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ABSTRACT

For more than a decade, importance sampling has been a popular technique for
the efficient estimation of rare event probabilities. This thesis presents an ap-
proach for applying balanced likelihood ratio importance sampling to estimate
rare event probabilities in tandem Jackson networks. The rare event of interest is
the probability that the content of the second buffer in a two node tandem Jackson
network reaches some high level before it empties. Heuristic importance sampling
distributions are derived that can be used to estimate this overflow probability
in cases where the first buffer capacity is finite and infinite. In the proposed
methods, the transition probabilities of the embedded discrete-time Markov chain
are modified dynamically to bound the overall likelihood ratio of each cycle. The
proposed importance sampling distributions differ from previous balanced likeli-
hood ratio methods in that they are specified as functions of the contents of the
buffers. When the first buffer capacity is infinite, the proposed importance sam-
pling estimator yields bounded relative error except when the first server is the
bottleneck. In the latter case, numerical results suggest that the relative error
is linearly bounded in the buffer size. When the first buffer capacity is finite,
empirical results indicate that the relative errors of these importance sampling
estimators are bounded independent of the buffer size when the second server is

the bottleneck and bounded linearly in the buffer size otherwise.
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Chapter 1

Introduction

Performance measures of highly reliable systems are hard to compute since they
depend upon the occurrence of rare events. Tandem Jackson networks (for an in-
troduction to Jackson networks see Chapter 1, Serfozo 1999) serve as a simplified
model for analyzing rare events in many reliable systems such as switched telecom-
munication networks, manufacturing systems and computer networks. System
performance measures such as the probability that the system size or a specific
queue length exceeds a given level are needed to accurately assess system reliabil-

ity, particularly the time until one of these events occurs.

Standard Monte Carlo simulation is inefficient in producing accurate estimates
of rare event probabilities since it requires prohibitively long run lengths. In
standard Monte Carlo simulation, the stochastic behavior of the system is not

modified to force the rare event to occur and the rare event is not observed very



often. Consequently, the number of simulation trials required to get a precise

estimate of the probability of the rare event is very large.

1.1 Literature Review

Importance sampling is gaining popularity as an efficient method for analyzing
rare events in queueing and reliability systems (see Asmussen and Rubinstein 1995,
Glynn and Iglehart 1989, Heidelberger 1995). The main idea of importance sam-
pling is to force a simulation to observe a rare event frequently. The application of
importance sampling involves simulating the model using an auxiliary distribution
designed to make the system experience rare events of interest more often. The
auxiliary distribution modifies the stochastic behavior of the system such that
events that lead towards a rare event are more likely to happen and thus more
samples hit the rare event. The sample values obtained by using the auxiliary
distribution are then adjusted by using likelihood ratios in order to account for
the modifications to the stochastic process leading to an unbiased estimator. The
auxiliary distribution should be formed such that variance reduction is achieved

when compared to standard Monte Carlo simulation.

An importance sampling distribution that yields a constant value for every
sample (zero-variance importance sampling) is almost impossible because it re-
quires perfect knowledge of the quantity being estimated. Kuruganti and Strick-

land (1997) identify properties that characterize zero-variance importance sam-



pling distributions and use them to develop a method to compute an optimal mea-
sure for a tandem queueing system. Juneja (1993, 2001) develops these properties
as a basis for identifying asymptotically optimal importance sampling distribu-

tions.

Large deviations theory has been used for deriving and analyzing importance
sampling estimators. Using large deviations theory, a heuristic change of measure
was derived for estimating the probability that total system size exceeds a given
level before returning to zero in tandem Jackson networks (see Parekh and Wal-
rand 1989). This exponential twisting or tilting change of measure interchanges
the arrival rate and the smallest service rate in the network. This heuristic was
later analyzed by Glasserman and Kou (1995) who established necessary and suf-
ficient conditions for the asymptotic efficiency of this heuristic importance sam-
pling estimator. An adaptive importance sampling method for estimating overflow
probabilities by minimizing the cross-entropy between a zero-variance distribution
and the proposed importance sampling distribution has been developed (de Boer
et al. 2000). Recently, de Boer, Kroese and Rubinstein (2002) proposed a modi-
fied approach which utilizes an optimal tilting parameter to estimate the overflow

probability in three stages.

The balanced likelihood ratio approach to importance sampling (see Alexopou-
los and Shultes 1998, 2001) was developed for analyzing system performance in
fault-tolerant repairable systems. This approach has been used to derive impor-

tance sampling estimators for limiting system unavailability and mean time to



system failure that yield bounded relative error. Shultes (2002) applied this ap-
proach to estimate the system overflow probability in tandem Jackson networks.
This method yields a zero variance importance sampling distribution for a single
node system. For systems with more than one node, this method yields asymp-

totically efficient results with some restrictions on the model parameters.

The rare event studied in this thesis is the buffer overflow probability at the
second node in a two node tandem Jackson network. An exponential tilting tech-
nique was developed by Kroese and Nicola to estimate this overflow probability
(see Kroese and Nicola 2002). These authors exponentially tilt a Markov additive
process representation of the system to derive an importance sampling estimator.
Their distribution is state dependent in that it depends on the contents of the

first buffer.

1.2 Contributions of this thesis

In this thesis work, an importance sampling distribution for estimating the over-
flow probability at the second node in a two node tandem Jackson network is de-
rived using balanced likelihood ratio approach. The proposed distributions have
guaranteed variance reduction over standard Monte Carlo methods. The proposed
distributions depend on the contents of the buffers and can be applied to any set of
arrival and service rates. When the first buffer is infinite, the proposed estimator

is asymptotically optimal except when the first server is bottleneck. In the latter



case, numerical results indicate that the relative error is linearly bounded in the

buffer size.

Chapter 2 presents the model studied and provides an overview of importance
sampling and the balanced likelihood ratio approach. Chapter 3 provides details
of the proposed method for the infinite and finite first buffer cases. Chapter
4 contains experimental results. Conclusions and future research directions are

presented in Chapter 5.



Chapter 2

Background

Consider a tandem Jackson network with two nodes. Customers arrive at the first
queue according to a Poisson process with rate A\. The service time of a customer
at the first node is exponential with rate p;, independent of the input process
and service time at the second node. The output process of the first queue forms
the input process of the second queue. The service time at the second node is
exponential with rate py, which is also independent of the input process and service
time at the first node. Without loss of generality, assume that A + gy + po = 1.

The queueing system is assumed to be stable, i.e., A < min(uy, u2).

Let X (¢) and Y(¢) denote the number of customers at the first and second
node at time ¢, respectively (including customers in service). Let b denote the size
of the first buffer, which may be finite or infinite. The quantity of interest is the

probability () that the number of customers in the second queue reaches some



high level B € IN before hitting 0. We wish to estimate this probability given
that the system starts in state (X (0) = 0,Y(0) = 0) or (X(0) = 1,Y(0) = 1).
These probabilities are denoted as 7, and 7 respectively. To estimate vy (1), the
simulation cycle starts from (0,0) ((1,1)) and ends when either the second queue

reaches B or zero.

The system can be modeled as a Markov process with system state Z(t) =

(X(t),Y(t). Let

r(t) = A+ 1(X(2) > 0) iy + 1 (Y (t) > 0) pg

denote the total rate of event transitions out of Z(t). The buffer overflow prob-
ability depends upon the embedded discrete-time Markov chain whose one-step
transition probabilities at time t are: A/r(t) the probability the next event is an
arrival, 1 (X (¢) > 0) py/r(t) the probability that the next event is a service com-
pletion at node one, and 1 (Y (¢) > 0) po/r(t) the probability that the next event

is a service completion at node two.

2.1 Importance Sampling

Let © denote the set of all cycles and for each w € Q, let f(w) denote the largest

number of customers at the second node within the cycle. Consider an indicator

10



function, ¢ (w), which is defined as follows:

1iff(w) =B
¢ (W) =
0if f(w) < B

The buffer overflow probability of interest (v;,7 = 0,1) can be written as

vi = Ep ¢ (w)]

where the subscript P denotes sampling from the probability measure P . In
standard Monte Carlo simulation, ; can be estimated by drawing /N independent

samples under the probability measure P as follows:

1 X
V= N Z ¢ (w))
7=1
The estimator 7; is an unbiased estimator of v; and Ep [;] = ;. The variance of

¥i is 7; (1 — 7;)/N. By using the central limit theorem, a confidence interval for

7; can be constructed as v; & zq/2 /i (1 — 7)/N, where 24/, is 100(1 — a/2) %
quantile for a standard normal distribution. The number of samples required to

accurately estimate ~; is very large since the event of interest is very rare.

Under importance sampling, an alternative estimator is used to estimate -;
such that the rare event is experienced more often. The probability P(w) of

observing the cycle w is the product of one-step transition probabilities. A new

11



importance sampling distribution P’ is defined such that P(w) > 0 = P'(w) >

0 and

we P (w)
= D 0w Lw) P'(w)

where the likelihood ratio L(w) is the Radon-Nikodym derivative of P with respect
to P'. The likelihood ratio L(w) can be decomposed into a product of one-step
transition event likelthood ratios associated with each individual event within the
cycle. An unbiased estimator 4 for v can then be obtained by drawing N inde-
pendent samples under the probability measure P’ and multiplying the samples

by the corresponding likelihood ratios. Thus,
T
Y= D 6 (w) L(w)
7=1

When Ep: [¢ (W)’ L (w)ﬂ < oo, a confidence interval for 4; can be constructed
as described earlier using the central limit theorem. The probability measure
P’ should be selected such that the variance of the estimator is minimized. In

general, P’ should be chosen such that Ep: | ¢ (W)’ L (w)z} < Ep[¢ (w)z} to

obtain variance reduction.

12



2.2 Comparing approaches

2.2.1 Asymptotic Properties

The asymptotic efficiency of an estimator can be quantified by considering the
relative error of the estimator. Relative error is defined as the ratio of the standard
deviation of the estimator over its expected value. Bounded relative error refers
to the behavior of the estimator as the quantity to be estimated approaches zero
which occurs by varying a rarity parameter for the system under study. In this
model, the quantity of interest 7; approaches zero as the buffer size is increased to
infinity. An estimator yields bounded relative error if the relative error remains
bounded as the quantity to be estimated approaches zero. This implies that, the
sample size required to achieve a desired level of accuracy remains bounded in the

limit, which is the best possible result.

An estimator is said to be asymptotically efficient if the relative error grows
at a sub-exponential rate as the quantity to be estimated approaches zero. This
means that the number of samples grows at a sub-exponential rate to achieve the
desired accuracy. An estimator is said to have linearly bounded relative error
when the number of samples required to achieve a fixed relative error increases
linearly in buffer size B. For importance sampling estimators, bounded relative

error implies asymptotic efficiency.

13



2.2.2 Variance Reduction Ratio

To compare the performance of two importance sampling estimators, we need
to take into account variance reduction and the computational effort required to
achieve that reduction. The variance reduction ratio (VRR) measures the trade-
off between variance reduction and the associated computational cost. VRRs are
computed by multiplying a ratio of the variances of two estimators by a ratio of
the corresponding computational effort, i.e., simulation time or number of events
sampled to generate that variance. Typically, VRRs are estimated empirically
by simulation. If the VRR is less than one, then the approach in the numerator
is more efficient and a VRR greater than one implies that the approach in the

denominator is more efficient.

2.3 Balanced Likelihood Ratio Approaches

The proposed importance sampling method is based on the balanced likelihood
ratio approach. This approach was originally proposed to estimate the reliability
of fault-tolerant repairable systems (see Alexopoulos and Shultes 2001) and was
later adapted to estimate system overflow probabilities in tandem-Jackson net-
works (see Shultes 2002). The importance sampling distribution for estimating
the buffer overflow probability is based on the concept of controlling the event like-
lihood ratios within the cycles. A key feature of this approach is that likelihood

ratios associated with cycles are forced to be bounded from above by one.

14



The application of the balanced likelihood ratio approach to estimate v, and
~v1 proceeds as follows. Classify all system events into 2 classes: events that move
the system towards buffer overflow and events that move the system away from
buffer overflow. Arrival events and service completion events at the first node
belong to the first category and service completion events at the second node fall
into the second category. The balanced likelihood ratio method balances the event

likelihood ratios associated with events from these two classes.

Every service completion event at the second node must be preceded by an
arrival event and a service completion event at the first node. The product of
these three event likelihood ratios can be forced to be one for all customers.
This assignment causes likelihood ratios associated with cycles to be bounded
below one. The proposed method has the following basic balanced likelihood

ratio properties established by Shultes (2002).

e Every event that moves the system closer to the rare event (arrival and
service completion at the first node) has one corresponding event (service
completion at the second node) that effectively cancels out the events that

moved the system closer to overflow.

e Events that would complete a cycle before the system experiences a rare

event have zero probability in the importance sampling distribution.

e [f the events that move the system closer to buffer overflow are forced to

be more likely, then the corresponding future event which would move the

15



system away from overflow is forced to be less likely.

To summarize, each customer in the system experiences a series of events.
Each event accumulates an event likelihood ratio. At any given time, the product
of the event likelihood ratios accumulated for a customer is less than one. When
the customer leaves the system, the product of the corresponding event likelihood
ratios becomes one. The overall likelihood ratio of a cycle is obtained by multi-
plying the accumulated event likelihood ratios of all the customers in the system
when the cycle ends. Since the accumulated likelihood ratio of all customers in
the system is below one, the overall likelihood ratio of the cycle is bounded from

above by one.

16



Chapter 3

Tandem Queues

Balanced likelihood ratio methods for estimating the probabilities 7, and ; when
the first buffer capacity is infinite and finite are described in Sections 3.1 and
3.2 respectively. The importance sampling distribution is the same for estimating
both 7y and 7;. However, the method for estimating -, includes cases which
do not occur while estimating 7, i.e., when the starting state is (1,1). Hence,
without loss of generality, the importance sampling distributions are described for

the starting state (0,0).

Customer arrival events and service completion events at the first node gen-
erate event likelihood ratios. These event likelihood ratios are used as multipliers
for biasing the probability of service completion at the second node. Let [,(7)
denote the " arrival event likelihood ratio and I,(i) denote the i first node

service completion event likelihood ratio. The importance sampling distribution

17



is formed such that the content of the second buffer reaches the bound B in all
cycles. The idea is to avoid paths which fail to experience the rare event within

the cycle.

The proposed importance sampling distribution depends on the sample path
for the process {Z(t), t > 0}. Importance sampling probabilities are time de-
pendent, but at any time within the simulation only three importance sampling
probabilities are relevant. Let A" denote the importance sampling probability of
an arrival event. Let p) and p}, denote the importance sampling probabilities of

service completion events at the first and second nodes respectively.

3.1 Infinite First Buffer

The importance sampling approach described in Section 2.2 is directly applied to
the infinite first buffer case. There are four cases to consider: (1) The system is
empty, (2) All customers are at the first node, (3) All customers are at the second

node, and (4) Customers are at both nodes in the system.

Case 1: The system is empty. The next event is a customer arrival with
probability one. The event likelihood ratio for this event is replaced by I, = A/
(A4 p9) in the implementation because an arrival event likelihood ratio of one
does not allow the service completion probability associated with this arrival to
be reduced. This initial likelihood ratio is used to bias the service completion

probability of this first customer at node one. It is easy to show that this deviation

18



from the basic balanced likelihood ratio approach maintains established likelihood

ratio properties.

Case 2: All customers in the system are at the first node, i.e., the system
state is (X (¢),Y () = x,0) for £ > 0 and some z € IN. In this case, the next
event could be either a customer arrival or a service completion at the first node.
Deviating from the original balanced likelihood ratio description, the importance
sampling probability for a service completion event at the first node is reduced
to increase the arrival probability. The importance sampling probabilities in this

case are:

A= 11—

Case 3: All customers in the system are at the second node, i.e., the system
state is (X (¢),Y(t) = 0,y) for t > 0 and some y € IN. In this case, the next event
could be either a customer arrival or a service completion at the second node. The

importance sampling probabilities when y > 1 are:

L= L(y) |, a d
i = ) 1) (722)

Noo= 1 — .

19



The service completion event is not allowed when y = 1 if the rare event has not
yet occurred within the cycle. In this latter case, the customer arrival probability

is one.

Case 4: Customers in the system are at node one and node two, i.e., the
system state is (X (¢),Y (t) = x,y) for t > 0 and some x,y € IN2. The importance
sampling probabilities in this case when y > 1 derive from:

py = lo(z +y) 1(y) (L> :

A+ iy + o

The remaining probability (1 — p) is split between the customer arrival event
and service completion event at the first node based on the number of customers

in the system.

Let p, and p, denote the fraction of the importance sampling probability
(1 — f) assigned to the service completion at the first node and the arrival event
respectively. The importance sampling probabilities for the arrival event and the

service completion at node one are:

:U’II = Ps (1 - :U’IQ) ) and

No= pa(lfﬂg)'

When the system size is lesser than or equal to the bound B, the service com-

pletion probability at the first node is not biased except when the first server is

20



the bottleneck. When the first server is the bottleneck, the importance sampling
distribution increases the service completion probability at the first node by allo-
cating a fraction of (1 — pf) for this purpose depending on the state of the system.

Thus, when x +y < B,

maX{O.S, o - } if g < po
1= g

Ps =
M1

1— py

if 1 > po

When the system size is greater than the bound B, the importance sampling
probabilities allocated to the arrival event and the service completion at node

one are proportional to the respective rates A and p;. Thus, when x +y > B,

At

Ps and p, =1 — p,.

3.1.1 Initial Event Likelihood Ratio

When the system is in state (1,0), the initial likelihood ratio I, = A/ (A + pa) is
obtained by looking ahead one stage. At this point, we need a value less than
one, to bias the service completion probability of the customer at node one. The
likelihood ratio of an arrival event, when the system moves from state (0,1) to
(1,1) would be I, = A/ (A + p2) (as explained in Case 3). This likelihood ratio
is not required to bias the service probability when the system is in state (1, 1)

because p is set to zero in order to prevent the cycle from ending before the

21



rare event occurs. Hence, this event likelihood ratio can be used for I/ when the

system is in state (1,0).

Remark 1 While estimating ~;, the starting state of the system is (1,1). In this
case, the arrival likelihood ratio for the first and second customer is one. So,
when the system is in state (0, 2), the arrival likelihood ratio of one does not allow
the second node service completion probability associated with this arrival to be
reduced. Hence, in this case the value of [,(2) is replaced by I! = A/ (XA + po) by

looking ahead one stage when the system is in state (0,2) as described earlier.

3.1.2 Implementation

Define two stacks: L, for storing arrival event likelihood ratios and L, for storing
likelihood ratios for service completion events at the first node. Initially each
stack contains one multiplier, I;, = A/(A + u2) is on stack L, and [, = 0 is on
stack L, where the 0 guarantees that the cycle does not end without observing a
buffer overflow event. After each arrival event, the event likelihood ratio (A/\")
is pushed onto stack L,. After each service completion event at the second node,
one likelihood ratio from each stack is removed. For each service completion event
at the first node, the event likelihood ratio (u1/p}) is pushed onto stack Ly if the
system is in state (z,y) for some x € IN, y € IN and a likelihood ratio is removed

from stack L, when the system state is (x,0) for some z € IN.

22



3.1.3 Asymptotic Behavior in Infinite First Buffer Case

The proposed balanced likelihood ratio method forces each cycle to visit the rare
event. Hence, the likelihood ratio of a cycle L(w), consists of event likelihood
ratios computed up to the time there are B customers at the second node. The
method also forces likelihood ratios for service completion events at second node
to cancel the event likelihood ratios for the corresponding arrival and first node
service completion events. Hence, the overall likelihood ratio for a cycle is the
product of the likelihood ratios of arrival events and service completion events at
the first node associated with the customers in the system when the rare event

happens. L(w) has the following form,

Lw) = (H zau)) (H zsu)) (3.1

where [, (i) is the 7" arrival event likelihood ratio in L, and I,(j) is the j™ first
node service completion event likelihood ratio in L,. For notational purposes,

z+B
let L;(w) denote the first term (H la(i)) and Lo(w) denote the second term
i=1

(ﬁ ls(j)>. Note that the system state is (z, B) when the system hits the rare
j=1

event. As described earlier in the implementation, the event likelihood ratios of
arrival and service completion events at the first node are stored in two separate
stacks L, and L, respectively. The number of likelihood ratios in the stack L, is
equal to the number of customers in the system (z+ B). The number of likelihood

ratios in the stack L, is equal to the number of customers at the second node (B).

23



Let L,, > maxz L(w) be a upper bound on the likelihood ratio of a cycle while

estimating ;. From (3.1),
L, > Li(w) Ly(w) forall w € Q. (3.2)

A value for L,, can be found by finding upper bounds on L;(w) and Ls(w).

Lemma 1. The product of first node service completion likelihood ratios (Ly(w))

is bounded from above by one.

Proof. The maximum possible value for the term L,(w) can be obtained by de-
termining the maximum possible likelihood ratios [,(j) for all j = 1toB. By
the construction of the proposed balanced likelihood ratio method, the maximum
possible likelihood ratio for the service completion event at first node is bounded

from above by one. Hence, Ly(w) < 1. O

Let M (i) > 1,(i) denote the upper bound for the i" arrival event likelihood

z+B
ratio. Then, an upper bound for L;(w) can be obtained by (H M(z)) . Thus,

i=1

Ly(w) < (H M(z‘)) (3.3)

Lemma 2. When p; > ps, an upper bound for the i*" arrival event likelihood

24



ratio is,

A
. when 1 > 3
)\‘FMQ*MQM(Z*I)
M(i) =
A (A
(A + p2) when 1 = 3

A2+ Mg + 113

Proof. The i*" arrival event likelihood ratio is generated in one of the following
cases: (1) System state is (0,7 —1). (2) System state is (i —2,1). (3) System state
is (x,y), where y > 1 and 2 +y = i — 1. Note that cases 1 and 3 are the same

when 7 = 3.

Let a,,as,a5 denote the i arrival event likelihood ratio in cases 1, 2 and 3
respectively. The maximum possible i" arrival event likelihood ratio is M (i) =

mazx(ay, az, az).

Case 1: The original arrival event probability in this case is A/(\ + u2). The

importance sampling probability for this arrival is

M2
A+ o

(i — 1) 1,3 — 1).

As described earlier in Lemma 1, the value of [(7) for all j is bounded from above
by one. l,(i — 1) is the (i — 1) arrival event likelihood ratio in L,. The arrival
event likelihood ratio is the largest when the importance sampling probability for
the arrival event is at its smallest value. So, in order to get the maximum value for

h

ai, lo(i—1) should be the maximum possible (i — 1) arrival event likelihood ratio

25



used in the simulation. The arrival event likelihood ratio used in the simulation
for 1,(2) is I}, = A/ (A + p2) (explained in Remark 1). This value remains the same
throughout the simulation in all cycles for [,(2) . Hence, when ¢ = 3,

A (A + p2)

HZ ll
A+ pg

a1 =

and when 7 > 3

MA+ o)

2 . )
M((i—1
T (1-1)

Case 2: The original arrival probability in this case is equal to
A/ (A =+ p1 + p2). The importance sampling probability for arrival is equal to
1 — py — ph. Since there is only one customer at first node, p, = 0. Thus,
for all ¢ > 3,

M A+ p1 + o)

ay = : 3.5
’ L —m (3:5)

Case 3: The original arrival probability in this case is equal to
A/(A+ 1 + p2). The importance sampling probability for an arrival event is
equal to 1 — 1 — ph. The importance sampling probability for a service comple-
tion event at the second node, pj is

. M2
(i~ 1) Ly 1 <7)
UM
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The value of I;(y — 1) is substituted by its upper bound value of one. The value
of 1,(i — 1) should be the maximum possible (i — 1) arrival event likelihood ratio

used in the simulation in order to get the maximum value of a3. Thus,

AN+ + o)

1 — <M(z’1)$>-

A+ i+ o

a3 —

Rearranging the terms and using the fact that A+ p; +puo = 1, we find that,

A A
when 7 = 3, a; = and when 1 > 3, ay = a3 = , .
LNt e — (I P Nt m(M(i 1))

For all i > 3, ag = A/(A+ p2) .

Hence, when p; > po,

M (i) = max(ay,as) = A A (A o)

= = s fori =23
Atpp = pa(ly) A2+ Ao+ g3

and

A

M (i) = maz(ay, az, a3) = A+ pg — peM(i — 1)

fors> 3.

Remark 2 When 1 < o, the maximum likelihood ratio M(i) can be found in

a similar way. Specifically, the values of a; and ay in cases 1 and 2 are the same
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as in (3.4) and (3.5) respectively. The form of a3 changes when the first server is
the bottleneck. This is because, the importance sampling probability of the first

node service completion changes depending on the state of the system.

Lemma 3. To get an upper bound on L;(w), the number of arrival event likeli-

hood ratios should be B.

Proof. The product of arrival event likelihood ratios is bounded by, L;(w) <
z+B
(H M(i)) .
i=1
As mentioned earlier, the number of arrival likelihood ratios in any cycle should
be greater than or equal to the buffer size B. Consider the first case when the
number of customers in the system is equal to the buffer size B when the cycle
ends by hitting the rare event (system state is X (¢),Y(t) = 0, B). In this case,
B
Li(w) is bounded by [] M (i), where M (i) is the maximum possible value for 7%

i=1

arrival event likelihood ratio.

Consider the second case when the system contains more than B customers
when the cycle ends. This means that > 0 and the system is in state
z+B

(X(t),Y(t) = 2,B). Ly(w) in this second case is bounded by [] M(i). This

=1

is equal to

(ﬁM@) ( 1 M(k)>.

k=B+1

By construction of the balanced likelihood ratio method, all arrival event likeli-
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z+B
hood ratios are bounded from above by one. Thus, < IT M(k)) is bounded
k=B+1

from above by one and implies that the bound for L;(w) in the second case be-

z+B
comes lesser by multiplying the term ( I M(k)) Hence, to get an upper
k=B+1

bound on L;(w), the number of arrival event likelihood ratios should be equal to

the buffer size B. O

Using Lemmas 2 and 3, when py > po, the product of arrival event likelihood

ratios L;(w) is bounded by

Litw) < []M0). (3.6)

Lemma 4. When p; > ps, a upper bound for the maximum likelihood ratio of a

cycle is

O+ ) O72)

B—1

Z )\B*l*kljg

k=0

L, =

Proof. Using Lemma 1, Ly(w) < 1.

B

From (3.6), Li(w) < H M (i). The arrival event likelihood ratio for the first and
i=1

second customer is one. Hence, M (i) = 1 fori = 1, 2. Using Lemma 2, the

maximum possible value for i*" arrival event likelihood ratio is,

A

M(i) = A+ po — pa(ly(i — 1))

1> 2.
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Thus, L;(w) is,

k
A Z )\kfp ,up
W0 (o) e | :
) 5 | e |
)\ +)\/1;2+,L52 i—:l)\k‘klfplug
p=0

Simplifying the terms,

B—2
A Z )\B 2—-p D
p=0

B—1

Do AP
p:

o) < [ty = P+ <AH>_

1=1 Z)‘B 1— k

Using the bounds for L;(w) and Ly(w), we get

B—-1

Z )\Bfl k'ul;

k=0

Using (3.2) and (3.7), yields the desired result.

Theorem 1. The proposed importance sampling distribution achieves bounded

relative error when iy > s.

Proof. The relative error (RE) is defined as the ratio of the standard deviation of

the estimator over its expected value. The maximum likelihood ratio of a cycle

is an upper bound for the standard deviation of the estimator. Lemma 4 implies

that, the standard deviation of the proposed estimator o (9;) is bounded from
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above by

O+ ) 05 %)

B—-1

Z )\Bflfk'ul;

k=0

Ly =

The rare event of interest is an exponentially rare event, i.e, 7; has exponential
decay rate. Specifically, Remark 3.5 in Kroese and Nicola (2002) states that -,
is proportional to e *# when the first node has infinite capacity. They have also
proven that if py > po, 71 = d n® where d is a positive constant and n = A/,

(see Lemma A.5 and Remark 3.6 in Kroese and Nicola (2002)).

The relative error of the proposed BLR method satisfies,

(A + ) AP72
B1

Z )\B*l*klléc
k=0
RE < —
(i)
M2

Simplifying the right hand side leads to,

RE < (A =+ p2) [y
=g B-1
kz )\Bfl—kuéc
=0
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Hence,

o (1) < (A + p2) 5
Bose . d N S
1k
k=0 2

IN
8

Thus, when py > pus the proposed importance sampling estimator has bounded

relative error. O

3.2 Finite First Buffer

The balanced likelihood ratio method for estimating the probability of buffer
overflow in the second node when the first buffer has finite capacity is described

below. The approach is similar to the infinite first buffer case.

Assume the system starts from state (0,0). The same four cases as in the
infinite first buffer case are considered. For cases 1, 2 and 3, i.e., when the system
is empty and when the system state is (z,0) and (0,y) for some x,y € IN?, the
importance sampling distribution is the same as in the infinite first buffer case.
When the system is in state (x,y) for some z,y € IN? the importance sampling
probabilities derive from the same starting point as before:

L= Lz +y) 1, <—_&__>
I (2 +y) ls(y) prR——

As before, the remaining probability (1 — pb) is split between the customer arrival
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event and the service completion event at the first node based on the number of
customers in the system. Since the first node has a finite capacity b, the fraction p
of the importance sampling probability (1 — puj) assigned to the service completion
at node one is increased, relative to the infinite first buffer case, by a factor ¢ which
depends on the number of customers at the first node. However, if p; > py then
this modification is not necessary, so ¢ = 0 in this special case. The importance
sampling probabilities for customer arrival events and service completion at node

one are:

i = (ps+c)(1—p), and

)\, = 171/17[/27

where p, is defined as before and

The method can be implemented in the same way as that of the infinite first
buffer case using two stacks: L, for storing arrival event likelihood ratios and L;

for storing likelihood ratios of service completion events at first node.
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Chapter 4

Numerical Results

Experimental results for four, two node tandem Jackson network examples are
presented. In the first example, the second server is the bottleneck (u; > p»),
in the second and third examples the first server is the bottleneck (u; < ps) and
in the fourth example the service rates at the two nodes are equal. Results from
experiments that estimate the probability that the contents of the second buffer
reach the bound B before reaching zero starting from state (1,1) and (0,0) are
presented for both finite and infinite first buffer cases. These cases come directly
from Kroese and Nicola (2002). The rates in the tables can be normalized so that

the normalized rates sum to one.

The result from each simulation experiment is based on 1,000,000 cycles. Cy-
cles end when the second node experiences buffer overflow or when the second

node empties. Each simulation run provides an estimate for the overflow prob-
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ability (Mean), a 95% confidence interval halfwidth (Halfwidth) and the relative
error (RE), i.e., standard deviation divided by mean. Computation times (CPU)
are displayed in terms of average number of events per cycle. The tables in-
clude estimates of the overflow probabilities obtained by applying the exponential
change of measure technique (K-N) presented by Kroese and Nicola (2002). The
numerical values for these probabilities presented by Kroese and Nicola (2002) are
also provided. The numerical values can be obtained by using the algorithm out-
lined in Garvels and Kroese (1999). The results from the two methods (BLR and
exponential change of measure) are compared using Variance Reduction Ratios
(VRRs). If the VRR is less than one, then the K-N method is more efficient and
the BLR method is more efficient if the VRR is greater than one . All simulations

were implemented in C and run on an HP C3600 workstation.

Tables 1-4 display the results for the estimates of the probability ~; for the
infinite first buffer cases. Tables 5-8 display the results for the estimates of the
probability v, for cases where the first buffer is limited to nine customers. Tables
9 and 10 present the estimates of the probability 7, for all four examples for the

infinite and finite first buffer cases respectively.

The relative error of the BLR method is bounded independent of the buffer
size when the second server is the bottleneck in both finite and infinite buffer
cases. For the infinite first buffer case, this is consistent with Theorem 1. In the
other two cases, i.e., when the first server is the bottleneck and when the service

rates at both nodes are equal, the relative error appears to be linearly bounded.
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Based on the numerical results, the BLR method is more efficient than the K-N
method when the buffer at the first node is infinite. In contrast, the K-N method
is more efficient than the BLR method for B larger than 25 in the finite first buffer
cases. This is not surprising given that the BLR relative errors are only linearly

bounded in this case while the relative errors for the K-N method are bounded.

The BLR method yields similar results when used to estimate the overflow
probabilities 79 and ;. The K-N method also yields similar results except when
the first server is the bottleneck and its capacity is infinite in which case the
relative error increases sharply with B. Kroese and Nicola (2002) have suggested
that a different change of measure is needed in this case when the starting state

is (0,0).
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Table 4.1: Estimates of 7, in Example 1 (X, uq, puo = 1,4,2) with b = oo

| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |

0 | 14806 | rene | a0 | 03 | 5T |
25 44708 | E e oot T T o T 5
50 1.33e-15 ]?(1511\? 11'_?;,359;_1155 :IJ,(ISZ}S (1)4112282 322 Bf
0 | 130018 s gt | 103 | o |
00| L1880 e e s T e

Table 4.2: Estimates of v, in Example 2 (X, uq, po = 1,2,3) with b = oo

| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |

20 | zosent | DLR [2U5ell] 3201l [L30W] 70 | 92
55 | asters [PIR POt 13 t0 | L bel ]l 5 Lo
0| asier [ [AR0edT] 19500 |2 oe 08 0 [ 8
O R NN I e R R
100 | seoess [ e ] e e e

Table 4.3: Estimates of ; in Example 3 (X, 1, po = 3,4,6) with b = oo

| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |

0| 135008 ey e T TR T
% | 19710 o 0T 31 T 000 5 T
50| 220019 | R T oT o003 | 10T
60 6.54e-23 ?{Lll\? Eéiiii ?;‘SZEZ f{?ﬁﬂi ?38 =
100 | 67937 | p NG ose s [ 0588 | 152003 | ToT |
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Table 4.4: Estimates of ; in Example 4 (X, uq, po = 1,2,2) with b = oo

| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |

n e [ B e Do
5| v R L
o e | G T
o[ ren | R e T
o[ e e T

Table 4.5: Estimates of y; in Example 1 (A, pu1, p2 = 1,4,2) with b=9

| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |

20 | 14306 | N e | 30000 | T3 |5t |
2| 445008 N T e o e | 6
0| L8005 N et | e ts | 07| 156 |
0 | 126018 | T T e | et [ 61 |
00| L1230 x| T a0 | 2e0e3y | LT3 T

Table 4.6: Estimates of y; in Example 2 (A, 1, p2 = 1,2,3) with b=9

| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |

0| 18l e e e T
2% | 76l e T ey sress TS T
0| 12502 g Tose g wes g0 [T0r
60| 50638 N re g | 2538 [ grens | TS |
100 | 1385t |y or oo s [ gre0s o
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Table 4.7: Estimates of y; in Example 3 (X, 1, p2 = 3,4,6) with b=9

| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |

0 | 105008 g T Tregs | 32T [Z e 0 T
% | W10 oo ot (oo |
0| 38920 e
60 | 5842 NS o etess | 2oTers | 1 |
100 | 2080 [ e e o

Table 4.8: Estimates of y; in Example 4 (A, 1, p2 = 1,2,2) with b=9

| Buffersize | Numerical | Method | Mean | Halfwidth | RE | CPU | VRR |

0| 2360 Ry ey g Torens | T
25 | 640009 NG en0 | vt | Tote03] 51 |
0| 6T N et ey [ Toners 0
00 | 39920 | Tamers [ Totens | T |
00| 02403 X ety Ty | Tote0s | 2T |
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Table 4.9: Estimates of vy with b = oc

| Buffersize | Example | Method | Mean | Halfwidth | RE | CPU | VRR |

1 BLR 7.40e-16 | 1.40e-18 | 0.97e-03 | 230 1.0
K-N 7.40e-16 | 2.05e-18 | 1.41e-03 | 112
9 BLR 1.03e-26 | 9.80e-29 | 4.86e-03 | 188 18.4
50 K-N 9.06e-27 | 5.54e-28 | 31.1e-03 | 108 —
3 BLR 3.86e-19 | 3.10e-21 | 4.10e-03 | 267 10.4
K-N 3.82e-19 | 1.65e-20 | 22.1e-03 | 98 —
4 BLR 1.54e-16 | 5.97e-19 | 1.98e-03 | 256 4.0
K-N 1.54e-16 | 1.93e-18 | 6.39e-03 | 98
1 BLR 6.56e-31 | 1.23e-33 | 0.96e-03 | 480 1.0
K-N 6.56e-31 | 1.82e-33 | 1.41e-03 | 224
9 BLR 2.39%e-52 | 5.76e-54 | 12.3e-03 | 380 17.8
100 K-N 2.22e-52 | 3.29e-33 | 75.7e-03 | 207
3 BLR 1.23e-36 | 1.87e-38 | 7.72e-03 | 543 11.8
K-N 1.23e-36 | 1.09e-37 | 45.4e-03 | 187 —
4 BLR 9.51e-32 | 4.53e-34 | 2.43e-03 | 518 2.5
K-N 9.59e-32 | 1.18e-33 | 6.28e-03 | 187

Table 4.10: Estimates of vy with b =9

| Buffersize | Example | Method | Mean | Halfwidth | RE [ CPU | VRR |

1 BLR 7.23e-16 | 1.40e-18 | 0.99e-03 | 233 1.0
K-N 7.35e-16 | 2.06e-18 | 1.43e-03 | 111 —
9 BLR 1.96e-27 | 1.16e-29 | 3.02e-03 | 185 1.9
50 K-N 1.96e-27 | 2.15e-29 | 5.61e-03 | 103 —
3 BLR 9.59e-20 | 3.05e-22 | 2.79e-03 | 251 0.8
K-N 9.64e-20 | 4.30e-22 | 3.89e-03 | 100
4 BLR 5.89e-17 | 1.78e-19 | 1.54e-03 | 269 1.0
K-N 5.86e-17 | 2.89e-19 | 2.52e-03 | 101 —
1 BLR 6.21e-31 | 1.23e-33 | 1.00e-03 | 483 1.0
K-N 6.45e-31 | 1.83e-33 | 1.45e-03 | 225
9 BLR 2.16e-54 | 3.93e-56 | 9.27e-03 | 374 0.2
100 K-N 2.18e-54 | 2.41e-56 | 5.65e-03 | 204 —
3 BLR 4.30e-39 | 6.10e-41 | 7.23e-03 | 512 0.1
K-N 4.33e-39 | 3.29e-41 | 3.88e-03 | 199
4 BLR 9.83e-33 | 3.86e-35 | 3.38e-03 | 554 0.3
K-N 5.78e-33 | 2.85e-35 | 2.51e-03 | 200 —
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Chapter 5

Conclusions

This paper presents a balanced likelihood ratio importance sampling approach for
estimating the overflow probability of the second buffer in a two node tandem
Jackson network. The proposed importance sampling distributions depend on the
state of the system. The importance sampling estimator is asymptotically efficient
with bounded relative error when the first buffer capacity is infinite except when
the first server is the bottleneck. This has been proved formally and corroborated
using numerical results. When the first server is the bottleneck, numerical results
indicate that the relative error is linearly bounded in the buffer size. Empirical
evidence indicates that the BLR method outperforms existing importance sam-
pling distributions when the first node buffer is infinite. More work is needed
to determine why the BLR method struggles when the first node buffer is finite.

The proposed methods can be readily extended to estimate individual buffer over-
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flow probabilities in tandem Jackson networks with more than two nodes. The
proposed method can also be used to estimated buffer overflow probabilities in

non-Markovian networks.
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