auxiliarydistribution are then adjusted by using likelihood ratios in order to aount forthe modi�ations to the stohasti proess leading to an unbiased estimator. Theauxiliary distribution should be formed suh that variane redution is ahievedwhen ompared to standard Monte Carlo simulation.An importane sampling distribution that yields a onstant value for everysample (zero-variane importane sampling) is almost impossible beause it re-quires perfet knowledge of the quantity being estimated. Kuruganti and Strik-land (1997) identify properties that haraterize zero-variane importane sam-5



pling distributions and use them to develop a method to ompute an optimal mea-sure for a tandem queueing system. Juneja (1993, 2001) develops these propertiesas a basis for identifying asymptotially optimal importane sampling distribu-tions.Large deviations theory has been used for deriving and analyzing importanesampling estimators. Using large deviations theory, a heuristi hange of measurewas derived for estimating the probability that total system size exeeds a givenlevel before returning to zero in tandem Jakson networks (see Parekh and Wal-rand 1989). This exponential twisting or tilting hange of measure interhangesthe arrival rate and the smallest servie rate in the network. This heuristi waslater analyzed by Glasserman and Kou (1995) who established neessary and suf-�ient onditions for the asymptoti eÆieny of this heuristi importane sam-pling estimator. An adaptive importane sampling method for estimating overowprobabilities by minimizing the ross-entropy between a zero-variane distributionand the proposed importane sampling distribution has been developed (de Boeret al. 2000). Reently, de Boer, Kroese and Rubinstein (2002) proposed a modi-�ed approah whih utilizes an optimal tilting parameter to estimate the overowprobability in three stages.The balaned likelihood ratio approah to importane sampling (see Alexopou-los and Shultes 1998, 2001) was developed for analyzing system performane infault-tolerant repairable systems. This approah has been used to derive impor-tane sampling estimators for limiting system unavailability and mean time to6



system failure that yield bounded relative error. Shultes (2002) applied this ap-proah to estimate the system overow probability in tandem Jakson networks.This method yields a zero variane importane sampling distribution for a singlenode system. For systems with more than one node, this method yields asymp-totially eÆient results with some restritions on the model parameters.The rare event studied in this thesis is the bu�er overow probability at theseond node in a two node tandem Jakson network. An exponential tilting teh-nique was developed by Kroese and Niola to estimate this overow probability(see Kroese and Niola 2002). These authors exponentially tilt a Markov additiveproess representation of the system to derive an importane sampling estimator.Their distribution is state dependent in that it depends on the ontents of the�rst bu�er.
1.2 Contributions of this thesisIn this thesis work, an importane sampling distribution for estimating the over-ow probability at the seond node in a two node tandem Jakson network is de-rived using balaned likelihood ratio approah. The proposed distributions haveguaranteed variane redution over standard Monte Carlo methods. The proposeddistributions depend on the ontents of the bu�ers and an be applied to any set ofarrival and servie rates. When the �rst bu�er is in�nite, the proposed estimatoris asymptotially optimal exept when the �rst server is bottlenek. In the latter7



ase, numerial results indiate that the relative error is linearly bounded in thebu�er size.Chapter 2 presents the model studied and provides an overview of importanesampling and the balaned likelihood ratio approah. Chapter 3 provides detailsof the proposed method for the in�nite and �nite �rst bu�er ases. Chapter4 ontains experimental results. Conlusions and future researh diretions arepresented in Chapter 5.
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Chapter 2
Bakground
Consider a tandem Jakson network with two nodes. Customers arrive at the �rstqueue aording to a Poisson proess with rate �. The servie time of a ustomerat the �rst node is exponential with rate �1, independent of the input proessand servie time at the seond node. The output proess of the �rst queue formsthe input proess of the seond queue. The servie time at the seond node isexponential with rate �2, whih is also independent of the input proess and servietime at the �rst node. Without loss of generality, assume that � + �1 + �2 = 1:The queueing system is assumed to be stable, i.e., � < min(�1; �2).Let X(t) and Y (t) denote the number of ustomers at the �rst and seondnode at time t, respetively (inluding ustomers in servie). Let b denote the sizeof the �rst bu�er, whih may be �nite or in�nite. The quantity of interest is theprobability () that the number of ustomers in the seond queue reahes some9



high level B 2 IN before hitting 0. We wish to estimate this probability giventhat the system starts in state (X(0) = 0; Y (0) = 0) or (X(0) = 1; Y (0) = 1).These probabilities are denoted as 0 and 1 respetively. To estimate 0 (1), thesimulation yle starts from (0,0) ((1,1)) and ends when either the seond queuereahes B or zero.The system an be modeled as a Markov proess with system state Z(t) =(X(t); Y (t)). Let r(t) = �+ 1 (X(t) > 0)�1 + 1 (Y (t) > 0)�2denote the total rate of event transitions out of Z(t). The bu�er overow prob-ability depends upon the embedded disrete-time Markov hain whose one-steptransition probabilities at time t are: �=r(t) the probability the next event is anarrival, 1 (X(t) > 0)�1=r(t) the probability that the next event is a servie om-pletion at node one, and 1 (Y (t) > 0)�2=r(t) the probability that the next eventis a servie ompletion at node two.
2.1 Importane SamplingLet 
 denote the set of all yles and for eah ! 2 
, let �(!) denote the largestnumber of ustomers at the seond node within the yle. Consider an indiator
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funtion, � (!), whih is de�ned as follows:� (!) = 8>><>>: 1 if � (!) = B0 if � (!) < BThe bu�er overow probability of interest (i; i = 0; 1) an be written asi = EP [� (!)℄where the subsript P denotes sampling from the probability measure P . Instandard Monte Carlo simulation, i an be estimated by drawing N independentsamples under the probability measure P as follows:�i = 1N NXj=1 � (!j)The estimator �i is an unbiased estimator of i and EP [�i℄ = i. The variane of�i is i (1� i)/N . By using the entral limit theorem, a on�dene interval for�i an be onstruted as �i � z�=2 pi (1� i)/N , where z�=2 is 100(1� �/2)%quantile for a standard normal distribution. The number of samples required toaurately estimate i is very large sine the event of interest is very rare.Under importane sampling, an alternative estimator is used to estimate isuh that the rare event is experiened more often. The probability P (!) ofobserving the yle ! is the produt of one-step transition probabilities. A new11



importane sampling distribution P 0 is de�ned suh that P (!) > 0 =) P 0(!) >0 and i = X!2
� (!) P (!)P 0 (!) P 0 (!)= X!2
� (!) L(!)P 0 (!)where the likelihood ratio L(!) is the Radon-Nikodym derivative of P with respetto P 0. The likelihood ratio L(!) an be deomposed into a produt of one-steptransition event likelihood ratios assoiated with eah individual event within theyle. An unbiased estimator ̂ for  an then be obtained by drawing N inde-pendent samples under the probability measure P 0 and multiplying the samplesby the orresponding likelihood ratios. Thus,̂i = 1N NXj=1 � (!j) L (!j)When EP 0 �� (!)2 L (!)2� < 1, a on�dene interval for ̂i an be onstrutedas desribed earlier using the entral limit theorem. The probability measureP 0 should be seleted suh that the variane of the estimator is minimized. Ingeneral, P 0 should be hosen suh that EP 0 � � (!)2 L (!)2� < EP � � (!)2� toobtain variane redution.
12



2.2 Comparing approahes2.2.1 Asymptoti PropertiesThe asymptoti eÆieny of an estimator an be quanti�ed by onsidering therelative error of the estimator. Relative error is de�ned as the ratio of the standarddeviation of the estimator over its expeted value. Bounded relative error refersto the behavior of the estimator as the quantity to be estimated approahes zerowhih ours by varying a rarity parameter for the system under study. In thismodel, the quantity of interest i approahes zero as the bu�er size is inreased toin�nity. An estimator yields bounded relative error if the relative error remainsbounded as the quantity to be estimated approahes zero. This implies that, thesample size required to ahieve a desired level of auray remains bounded in thelimit, whih is the best possible result.An estimator is said to be asymptotially eÆient if the relative error growsat a sub-exponential rate as the quantity to be estimated approahes zero. Thismeans that the number of samples grows at a sub-exponential rate to ahieve thedesired auray. An estimator is said to have linearly bounded relative errorwhen the number of samples required to ahieve a �xed relative error inreaseslinearly in bu�er size B. For importane sampling estimators, bounded relativeerror implies asymptoti eÆieny.
13



2.2.2 Variane Redution RatioTo ompare the performane of two importane sampling estimators, we needto take into aount variane redution and the omputational e�ort required toahieve that redution. The variane redution ratio (VRR) measures the trade-o� between variane redution and the assoiated omputational ost. VRRs areomputed by multiplying a ratio of the varianes of two estimators by a ratio ofthe orresponding omputational e�ort, i.e., simulation time or number of eventssampled to generate that variane. Typially, VRRs are estimated empiriallyby simulation. If the VRR is less than one, then the approah in the numeratoris more eÆient and a VRR greater than one implies that the approah in thedenominator is more eÆient.
2.3 Balaned Likelihood Ratio ApproahesThe proposed importane sampling method is based on the balaned likelihoodratio approah. This approah was originally proposed to estimate the reliabilityof fault-tolerant repairable systems (see Alexopoulos and Shultes 2001) and waslater adapted to estimate system overow probabilities in tandem-Jakson net-works (see Shultes 2002). The importane sampling distribution for estimatingthe bu�er overow probability is based on the onept of ontrolling the event like-lihood ratios within the yles. A key feature of this approah is that likelihoodratios assoiated with yles are fored to be bounded from above by one.14



The appliation of the balaned likelihood ratio approah to estimate 0 and1 proeeds as follows. Classify all system events into 2 lasses: events that movethe system towards bu�er overow and events that move the system away frombu�er overow. Arrival events and servie ompletion events at the �rst nodebelong to the �rst ategory and servie ompletion events at the seond node fallinto the seond ategory. The balaned likelihood ratio method balanes the eventlikelihood ratios assoiated with events from these two lasses.Every servie ompletion event at the seond node must be preeded by anarrival event and a servie ompletion event at the �rst node. The produt ofthese three event likelihood ratios an be fored to be one for all ustomers.This assignment auses likelihood ratios assoiated with yles to be boundedbelow one. The proposed method has the following basi balaned likelihoodratio properties established by Shultes (2002).� Every event that moves the system loser to the rare event (arrival andservie ompletion at the �rst node) has one orresponding event (servieompletion at the seond node) that e�etively anels out the events thatmoved the system loser to overow.� Events that would omplete a yle before the system experienes a rareevent have zero probability in the importane sampling distribution.� If the events that move the system loser to bu�er overow are fored tobe more likely, then the orresponding future event whih would move the15



system away from overow is fored to be less likely.To summarize, eah ustomer in the system experienes a series of events.Eah event aumulates an event likelihood ratio. At any given time, the produtof the event likelihood ratios aumulated for a ustomer is less than one. Whenthe ustomer leaves the system, the produt of the orresponding event likelihoodratios beomes one. The overall likelihood ratio of a yle is obtained by multi-plying the aumulated event likelihood ratios of all the ustomers in the systemwhen the yle ends. Sine the aumulated likelihood ratio of all ustomers inthe system is below one, the overall likelihood ratio of the yle is bounded fromabove by one.
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Chapter 3
Tandem Queues
Balaned likelihood ratio methods for estimating the probabilities 0 and 1 whenthe �rst bu�er apaity is in�nite and �nite are desribed in Setions 3.1 and3.2 respetively. The importane sampling distribution is the same for estimatingboth 0 and 1. However, the method for estimating 0 inludes ases whihdo not our while estimating 1, i.e., when the starting state is (1,1). Hene,without loss of generality, the importane sampling distributions are desribed forthe starting state (0,0).Customer arrival events and servie ompletion events at the �rst node gen-erate event likelihood ratios. These event likelihood ratios are used as multipliersfor biasing the probability of servie ompletion at the seond node. Let la(i)denote the ith arrival event likelihood ratio and ls(i) denote the ith �rst nodeservie ompletion event likelihood ratio. The importane sampling distribution17



is formed suh that the ontent of the seond bu�er reahes the bound B in allyles. The idea is to avoid paths whih fail to experiene the rare event withinthe yle.The proposed importane sampling distribution depends on the sample pathfor the proess fZ(t); t � 0g. Importane sampling probabilities are time de-pendent, but at any time within the simulation only three importane samplingprobabilities are relevant. Let �0 denote the importane sampling probability ofan arrival event. Let �01 and �02 denote the importane sampling probabilities ofservie ompletion events at the �rst and seond nodes respetively.
3.1 In�nite First Bu�erThe importane sampling approah desribed in Setion 2.2 is diretly applied tothe in�nite �rst bu�er ase. There are four ases to onsider: (1) The system isempty, (2) All ustomers are at the �rst node, (3) All ustomers are at the seondnode, and (4) Customers are at both nodes in the system.Case 1: The system is empty. The next event is a ustomer arrival withprobability one. The event likelihood ratio for this event is replaed by l0a = �=(�+ �2) in the implementation beause an arrival event likelihood ratio of onedoes not allow the servie ompletion probability assoiated with this arrival tobe redued. This initial likelihood ratio is used to bias the servie ompletionprobability of this �rst ustomer at node one. It is easy to show that this deviation18



from the basi balaned likelihood ratio approah maintains established likelihoodratio properties.Case 2: All ustomers in the system are at the �rst node, i.e., the systemstate is (X(t); Y (t) = x; 0) for t � 0 and some x 2 IN. In this ase, the nextevent ould be either a ustomer arrival or a servie ompletion at the �rst node.Deviating from the original balaned likelihood ratio desription, the importanesampling probability for a servie ompletion event at the �rst node is reduedto inrease the arrival probability. The importane sampling probabilities in thisase are: �01 = la(x) � �1�+ �1� ; and�0 = 1� �01:Case 3: All ustomers in the system are at the seond node, i.e., the systemstate is (X(t); Y (t) = 0; y) for t � 0 and some y 2 IN. In this ase, the next eventould be either a ustomer arrival or a servie ompletion at the seond node. Theimportane sampling probabilities when y > 1 are:�02 = la(y) ls(y) � �2�+ �2� ; and�0 = 1� �02:
19



The servie ompletion event is not allowed when y = 1 if the rare event has notyet ourred within the yle. In this latter ase, the ustomer arrival probabilityis one.Case 4: Customers in the system are at node one and node two, i.e., thesystem state is (X(t); Y (t) = x; y) for t � 0 and some x; y 2 IN2. The importanesampling probabilities in this ase when y > 1 derive from:�02 = la(x+ y) ls(y) � �2�+ �1 + �2� :The remaining probability (1� �02) is split between the ustomer arrival eventand servie ompletion event at the �rst node based on the number of ustomersin the system.Let �s and �a denote the fration of the importane sampling probability(1� �02) assigned to the servie ompletion at the �rst node and the arrival eventrespetively. The importane sampling probabilities for the arrival event and theservie ompletion at node one are:�01 = �s (1� �02) ; and�0 = �a (1� �02) :When the system size is lesser than or equal to the bound B, the servie om-pletion probability at the �rst node is not biased exept when the �rst server is20



the bottlenek. When the �rst server is the bottlenek, the importane samplingdistribution inreases the servie ompletion probability at the �rst node by allo-ating a fration of (1� �02) for this purpose depending on the state of the system.Thus, when x + y � B;�s = 8>><>>: max�0:5; �11� �02� if �1 < �2�11� �02 if �1 � �2When the system size is greater than the bound B, the importane samplingprobabilities alloated to the arrival event and the servie ompletion at nodeone are proportional to the respetive rates � and �1. Thus, when x + y > B;�s = �1�+ �1 and �a = 1� �s:
3.1.1 Initial Event Likelihood RatioWhen the system is in state (1; 0), the initial likelihood ratio l0a = �= (�+ �2) isobtained by looking ahead one stage. At this point, we need a value less thanone, to bias the servie ompletion probability of the ustomer at node one. Thelikelihood ratio of an arrival event, when the system moves from state (0; 1) to(1; 1) would be l0a = �= (�+ �2) (as explained in Case 3). This likelihood ratiois not required to bias the servie probability when the system is in state (1; 1)beause �02 is set to zero in order to prevent the yle from ending before the21



rare event ours. Hene, this event likelihood ratio an be used for l0a when thesystem is in state (1; 0).
Remark 1 While estimating 1, the starting state of the system is (1,1). In thisase, the arrival likelihood ratio for the �rst and seond ustomer is one. So,when the system is in state (0; 2), the arrival likelihood ratio of one does not allowthe seond node servie ompletion probability assoiated with this arrival to beredued. Hene, in this ase the value of la(2) is replaed by l0a = �= (�+ �2) bylooking ahead one stage when the system is in state (0; 2) as desribed earlier.3.1.2 ImplementationDe�ne two staks: La for storing arrival event likelihood ratios and Ls for storinglikelihood ratios for servie ompletion events at the �rst node. Initially eahstak ontains one multiplier, l0a = �=(� + �2) is on stak La and l0s = 0 is onstak Ls where the 0 guarantees that the yle does not end without observing abu�er overow event. After eah arrival event, the event likelihood ratio (�=�0)is pushed onto stak La. After eah servie ompletion event at the seond node,one likelihood ratio from eah stak is removed. For eah servie ompletion eventat the �rst node, the event likelihood ratio (�1=�01) is pushed onto stak Ls if thesystem is in state (x; y) for some x 2 IN, y 2 IN and a likelihood ratio is removedfrom stak La when the system state is (x; 0) for some x 2 IN.22



3.1.3 Asymptoti Behavior in In�nite First Bu�er CaseThe proposed balaned likelihood ratio method fores eah yle to visit the rareevent. Hene, the likelihood ratio of a yle L(!), onsists of event likelihoodratios omputed up to the time there are B ustomers at the seond node. Themethod also fores likelihood ratios for servie ompletion events at seond nodeto anel the event likelihood ratios for the orresponding arrival and �rst nodeservie ompletion events. Hene, the overall likelihood ratio for a yle is theprodut of the likelihood ratios of arrival events and servie ompletion events atthe �rst node assoiated with the ustomers in the system when the rare eventhappens. L(!) has the following form,L(!) =  x+BYi=1 la(i)! BYj=1 ls(j)! (3.1)where la(i) is the ith arrival event likelihood ratio in La and ls(j) is the jth �rstnode servie ompletion event likelihood ratio in Ls. For notational purposes,let L1(!) denote the �rst term  x+BYi=1 la(i)! and L2(!) denote the seond term BQj=1 ls(j)!. Note that the system state is (x;B) when the system hits the rareevent. As desribed earlier in the implementation, the event likelihood ratios ofarrival and servie ompletion events at the �rst node are stored in two separatestaks La and Ls respetively. The number of likelihood ratios in the stak La isequal to the number of ustomers in the system (x+B). The number of likelihoodratios in the stak Ls is equal to the number of ustomers at the seond node (B).23



Let Lm � max! L(!) be a upper bound on the likelihood ratio of a yle whileestimating 1. From (3.1),Lm � L1(!)L2(!) for all ! 2 
: (3.2)A value for Lm an be found by �nding upper bounds on L1(!) and L2(!).Lemma 1. The produt of �rst node servie ompletion likelihood ratios (L2(!))is bounded from above by one.Proof. The maximum possible value for the term L2(!) an be obtained by de-termining the maximum possible likelihood ratios ls(j) for all j = 1 toB. Bythe onstrution of the proposed balaned likelihood ratio method, the maximumpossible likelihood ratio for the servie ompletion event at �rst node is boundedfrom above by one. Hene, L2(!) � 1.
Let M(i) � la(i) denote the upper bound for the ith arrival event likelihoodratio. Then, an upper bound for L1(!) an be obtained by  x+BYi=1 M(i)!. Thus,L1(!) �  x+BYi=1 M(i)! (3.3)Lemma 2. When �1 � �2, an upper bound for the ith arrival event likelihood

24



ratio is,
M(i) = 8>>>><>>>>: ��+ �2 � �2M(i� 1) when i > 3� (�+ �2)�2 + ��2 + �22 when i = 3Proof. The ith arrival event likelihood ratio is generated in one of the followingases: (1) System state is (0; i�1). (2) System state is (i�2; 1). (3) System stateis (x; y), where y > 1 and x + y = i � 1. Note that ases 1 and 3 are the samewhen i = 3.Let a1,a2,a3 denote the ith arrival event likelihood ratio in ases 1, 2 and 3respetively. The maximum possible ith arrival event likelihood ratio is M(i) =max(a1; a2; a3).Case 1: The original arrival event probability in this ase is �/(�+ �2). Theimportane sampling probability for this arrival is1 � �2�+ �2 la(i� 1) ls(i� 1) :As desribed earlier in Lemma 1, the value of ls(j) for all j is bounded from aboveby one. la(i � 1) is the (i � 1)th arrival event likelihood ratio in La. The arrivalevent likelihood ratio is the largest when the importane sampling probability forthe arrival event is at its smallest value. So, in order to get the maximum value fora1, la(i�1) should be the maximum possible (i�1)th arrival event likelihood ratio25



used in the simulation. The arrival event likelihood ratio used in the simulationfor la(2) is l0a = �= (�+ �2) (explained in Remark 1). This value remains the samethroughout the simulation in all yles for la(2) . Hene, when i = 3,a1 = �/(� + �2)1 � �2�+ �2 l0aand when i > 3 a1 = �/(�+ �2)1 � �2�+ �2 M(i� 1) : (3.4)
Case 2: The original arrival probability in this ase is equal to�/(�+ �1 + �2): The importane sampling probability for arrival is equal to1 � �1 � �02. Sine there is only one ustomer at �rst node, �02 = 0. Thus,for all i � 3, a2 = �/(�+ �1 + �2)1 � �1 : (3.5)Case 3: The original arrival probability in this ase is equal to�/(�+ �1 + �2). The importane sampling probability for an arrival event isequal to 1� �1 � �02. The importane sampling probability for a servie omple-tion event at the seond node, �02 isla(i� 1) ls(y � 1) � �2�+ �1 + �2� :26



The value of ls(y � 1) is substituted by its upper bound value of one. The valueof la(i� 1) should be the maximum possible (i� 1)th arrival event likelihood ratioused in the simulation in order to get the maximum value of a3. Thus,a3 = �/(�+ �1 + �2)1 � �1 � �M(i� 1) �2�+ �1 + �2� :
Rearranging the terms and using the fat that �+�1+�2 = 1, we �nd that,when i = 3; a1 = ��+ �2 � �2(l0a) and when i > 3; a1 = a3 = ��+ �2 � �2(M(i� 1)) :For all i � 3, a2 = �=(�+ �2) :Hene, when �1 � �2,M(i) = max(a1; a2) = ��+ �2 � �2(l0a) = � (�+ �2)�2 + ��2 + �22 ; for i = 3and M(i) = max(a1; a2; a3) = ��+ �2 � �2M(i � 1) ; for i � 3 :

Remark 2 When �1 < �2, the maximum likelihood ratio M(i) an be found ina similar way. Spei�ally, the values of a1 and a2 in ases 1 and 2 are the same27



as in (3.4) and (3.5) respetively. The form of a3 hanges when the �rst server isthe bottlenek. This is beause, the importane sampling probability of the �rstnode servie ompletion hanges depending on the state of the system.Lemma 3. To get an upper bound on L1(!), the number of arrival event likeli-hood ratios should be B.Proof. The produt of arrival event likelihood ratios is bounded by, L1(!) � x+BYi=1 M(i)!.As mentioned earlier, the number of arrival likelihood ratios in any yle shouldbe greater than or equal to the bu�er size B. Consider the �rst ase when thenumber of ustomers in the system is equal to the bu�er size B when the yleends by hitting the rare event (system state is X(t); Y (t) = 0; B). In this ase,L1(!) is bounded by BQi=1M(i), where M(i) is the maximum possible value for itharrival event likelihood ratio.Consider the seond ase when the system ontains more than B ustomerswhen the yle ends. This means that x > 0 and the system is in state(X(t); Y (t) = x;B). L1(!) in this seond ase is bounded by x+BQi=1 M(i): Thisis equal to  BYi=1M(i)!  x+BYk=B+1M(k)! :By onstrution of the balaned likelihood ratio method, all arrival event likeli-28



hood ratios are bounded from above by one. Thus, � x+BQk=B+1M(k)� is boundedfrom above by one and implies that the bound for L1(!) in the seond ase be-omes lesser by multiplying the term � x+BQk=B+1M(k)�. Hene, to get an upperbound on L1(!), the number of arrival event likelihood ratios should be equal tothe bu�er size B.Using Lemmas 2 and 3, when �1 � �2, the produt of arrival event likelihoodratios L1(!) is bounded by L1(!) � BYi=1M(i) : (3.6)Lemma 4. When �1 � �2, a upper bound for the maximum likelihood ratio of ayle is Lm = (�+ �2) (�B�2)B�1Xk=0 �B�1�k�k2 :
Proof. Using Lemma 1, L2(!) � 1.From (3.6), L1(!) � BYi=1M(i). The arrival event likelihood ratio for the �rst andseond ustomer is one. Hene, M(i) = 1 for i = 1; 2. Using Lemma 2, themaximum possible value for ith arrival event likelihood ratio is,M(i) = ��+ �2 � �2(la(i� 1)) ; i > 2:29



Thus, L1(!) is,
(1) (1)� � (�+ �2)�2 + ��2 + �22� ::::::0BBB� � kPp=0�k�p �p2k+1Pp=0 �k+1�p �p2

1CCCA :::::0BBB�� B�2Pp=0 �B�2�p �p2B�1Pp=0 �B�1�p �p2
1CCCA :

Simplifying the terms,L1(!) � BYi=1M(i) = (�+ �2) (�B�2)B�1Xk=0 �B�1�k�k2 :
Using the bounds for L1(!) and L2(!), we get

L1(!)L2(!) � (1)0BBBBB�(�+ �2) (�B�2)B�1Xk=0 �B�1�k�k2
1CCCCCA (3.7)

Using (3.2) and (3.7), yields the desired result.Theorem 1. The proposed importane sampling distribution ahieves boundedrelative error when �1 � �2.Proof. The relative error (RE) is de�ned as the ratio of the standard deviation ofthe estimator over its expeted value. The maximum likelihood ratio of a yleis an upper bound for the standard deviation of the estimator. Lemma 4 impliesthat, the standard deviation of the proposed estimator � (̂1) is bounded from30



above by Lm = (�+ �2) (�B�2)B�1Xk=0 �B�1�k�k2 :
The rare event of interest is an exponentially rare event, i.e, 1 has exponentialdeay rate. Spei�ally, Remark 3.5 in Kroese and Niola (2002) states that 1is proportional to e�sB when the �rst node has in�nite apaity. They have alsoproven that if �1 � �2, 1 = d �B where d is a positive onstant and � = �/�2(see Lemma A.5 and Remark 3.6 in Kroese and Niola (2002)).The relative error of the proposed BLR method satis�es,

RE �
0BBBBB�(�+ �2)�B�2B�1Xk=0 �B�1�k�k2

1CCCCCAd � ��2�B :
Simplifying the right hand side leads to,

RE � (�+ �2)d �2 0BBB� �B2B�1Pk=0 �B�1�k�k2
1CCCA :
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Hene,
limB!1 � (̂1)1 � (�+ �2)d �2 0BBB� �B2B�1Pk=0 �B�1�k�k2

1CCCA � 1:
Thus, when �1 � �2 the proposed importane sampling estimator has boundedrelative error.
3.2 Finite First Bu�erThe balaned likelihood ratio method for estimating the probability of bu�eroverow in the seond node when the �rst bu�er has �nite apaity is desribedbelow. The approah is similar to the in�nite �rst bu�er ase.Assume the system starts from state (0; 0). The same four ases as in thein�nite �rst bu�er ase are onsidered. For ases 1, 2 and 3, i.e., when the systemis empty and when the system state is (x; 0) and (0; y) for some x; y 2 IN2, theimportane sampling distribution is the same as in the in�nite �rst bu�er ase.When the system is in state (x; y) for some x; y 2 IN2, the importane samplingprobabilities derive from the same starting point as before:�02 = la(x+ y) ls(y) � �2�+ �1 + �2� :As before, the remaining probability (1� �02) is split between the ustomer arrival32



event and the servie ompletion event at the �rst node based on the number ofustomers in the system. Sine the �rst node has a �nite apaity b, the fration �sof the importane sampling probability (1� �02) assigned to the servie ompletionat node one is inreased, relative to the in�nite �rst bu�er ase, by a fator  whihdepends on the number of ustomers at the �rst node. However, if �1 > �2 thenthis modi�ation is not neessary, so  = 0 in this speial ase. The importanesampling probabilities for ustomer arrival events and servie ompletion at nodeone are: �01 = (�s + ) (1� �02) ; and�0 = 1� �01 � �02;where �s is de�ned as before and = xb � �1�+ �1 � �s� :The method an be implemented in the same way as that of the in�nite �rstbu�er ase using two staks: La for storing arrival event likelihood ratios and Lsfor storing likelihood ratios of servie ompletion events at �rst node.
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Chapter 4
Numerial Results
Experimental results for four, two node tandem Jakson network examples arepresented. In the �rst example, the seond server is the bottlenek (�1 > �2),in the seond and third examples the �rst server is the bottlenek (�1 < �2) andin the fourth example the servie rates at the two nodes are equal. Results fromexperiments that estimate the probability that the ontents of the seond bu�erreah the bound B before reahing zero starting from state (1; 1) and (0; 0) arepresented for both �nite and in�nite �rst bu�er ases. These ases ome diretlyfrom Kroese and Niola (2002). The rates in the tables an be normalized so thatthe normalized rates sum to one.The result from eah simulation experiment is based on 1,000,000 yles. Cy-les end when the seond node experienes bu�er overow or when the seondnode empties. Eah simulation run provides an estimate for the overow prob-34



ability (Mean), a 95% on�dene interval halfwidth (Halfwidth) and the relativeerror (RE), i.e., standard deviation divided by mean. Computation times (CPU)are displayed in terms of average number of events per yle. The tables in-lude estimates of the overow probabilities obtained by applying the exponentialhange of measure tehnique (K-N) presented by Kroese and Niola (2002). Thenumerial values for these probabilities presented by Kroese and Niola (2002) arealso provided. The numerial values an be obtained by using the algorithm out-lined in Garvels and Kroese (1999). The results from the two methods (BLR andexponential hange of measure) are ompared using Variane Redution Ratios(VRRs). If the VRR is less than one, then the K-N method is more eÆient andthe BLR method is more eÆient if the VRR is greater than one . All simulationswere implemented in C and run on an HP C3600 workstation.Tables 1-4 display the results for the estimates of the probability 1 for thein�nite �rst bu�er ases. Tables 5-8 display the results for the estimates of theprobability 1 for ases where the �rst bu�er is limited to nine ustomers. Tables9 and 10 present the estimates of the probability 0 for all four examples for thein�nite and �nite �rst bu�er ases respetively.The relative error of the BLR method is bounded independent of the bu�ersize when the seond server is the bottlenek in both �nite and in�nite bu�erases. For the in�nite �rst bu�er ase, this is onsistent with Theorem 1. In theother two ases, i.e., when the �rst server is the bottlenek and when the servierates at both nodes are equal, the relative error appears to be linearly bounded.35



Based on the numerial results, the BLR method is more eÆient than the K-Nmethod when the bu�er at the �rst node is in�nite. In ontrast, the K-N methodis more eÆient than the BLR method for B larger than 25 in the �nite �rst bu�erases. This is not surprising given that the BLR relative errors are only linearlybounded in this ase while the relative errors for the K-N method are bounded.The BLR method yields similar results when used to estimate the overowprobabilities 0 and 1. The K-N method also yields similar results exept whenthe �rst server is the bottlenek and its apaity is in�nite in whih ase therelative error inreases sharply with B. Kroese and Niola (2002) have suggestedthat a di�erent hange of measure is needed in this ase when the starting stateis (0,0).
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Table 4.1: Estimates of 1 in Example 1 (�; �1; �2 = 1; 4; 2) with b =1Bu�ersize Numerial Method Mean Halfwidth RE CPU VRR20 1.43e-06 BLR 1.43e-06 1.26e-09 0.45e-03 85 3.8K-N 1.43e-06 3.20e-09 1.13e-03 51 |25 4.47e-08 BLR 4.47e-08 3.95e-11 0.45e-03 110 3.8K-N 4.51e-08 1.00e-10 1.13e-03 65 |50 1.33e-15 BLR 1.33e-15 1.18e-18 0.45e-03 235 3.8K-N 1.35-15 3.01e-18 1.13e-03 136 |60 1.30e-18 BLR 1.30e-18 1.15e-21 0.45e-03 285 3.8K-N 1.33e-18 2.95e-21 1.13e-03 164 |100 1.18e-30 BLR 1.18e-30 1.05e-33 0.45e-03 485 3.8K-N 1.22e-30 2.72e-33 1.13e-03 276 |
Table 4.2: Estimates of 1 in Example 2 (�; �1; �2 = 1; 2; 3) with b =1Bu�ersize Numerial Method Mean Halfwidth RE CPU VRR20 2.05e-11 BLR 2.05e-11 5.24e-14 1.30e-03 70 9.2K-N 2.05e-11 1.97-13 4.89e-03 46 |25 4.61e-14 BLR 4.61e-14 1.35e-16 1.49e-03 89 9.1K-N 4.63e-14 5.07e-16 5.59e-03 57 |50 4.31e-27 BLR 4.30e-27 1.93e-29 2.29e-03 186 8.5K-N 4.28e-27 7.27e-29 8.66e-03 112 |60 2.96e-32 BLR 2.96e-32 1.49e-34 2.57e-03 224 8.4K-N 2.94e-32 5.62e-34 9.76e-03 133 |100 8.60e-53 BLR 8.58e-53 6.02e-55 3.58e-03 378 8.4K-N 8.49e-53 2.32e-54 13.8e-03 218 |
Table 4.3: Estimates of 1 in Example 3 (�; �1; �2 = 3; 4; 6) with b =1Bu�ersize Numerial Method Mean Halfwidth RE CPU VRR20 1.35e-08 BLR 1.35e-08 3.54e-13 1.34e-03 97 6.6K-N 1.35e-08 1.38e-20 5.20e-03 42 |25 1.97e-10 BLR 1.97e-10 5.95e-13 1.54e-03 125 6.4K-N 1.98e-10 2.33e-12 5.99e-03 52 |50 2.20e-19 BLR 2.20e-19 1.03e-21 2.39e-03 264 6.1K-N 2.22e-19 4.13e-21 9.49e-03 101 |60 6.54e-23 BLR 6.53e-23 3.46e-25 2.70e-03 320 6.0K-N 6.68e-23 1.39e-24 10.7e-03 120 |100 6.79e-37 BLR 6.79e-37 5.08e-39 3.80e-03 541 5.8K-N 6.96e-37 2.05e-38 15.2e-03 194 |37



Table 4.4: Estimates of 1 in Example 4 (�; �1; �2 = 1; 2; 2) with b =1Bu�ersize Numerial Method Mean Halfwidth RE CPU VRR20 2.79e-07 BLR 2.79e-07 7.84e-10 1.43e-03 94 1.9K-N 2.78e-07 1.59e-09 2.90e-03 43 |25 7.66e-09 BLR 7.68e-09 2.33e-11 1.55e-03 122 1.8K-N 7.67e-09 4.67e-11 3.10e-03 54 |50 1.56e-16 BLR 1.56e-16 5.92e-19 1.93e-03 256 1.6K-N 1.56e-16 1.16e-18 3.79e-03 107 |60 1.38e-19 BLR 1.38e-19 5.55e-22 2.04e-03 308 1.6K-N 1.39e-19 1.08e-21 3.99e-03 127 |100 9.62e-32 BLR 9.60e-32 4.45e-34 2.39e-03 518 1.5K-N 9.58e-32 8.63e-34 4.59e-03 208 |
Table 4.5: Estimates of 1 in Example 1 (�; �1; �2 = 1; 4; 2) with b = 9Bu�ersize Numerial Method Mean Halfwidth RE CPU VRR20 1.43e-06 BLR 1.43e-06 1.27e-09 0.45e-03 85 3.8K-N 1.43e-06 3.20e-09 1.13e-03 51 |25 4.45e-08 BLR 4.45e-08 3.99e-11 0.45e-03 110 3.7K-N 4.48e-08 9.99e-11 1.13e-03 65 |50 1.30e-15 BLR 1.30e-15 1.21e-18 0.47e-03 235 3.5K-N 1.32e-15 2.99e-18 1.13e-03 136 |60 1.26e-18 BLR 1.26e-18 1.19e-21 0.48e-03 285 3.5K-N 1.29e-18 2.92e-21 1.13e-03 164 |100 1.12e-30 BLR 1.11e-30 1.10e-33 0.49e-03 485 3.3K-N 1.12e-30 2.66e-33 1.17e-03 277 |
Table 4.6: Estimates of 1 in Example 2 (�; �1; �2 = 1; 2; 3) with b = 9Bu�ersize Numerial Method Mean Halfwidth RE CPU VRR20 1.89e-11 BLR 1.88e-11 4.15e-14 1.12e-03 68 2.8K-N 1.87e-11 8.69e-14 2.37e-03 43 |25 3.76e-14 BLR 3.76e-14 1.00e-16 1.37e-03 87 1.8K-N 3.76e-14 1.75e-16 2.37e-03 53 |50 1.25e-27 BLR 1.25e-27 6.90e-30 2.83e-03 182 0.4K-N 1.25e-27 5.80e-30 2.37e-03 107 |60 5.06e-33 BLR 5.00-33 7.48e-35 9.62e-03 221 0.1K-N 5.06e-33 2.35e-35 2.37e-03 128 |100 1.38e-54 BLR 1.39-54 2.48e-56 9.12e-03 371 0.04K-N 1.37e-54 6.39e-57 2.37e-03 214 |38



Table 4.7: Estimates of 1 in Example 3 (�; �1; �2 = 3; 4; 6) with b = 9Bu�ersize Numerial Method Mean Halfwidth RE CPU VRR20 1.15e-08 BLR 1.15e-08 2.74e-11 1.21e-03 91 1.6K-N 1.15e-08 5.12e-11 2.27e-03 41 |25 1.41e-10 BLR 1.40e-10 3.89e-13 1.41e-03 117 1.2K-N 1.41e-10 6.25e-13 2.27e-03 52 |50 3.89e-20 BLR 3.88e-20 1.93e-22 2.54e-03 246 0.3K-N 3.88e-20 1.73e-22 2.27e-03 103 |60 5.84e-24 BLR 5.85e-24 3.57e-26 3.11e-03 299 0.2K-N 5.89e-24 2.61e-26 2.27e-03 124 |100 2.98e-39 BLR 2.99e-39 3.87e-41 6.61e-03 506 0.1K-N 2.98e-39 1.33e-41 2.27e-03 207 |

Table 4.8: Estimates of 1 in Example 4 (�; �1; �2 = 1; 2; 2) with b = 9Bu�ersize Numerial Method Mean Halfwidth RE CPU VRR20 2.56e-07 BLR 2.56e-07 3.29e-10 0.65e-03 96 3.8K-N 2.55e-07 9.56e-10 1.91e-03 43 |25 6.40e-09 BLR 6.40e-09 9.98e-12 0.79e-03 125 2.5K-N 6.42e-09 2.40e-11 1.91e-03 54 |50 6.34e-17 BLR 6.34e-17 1.84e-19 1.48e-03 268 0.7K-N 6.33e-17 2.37e-19 1.91e-03 110 |60 3.99e-20 BLR 3.99e-20 1.40e-22 1.79e-03 324 0.5K-N 3.99e-20 1.49e-22 1.91e-03 132 |100 6.24e-33 BLR 6.25e-33 3.92e-35 3.20e-03 552 0.1K-N 6.21e-33 2.33e-35 1.91e-03 221 |
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Table 4.9: Estimates of 0 with b =1Bu�ersize Example Method Mean Halfwidth RE CPU VRR50 1 BLR 7.40e-16 1.40e-18 0.97e-03 230 1.0K-N 7.40e-16 2.05e-18 1.41e-03 112 |2 BLR 1.03e-26 9.80e-29 4.86e-03 188 18.4K-N 9.06e-27 5.54e-28 31.1e-03 108 |3 BLR 3.86e-19 3.10e-21 4.10e-03 267 10.4K-N 3.82e-19 1.65e-20 22.1e-03 98 |4 BLR 1.54e-16 5.97e-19 1.98e-03 256 4.0K-N 1.54e-16 1.93e-18 6.39e-03 98 |100 1 BLR 6.56e-31 1.23e-33 0.96e-03 480 1.0K-N 6.56e-31 1.82e-33 1.41e-03 224 |2 BLR 2.39e-52 5.76e-54 12.3e-03 380 17.8K-N 2.22e-52 3.29e-53 75.7e-03 207 |3 BLR 1.23e-36 1.87e-38 7.72e-03 543 11.8K-N 1.23e-36 1.09e-37 45.4e-03 187 |4 BLR 9.51e-32 4.53e-34 2.43e-03 518 2.5K-N 9.59e-32 1.18e-33 6.28e-03 187 |
Table 4.10: Estimates of 0 with b = 9Bu�ersize Example Method Mean Halfwidth RE CPU VRR50 1 BLR 7.23e-16 1.40e-18 0.99e-03 233 1.0K-N 7.35e-16 2.06e-18 1.43e-03 111 |2 BLR 1.96e-27 1.16e-29 3.02e-03 185 1.9K-N 1.96e-27 2.15e-29 5.61e-03 103 |3 BLR 5.59e-20 3.05e-22 2.79e-03 251 0.8K-N 5.64e-20 4.30e-22 3.89e-03 100 |4 BLR 5.89e-17 1.78e-19 1.54e-03 269 1.0K-N 5.86e-17 2.89e-19 2.52e-03 101 |100 1 BLR 6.21e-31 1.23e-33 1.00e-03 483 1.0K-N 6.45e-31 1.83e-33 1.45e-03 225 |2 BLR 2.16e-54 3.93e-56 9.27e-03 374 0.2K-N 2.18e-54 2.41e-56 5.65e-03 204 |3 BLR 4.30e-39 6.10e-41 7.23e-03 512 0.1K-N 4.33e-39 3.29e-41 3.88e-03 199 |4 BLR 5.83e-33 3.86e-35 3.38e-03 554 0.3K-N 5.78e-33 2.85e-35 2.51e-03 200 |
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Chapter 5
Conlusions
This paper presents a balaned likelihood ratio importane sampling approah forestimating the overow probability of the seond bu�er in a two node tandemJakson network. The proposed importane sampling distributions depend on thestate of the system. The importane sampling estimator is asymptotially eÆientwith bounded relative error when the �rst bu�er apaity is in�nite exept whenthe �rst server is the bottlenek. This has been proved formally and orroboratedusing numerial results. When the �rst server is the bottlenek, numerial resultsindiate that the relative error is linearly bounded in the bu�er size. Empirialevidene indiates that the BLR method outperforms existing importane sam-pling distributions when the �rst node bu�er is in�nite. More work is neededto determine why the BLR method struggles when the �rst node bu�er is �nite.The proposed methods an be readily extended to estimate individual bu�er over-41



ow probabilities in tandem Jakson networks with more than two nodes. Theproposed method an also be used to estimated bu�er overow probabilities innon-Markovian networks.
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