
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

DEBUGGING SIMULATION MODELS

David Krahl

Imagine That, Inc.
6830 Via Del Oro

Suite 230
San Jose, CA 95119, U.S.A.

ABSTRACT

While much has been written about model validation and
verification, the actual process of correcting, or debugging,
a model is presented as an afterthought. This paper will
describe different types of bugs and will present tech-
niques, drawn from both the simulation modeling and ap-
plication programming worlds, for determining the cause
of an error in the model.

INTRODUCTION

Late at night, an engineer is cursing at the monitor. Not
that this will do any good, but it’s a ritual that is repeated
throughout the world. This engineer is trying to find the
source of a bug or error in a model. Eventually, the bug
will be found and the engineer can go home for the night
(or is it morning already?).

Simulation modeling is programming. Building a
model is instructing the computer to execute a sequence of
steps. Even if the model is built graphically, a modeler is,
essentially, creating a computer program. As this engineer
has discovered, what is known as Greer’s third law: “A
computer program does what you tell it to do, not what you
want it to do” is frustratingly true. There are, however a
number of steps that can be taken to minimize the possibil-
ity of “bugs” and, should they occur, help determine their
cause.

1 TYPES OF ERRORS

There are a number of categories of bugs in a software
program or simulation model. An understanding of these
categories will have an impact on the techniques and tools
used to locate the source of the problem.

These different types of errors will show up at differ-
ent points in the simulation process. Syntactical errors, for
example are found by the simulation software program.
Data errors require a careful examination of the model in-
put and results.

62
1.1 Specification

An incorrect model specification will lead to an incorrect
model. Specification problems are a typical part of the
model building process. Modelers must iteratively compare
the simulation model to the real system. An incorrect
specification may even result in the invalidation of the en-
tire model.

1.2 Omission

A necessary piece of the model was not included. Part of
the art of simulation is the ability to determine what details
should be left out and what should be included in the simu-
lation model. Sufficient detail should be included so that
the model accurately represents all important aspects of the
real system. However, this needs to be balanced against
“overmodeling” the system. Fixing this kind of error in-
volves adding to the content of the model.

1.3 Data

Incorrect data can cause problems in any phase of the
simulation project. Even a different distribution might
cause a model to behave differently. One of the most in-
sidious types of errors, this is typically revealed in model
validation and verification phases. Correcting the data of-
ten requires additional data collection and there may be no
“quick fix” to this kind of problem.

1.4 Syntactical

This is an error in the format of the model statement. This
type of error is flagged by the simulation software either
immediately after the statement is entered, when it is com-
piled, at the start of the simulation, or when it is first exe-
cuted. A possible syntactical error that a C programmer
might use in their first Visual Basic program would be:

If .value == 1 Then

Krahl

This statement combines the syntax of two different pro-
gramming languages. It would not work as the modeler in-
tended in either one. Visual Basic requires a single equals
sign to test for equality, and the overall syntax for an if
statement in C is quite different.

This is probably the easiest type of bug to identify as
the simulation model will simply stop processing and gen-
erally present a message informing the modeler of the er-
ror.

1.5 Logical

Simulation models typically contain significant logical cal-
culations or statements. An error in any one of these can
cause the model to behave incorrectly. One example (in C
or ModL) would be:

if(A == 1 || 2)

Although grammatically correct in the English language,
this condition would never evaluate to false. Presumably,
the modeler would want the condition:

if(A == 1 || A == 2)

1.6 Time Sequence

Simulation models evaluate parallel processes with a se-
quence of serial calculations. A race condition, or time tie,
occurs when two events or calculations occur at the same
simulated time. However, because the simulation engine
processes events serially, these calculations will be evalu-
ated in sequential real time. This order of execution may be
important to the behavior of the model. Time also plays a
part in other calculations in a simulation model. A common
mistake is to reference a value in the model before it has
been set, or to access that value after it has been re-set by
another entity.

1.7 Analysis

The statistical aspects of the model need to be debugged as
well. Factors such as run length and number of runs need
to be properly determined. If a non-terminating model be-
gins the run “empty and idle” with no entities in the sys-
tem, then the statistical accumulators must be cleared after
an appropriate warm-up time.

1.8 Vendor

It is also possible that the source of a problem in a model is
a bug in the simulation software program itself. These can
be very subtle and range from a difference of assumptions
(how a conveyor works) to an outright programming error.
6

A vendor bug might not be the direct responsibility of
the simulation software developer. It might be in their de-
velopment tools, the operating system, or even in a video
or printer driver.

2 CHALLENGES OF SIMULATION MODELING

There are a number of challenges to model building that
are not found in mainstream programming. These are re-
lated to the complexity of the model and generalized use of
high level simulation modeling tools.

Simulation models are usually built using a purpose-
built simulation program. This is generally an advantage.
Simulation software is well tested by the developer and
provides features that reduce the amount of time to build a
model. Simulation software also contains a number of de-
bugging tools unique to simulation modeling.

Using commercial simulation software does mean that
the developer is using the assumptions of the software de-
veloper and much of the actual code is hidden from the end
user. A single modeling component can easily represent
thousands of lines of source code. The modeler must take
care to ensure that he/she understand the developer’s as-
sumptions. Failure to do this can result in a model that is
not behaving as the modeler intends it to.

Data problems in simulation models may come from
unusual sources. For example, in some cases one random
distribution, such as the beta, may have multiple meanings
for its parameters. A good way to test the parameters is to
build a very simple model that generates a set of samples
from the distribution. Use a distribution fitting program to
analyze the results to double-check the parameters. Given
enough samples, the distribution fitting program should
find a fit for the selected distribution and generate parame-
ters that are statistically close to the original inputs.

Finally, simulation models must not only behave
properly on the computer, they must be a reasonable fac-
simile of a real system. Failure of the model to accurately
represent the outside world can lead to misleading results.

3 THE DEBUGGING PROCESS

Assuming that it has been determined through validation or
verification that a bug does exist, the modeler can begin
the actual debugging process. Robbins (2000) gives the
following sequence of steps that will help to speed the
modeler through the debugging process. These steps are
oriented towards general software development, but they
apply equally well to simulation modeling.

3.1 Duplicate the bug

Begin by ensuring the problem is repeatable. Every time
the model is run, exactly the same problem should occur at
exactly the same time. Note the random seed used and ver-
3

Krahl

ify that the bug occurs exactly the same way every time the
model is run. There may be external factors that will alter
how the bug occurs. Without this repeatability, the debug-
ging process can become nearly impossible. From time-to-
time a bug occurs that depends on a factor that is not pre-
dictable (such as the system clock or what is currently
loaded into memory). In these cases, the lack of repeatabil-
ity can become a valuable clue. However, the vast majority
of simulation models will behave the same way from one
run to the next. This is also a necessary step should the de-
bugging process result in a call to the simulation software
vendor.

If possible, reduce the size of the model to be as small
as possible with the bug intact. This will make the model
easier to debug as there will be fewer factors and the model
will run faster.

3.2 Describe the Bug

Describing the bug often helps to fix it. Bring in someone
else if possible. The very act of stating the problem often
brings the source of the bug to the surface. Even if the lis-
tener does not completely understand the model, this can
be a valuable aid in short-circuiting the debugging process.
A pencil and paper are also useful here. Hand calculation
of expected results as well as any diagrams or notes, are
helpful in determining the existence and source of the bug.
This is a place where having a good relationship with the
software vendor is especially helpful. It is essential to have
a well stated description of the problem, however, before
calling in someone else.

3.3 Always Assume the Bug Is Yours

Most bugs are created by the person doing the program-
ming/modeling. It is easy, but usually incorrect, to blame
someone else. By assuming that the modeler has created
the bug, the modeler is able to focus on the most likely
cause of the problem. Calling the vendor and claiming that
the bug is theirs before fully investigating the source of the
problem can be counterproductive.

3.4 Divide and Conquer

Find out where the bug is not. Check the values of the
variables and step through the model at a high level. Do all
of the values and actions match the expected values? Start
with a hypothesis. If this is correct on the first try, then the
problem is quickly solved. If not, try something else.

Build the simplest model that duplicates the error. This
will make the model run faster and there will be fewer
variables to consider when debugging.
6

3.5 Think Creatively

Bugs don’t always come from the expected locations. If
there is no measurable progress toward a solution, take
some time away from the problem. Although project dead-
lines may make this impossible, developers view the morn-
ing shower or drive to work as one of the most inspira-
tional times of the day. Maybe there is an alternate way to
approach the model. The bug may not be solved, but this
may eliminate it from the model. This is a good work-
around, but it is generally best to determine the source of
the problem so that it can be avoided in the future.

“Thinking out of the box” is certainly an overused cli-
ché, but it truly applies in this case. Its not unusual for the
evidence of a modeling error to show up at a different
point in the model than the actual error. Keeping an open
mind about the source of the problem can assist the mod-
eler in moving from one hypothesis to the next.

3.6 Leverage Tools

Learn the debugging tools in the simulation software. Call
technical support and ask them how they debug models.
Build tools if necessary (and if possible). In short, wage
guerilla warfare on the bugs and use every tool available.
In developing these tools, go back to the “think creatively
step”. The author has developed a number of modeling
components specifically for debugging that have found
their way into the released version of the software.

3.7 Start Heavy Debugging

Close the door, turn on music if that helps, and focus on
the problem. Take notes about every variable or step that is
appropriate. Use a calculator to check the math. The objec-
tive here is to become absorbed in the problem. This phase
of debugging requires focused concentration. The modeler
must mentally track logical behaviors and variable values
in trying to determine the discrepancy between the desired
and the actual model behavior.

At the end of this phase, the bug should be located and
fixed. If not, keep working on it. Bring in new tools, hy-
potheses, or people if necessary.

3.8 Verify That the Bug Is Fixed

Test in every possible configuration. Do not forget that
sometimes fixing a bug can create new ones. It is easy to
focus on the problem at hand and forget that there may be
undesirable side effects to a particular change in the model.
Ideally, validate and verify the model again.
4

Krahl

3.9 Learn and Share

Engineers love to talk about their bugs and how they fixed
them. For some reason, crashing an entire mainframe is a
source of pride. There is a use to this, however, in that
sharing this with others and keeping notes on fixed prob-
lems can help to avoid them in the future.

4 DEBUGGING TOOLS

Modern simulation environments should contain a rich set
of tools for determining the source of a modeling error.
There can be, however, a great deal of variability in the
quality and level of detail obtained by the available debug-
ging tools. Invariably, debugging capabilities are over-
looked in the simulation software selection process. In
simulation software surveys (OR/MS Today, 2001), the
debugging capabilities are a single yes/no checkbox. This
is one area where the modeler is well advised to “test-
drive” the software before the purchase.

From the online wikipedia (www.wikipedia.org,
debugging): “Debugging is, in general, a cumbersome and
tiring task. The debugging skills of the programmer is
probably the biggest factor in the ability to debug a
problem, but the difficulty of software debugging varies
greatly with the programming language used and the
available tools…”. This is certainly true of simulation
models as well as computer programs. A modeler would
certainly be wise to look over the wall at the tools that
software developers use to solve problems in addition to
those tools that are unique to simulation modeling.

Following is a list of tools that are helpful in determin-
ing the source of a bug.

4.1 RTM

“Read the manual”. In most cases, there is a wealth of in-
formation in there waiting to get out. Not only should the
manual contain debugging tips, but there should also be in-
formation explaining how the underlying software works
(Imagine That, 2003). This can be invaluable in determin-
ing the problems in the model. It is also a great tool in re-
ducing the possibility of a bug. A modeler who has a good
understanding of the simulation software will better under-
stand the assumptions of the developers. A nice side bene-
fit of this is that the modeler will probably discover previ-
ously unknown software features.

4.2 Animation

A great tool for model verification, animation can also help
to identify the source of the bug. Using animation is a great
first step in the debugging process. The modeler can
quickly get an overview of the model behavior and some
classes of modeling errors, such as omission or specifica-
6

tion may become immediately obvious. An animation is a
very effective way to communicate the behavior of the
model to a non-modeler that is familiar with the real-world
system. Often, outside observers such as this may spot
modeling problems that were missed by the model builder.

The modeler should take care not to rely too much on
animation as a verification and validation tool. Animation
does not typically show the same level of detail as other
techniques.

4.3 Model Traces

Recording a model trace to a file is simple, primitive, and
effective. Reading through the trace forces the modeler to
slow down and evaluate the model execution in a step-by-
step fashion.

Trace files create a permanent record of information
that is specified by the modeler. Making changes and then
comparing the changes to the text file created by the trace
can yield clues to the source of the bug.

4.4 Preempt the Bug

In the process of building the model, add additional model-
ing constructs that alert the modeler to a potential problem.
A statement that pops up a window with “Item should not
be here” if the item takes what should be an invalid path
can help to identify a modeling problem at an early point in
model development. While this may not locate the bug di-
rectly, it will alert the modeler of a problem before the day
of the presentation.

4.5 Interactive Debugger/Model Execution

Interactive debuggers and models allow the modeler to step
through the simulation viewing the system status at any
point. Variables can be examined as the simulation pro-
gresses and the each step of the simulation is displayed be-
fore the modeler’s eyes. Powerful debuggers can give the
modeler insight into the actions of the simulation model.
The best of them can show the actual event scheduling
procedures and data structures. Using a debugger at this
level can require some expertise, but is unsurpassed in its
ability to locate a bug. Given enough time, virtually all
problems can be found using this method.

4.6 Common Sense

Just possibly, the model is working properly. Keep a
pocket calculator handy to check the model parameters.
This method is particularly good at locating problems in
the underlying data. Recently, the author was presented
with a test case model that was unstable. The software
evaluator wanted to test the robustness of the software and
intentionally specified data, without alerting the vendor,
5

Krahl

that would lead to an impractical system. The arrival rate
was far too high for the resources available. A little com-
mon sense and a pocket calculator verified the discrepancy,
the software was dealing with the specification correctly,
and the modeling continued. This is a case of something
that initially appeared to be a bug, but was merely the
simulation software accurately representing the specifica-
tion.

4.7 Technical Support

Engineers love to solve problems. Do the basic research on
the problem. If a solution is not forthcoming, give techni-
cal support a call. If there is a good engineer on the other
end of the phone line, they will become a valuable resource
for this and future problems. A positive relationship with a
support person can be helped by good preparation and atti-
tude. Define the problem well, give them all of the infor-
mation that is requested, and keep an open mind. It is in
their best interest to solve the problem quickly and effec-
tively.

5 BECOMING A BETTER DEBUGGER

The author is often asked “how hard is it to build a simula-
tion model in your software?” Of course, for a specific per-
son, the answer can only be determined after they have
learned how to use the software. There are however, three
skills that the author has found are common to the best
modelers are: a background in statistics; the understanding
of at least one programming language; and a bit of com-
mon sense. Of the three, common sense is the most impor-
tant. If the other two are not there, a savvy person will rec-
ognize that they need to hire a consultant to build models
for them. In addition to these basics, a better understanding
of the following topics will improve debugging skills.

5.1 Develop a System for Modeling and Debugging

Nearly every simulation textbook (Banks and Carson,
2001; Law and Kelton 2000) specifies the sequence of
steps for simulation project. Following this sequence will
help to avoid errors of omission and specification at the
beginning of the project and data and analysis errors as the
project progresses.

Develop a system for debugging as well as for model-
ing. Line up the tools that you need before you begin the
debugging process. Develop a plan of attack for debugging
the model. Systematically eliminate the possible sources of
the problem.

5.2 A Basic Understanding of Computers

Every pilot should know something about aerodynamics.
Understanding data structures, data types, how math is
66
evaluated, and how logical statements are executed will go
a long way in creating a better modeler and debugger. If
possible, some exposure to binary data types and machine
code can be very useful in locating certain types of bugs
such as overflows and round-off errors (these are generally
handled by the simulation software, but can easily show up
in user programmed segments). One of the most useful col-
lege courses for modeling in the author’s experience is low
level machine code programming.

5.3 Learn about Discrete Event Simulation

Learn the basic data structures and algorithms of a simula-
tion model. Most simulation textbooks such as Law and
Kelton (2000) have a good example of how a simple dis-
crete event simulation works. At a minimum, the modeler
should understand each line of that sample model. Read the
manual or contact technical support if it is not clear how
the software works. Engineers like to discuss the innards of
software almost as much as they like talking about bugs.

Schriber and Brunner (2004) have an excellent discus-
sion of how small differences between simulation pro-
grams can impact simulation results. The modeler should
always keep in mind the assumptions that underlie higher
level simulation constructs. Modelers must also be very
careful when changing from one simulation program to an-
other. A conveyor in package A may have somewhat dif-
ferent behavior than the conveyor in package B.

5.4 Step through a Working Model

Gain a familiarity with how the model is actually working.
It is probable that some discoveries will be made about the
operation of the model and the underlying software. Use
the debugger or trace files to show the detailed model be-
havior. Use a spreadsheet or calculator to add up the num-
bers and make sure that they reflect the design. Animation
can be helpful here as well. Be careful, however, not to
rely too much on the animation as it typically will not
show the same detail as a trace or debugger.

5.5 Build Models That Are Easy to Understand

There are numerous advantages to this approach. Well
built models will be better understood by others and even
the model developer. In software development, Spaghetti
code is unnecessarily convoluted programming. In simula-
tion, spaghetti modeling are poorly organized models that
are difficult to read and interpret. A spaghetti model can
hide modeling errors and frustrate the debugging process.

5.6 Test Test Test

Test each phase of the model. Make sure that each model
segment makes sense and that they interact properly. Al-

Krahl

ways be suspicious of the model. This is particularly im-
portant if the model will be delivered to someone else for
analysis or if the model is expected to be used over a long
time period.

• Use the model as if the end-user were experiment-

ing with it. Specify parameters that are out of
range, does the model deal with these properly?

• Try extreme cases to make sure that the model re-
acts sensibly.

• Try the model on different computers. The author
recently found a case in which Excel reacted dif-
ferently depending on some seemingly unrelated
system settings.

• Ideally, someone else should test the model as
well. Its often easy to be too close to a project to
do a quality test. Allow someone that is not famil-
iar with the details of the model to operate it.

6 DEBUGGING “DON’TS”

It is easy to fall into these traps when time schedules are
tight and the solution seems intractable. Its is best to work
through the debugging process in order and with a clear fo-
cused objective.

6.1 Don’t Blame Someone Else

Don’t start with “Your (software, model, code) is buggy”.
This will not solve any problems and may force some seri-
ous “crow eating” when the problem is located. If the bug
was self-created, there will be a loss of credibility for fu-
ture bugs. Remember to always first assume that the prob-
lem is the modeler’s.

6.2 Don’t Build the Model All At Once

This is an old axiom of simulation modeling for a reason.
Building models in stages allows the modeler to incremen-
tally test each phase of the model. As it is generally easier
to locate problems in a small model than a large one, in-
cremental model building makes for easier debugging.

6.3 Don’t Change Multiple Factors At Once

Change one variable, construct, or line of code at a time.
This goes back to the “divide and conquer” step in model
debugging. At some point, a change will be made and the
bug will go away or be altered in some way. This change
may be the source of the bug or a valuable clue to its cause.
Changing multiple factors obfuscates this process.
6

6.4 Don’t Write Spaghetti Models

Its an easy trap to fall into when deadlines are tight and
there are multiple revisions to the model. Not only will it
make it more difficult for the modeler to locate the source
of the bug, it will more difficult to get outside help on the
model. It is time well spent though to organize the model
and make it understandable by others. This very process
can help to identify or avoid modeling errors.

7 CONCLUSION

Simulation modeling is programming. Even when the
model is built entirely with graphical components, the
definition of “computer programming” from the online
wikipedia (www.wikipedia.org, Programming): “the craft
of implementing one or more interrelated abstract algo-
rithms using a particular programming language to produce
a concrete computer program. Programming has elements
of art, science, mathematics, and engineering.” holds true.
Because of this, adapting techniques from the sofware
engineering community can help a modeler prevent bugs
and locate modeling errors more efficiently.

ACKNOWLEDGMENTS

The author would like to thank James Dailey of James
Dailey and Associates and Stephen Chick of INSEAD for
their input on debugging techniques as well as Peter Kozik
and everyone at Imagine That, Inc. for their input on
technical content and readability.

REFERENCES

Banks, J., J.S. Carson, B.L. Nelson, and D.M. Nicol.
2001.Discrete-event system simulation. 3rd ed. Upper
Saddle River, N.J.: Prentice-Hall.

Imagine That, Inc. 2003. Extend 6 developer’s reference
San Jose, CA.

Law, A. M., and W. D. Kelton. 2000. Simulation modeling
and analysis, 3rd ed. New York : McGraw-Hill.

OR/MS Today February 2001. Simulation software sur-
vey.(http://www.lionhrtpub.com/orms/surveys/Simulat
ion/Simulation.html) [accessed April 6, 2005]

Robbins, Jack. 2000. Debugging applications. Redmond,
Washington : Microsoft Press

Schriber, Thomas J., and Brunner, Daniel T., Inside discrete-
event simulation software: How it works and why it
matters. In Proceedings of the 2004 Winter Simulation
Conference, ed. R .G. Ingalls, M. D. Rossetti, J. S.
Smith, and B. A. Peters. 142-152. Piscataway, NJ: Insti-
tute of Electrical and Electronics Engineers.

www.wikipedia.org. Debugging [accessed April 4, 2005]
www.wikipedia.org. Programming [accessed April 4,

2005]
7

http://www.lionhrtpub.com/orms/surveys/Simulation/Simulation.html
http://www.lionhrtpub.com/orms/surveys/Simulation/Simulation.html
http://www.wikipedia.org/
http://www.wikipedia.org/

Krahl

BIOGRAPHY

DAVID KRAHL is currently debugging models and
simulation applications at Imagine That, Inc. in San Jose,
California. He has worked with modelers in solving
simulation problems in half-a-dozen different simulation
programs. Mr. Krahl has a Bachelors Degree in Industrial
Engineering, a Masters Degree in Project and Systems
Management, and has spent too much time hanging around
with computer programmers.

68

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

