
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

DISCRETE OPTIMIZATION VIA SIMULATION USING COORDINATE SEARCH

L. Jeff Hong

Department of Industrial Engineering and Logistics Management
The Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong, CHINA
ABSTRACT

In this paper we propose a coordinate search algorithm to
solve the optimization-via-simulation problems with integer-
ordered decision variables. We show that the sequence
of solutions generated by the algorithm converges to the
set of local optimal solutions with probability 1 and the
estimated optimal values satisfy a central limit theorem. We
compare the coordinate search algorithm to the COMPASS
algorithm proposed in Hong and Nelson (2004) through a
set of numerical experiments. We see that the coordinate
search has a better performance.

1 INTRODUCTION

Applications of optimization via simulation (OvS) have
been increasing in areas including manufacturing (e.g., Vogt
2004), supply-chain management (e.g., Truong and Azadivar
2003), logistics (for instance, Wieland and Holden 2003),
telecommunication (e.g., Baras 2003) and project manage-
ment (e.g., April et al. 2004). There are at least two reasons
for the burst of OvS applications: First, the objective of
many simulation studies is to find the best system configu-
ration. To find the best system configuration we often need
to simulate a large number of system configurations, and
advances in computer technology make it possible to simu-
late a large number of system configurations in a reasonable
amount of time. Therefore, it becomes feasible to conduct
an optimization process on a simulation model. Second,
the advantages of OvS attract more modelers to use OvS
to solve their optimization problems. To solve a practical
optimization problem using a mathematical programming
approach, a modeler first creates an equation-based model
of the system and then optimizes the model using appropri-
ate algorithms. This approach requires the modeler to have
a good knowledge of optimization and make many (per-
haps restrictive) approximations to ensure that the model is
mathematically tractable. When using OvS, however, the
modeler only needs to construct a simulation model and
optimize it using OvS algorithms. Typically, simulation
803
models are easier to construct, require fewer assumptions
and may capture more details of the system than analytical
models, especially when used to study complex systems.
For a recent review on OvS research and practice, see
Fu(2002).

In this paper we are interested in the OvS problems
with integer-ordered decision variables, which may be called
discrete OvS problems or DOvS problems. A number of
methods have been proposed in the literature to solve DOvS
problems, including sample average approximation method
(Kelywegt et al. 2001), discrete simultaneous perturbation
stochastic approximation method (Gerencsér et al. 1999) and
random search algorithms, including stochastic ruler method
(Yan and Mukai 1992), simulated annealing (Alrefaei and
Andradóttir 1999), stochastic comparison method (Gong et
al. 1999), nested partitions (Shi and Ólafsson 2000) and
COMPASS algorithm (Hong and Nelson 2004). Among the
random search algorithms mentioned above, COMPASS is
locally convergent, i.e., converges to the set of local optimal
solutions, and all other algorithms are globally convergent,
i.e., converge to the set of globally optimal solutions.

To guarantee global convergence, the globally con-
vergent algorithms need to simulate all feasible solutions
infinitely often in the limit. When the problem has a large
number of feasible solutions, simulating all feasible solu-
tions is often not possible. To solve this problem Hong and
Nelson (2004) suggest to focus on local convergence. To
ensure local convergence (see Section 2 for the definition
of local convergence), only the local optimal solutions and
their neighboring solutions need to be simulated infinitely
often in the limit. Therefore, locally convergent algorithms
in general converge faster than globally convergent algo-
rithm. Moreover, since not all feasible solutions are required
to be simulated, COMPASS may also be applied to solve
partially constrained or unconstrained DOvS problems that
have an infinite number of feasible solutions.

In the paper we propose a coordinate search algorithm
to solve both fully constrained DOvS problems and partially
constrained or unconstrained DOvS problems. Coordinate
search algorithm works as follows: In each iteration the

Hong
algorithm first selects a coordinate direction. It then con-
ducts a line search along the coordinate direction for a
sample mean function and finds a local optimal solution.
We are able to show that the sequence of solutions gen-
erated by the coordinate search algorithm converges with
probability 1 to the set of local optimal solutions for both
fully constraind DOvS problems and partially constrained
or unconstrained DOvS problems. We also show that, under
certain conditions, the estimate objective values generated
by the algorithm satisfy a central limit theorem.

One important feature of the coordinate search algorithm
is that it is not a random search algorithm. Random search
algorithms, e.g., COMPASS, visit and simulate solutions
randomly to find better solutions. When the probability of
finding better solutions are small, random search algorithms
do not work well. Coordinate search algorithm, on the other
hand, uses a more systematic approach to search for better
solutions. The numerical results show that the coordinate
search algorithm has better performance than COMPASS
and it may solve problems with higher dimensions compared
to COMPASS.

The paper is orgnized as follow: The statement of
DOvS problems and the definition of local minimizers are
provided in Section 2, followed by an introduction to the
coordinate search algorithm in Section 3. The asymptotic
properties of the algorithms are discussed in Section 4,
followed by the results from a comprehensive numerical
studies in Section 5.

2 PROBLEM STATEMENT

We are interested in solving the following problem:

min
x∈�

E [G(x, ψ)] (1)

where � = � ∩ Zd , � is a closed and convex set in �d ,
and Zd is the set of d-dimensional vectors with integer
elements. To avoid triviality, we assume that � is non-
empty. When � is bounded, � has a finite number of feasible
solutions. Then Problem (1) is called a fully constrained
problem. When � is unbounded, � has an infinite number
of feasible solutions. Then Problem (1) is called a partially
constrained or unconstrained problem. The quantity ψ

represents the stochastic input to the simulation, and its
distribution may depend on x. We assume that G(x, ψ) is
measurable and integrable with respect to the distribution of
ψ for all x ∈ �. Furthermore, we let g(x) = Eψ [G (x, ψ)]
and assume that g(x) cannot be evaluated easily (or at all)
but the random variable G(x, ψ) can be observed via a
simulation experiment at x.

Let N (x) = {y : y ∈ � and ‖x − y‖ = 1} be the neigh-
borhood of x ∈ �, where ‖x − y‖ denotes the Euclidean
distance between x and y. Define x ∈ � to be a local
80
minimizer of Problem (1) if g(x) ≤ g(y) for all y ∈ N (x)

or N (x) = ∅. The definition is consistent with Hong and
Nelson (2004). Let M denote the set of local minimizers of
the function g in �; locally convergent algorithms guarantee
to converge to M.

Let Gi(x) denote the ith obserations taken from x
and let Ḡ(x, r) = ∑r

i=1 Gi(x)/r . We make the following
assumption on Ḡ(x, r):

Assumption 1 For every x ∈ �,

P
[

lim
r→∞ Ḡ(x, r) = g(x)

]
= 1.

Assumption 1 implies that the sample mean of G(x, ψ)

is an appropriate estimator of g(x). Assumption 1 holds
automatically for terminating simulations, where the simu-
lation output is a sequence of i.i.d. random observations,
according to the Strong Law of Large Numbers. Assumption
1 also holds for output from typical steady-state simulations.

Let x0 be the user provided starting solution. We require
x0 to be a feasible solution. Moreover, x0 needs to satisfy
the following assumption.

Assumption 2 If Problem (1) is partially con-
strained or unconstrained, there exists a positive constant
δ such that the level set L = {x ∈ � : g(x) ≤ g(x0) + δ} is
finite.

Assumption 2 is equivalent to Assumption 4 of Hong
and Nelson (2004). However, Assumption 2 is in a form
that is more common used in the optimization literature.
Assumption 2 generally holds since simulation study typi-
cally has a benchmark system configuration, which could
be the current configuration. Solutions that are far away
from the benchmark configuration are typically inferior to
the benchmark.

3 COORDINATE SEARCH ALGORITHM

If a solution is a local minimizer of Problem (1) it is also a
local minimizer along all coordinate directions. The basic
idea of the coordinate search is to conduct search along each
direction sequentially until it converges. In the remainder
of this paper we use xi direction to denote the direction
(without sign) along the ith coordinate axis. The algorithm
starts with an initial solution x0 and sets x̂∗

0 = x0, where x̂∗
k

denotes the sample best solution at the end of iteration k. In
the first iteration, the algorithm conducts a line search along
x1 directions and finds x̂∗

1 which is sample local minimizer
along the x1 direction. Then in the second iteration it
conducts a line search along x2 directions and finds x̂∗

2 and
so on so forth. After finishing all d coordinate directions
it goes back to the x1 direction. Notice that if there is no
noise in the function evaluations it is easy to show that
the algorithm converges, since the algorithm always moves
to a better solution if the current best solution is not a
local minimizer. We are also able to show that the same
4

Hong
convergence property holds with probability 1 even if when
the objective function values can only be estimated with
noise.

The following is the coordinate search algorithm:

Algorithm 1: Coordinate Search

Step 0 : Find a starting point x0 ∈ �. Set iteration
count k = 0 and dimension count i = 0. Let
x̂∗

0 = x0.
Step 1 : Let k = k+1 and i = i+1. If i > d, where d is

the dimension of Problem (1), let i = 1. Determine
Nk , the number of simulation observations that will
be allocated to a solution visited in iteration k. We
require that Nk ≥ Nk−1.

Step 2 : Find a local minimizer y∗ to the following
one-dimensional minimization problem:

min Ḡ(x̂∗
k−1 + yei , Nk) (2)

subject to x̂∗
k−1 + yei ∈ �

y ∈ Z

where ei is the ith column of the d-dimensional
identity matrix. If Problem (1) is fully constrained,
then let x̂∗

k = x̂∗
k−1 + y∗ei . If Problem (1) is

partially constrained or unconstrained, then let x̂∗
k =

argmin{Ḡ(x̂∗
k−1 + y∗ei , Nk), Ḡ(x0, Nk)} to make

sure that x̂∗
k is not worse than x0. Then go to Step

1.

Remark: In Step 1 one can choose any Nk such that
Nk ≥ Nk−1. To ensure the convergence of Algorithm
1 (see Theorems 1 and 2 in Section 4), we require that
Nk → ∞ as k → ∞.

To reuse the simulation observations allocated before
iteration k, we check every solution visited in iteration k

to see if it has been visited through iteration k − 1. If it
has been visited and it has rk−1 observations, then we only
allocate Nk − rk−1 observations to the solution.

When Nk is fixed, the objective function of Problem (2)
can be evaluated without noise. Therefore, Problem (2) is
a one-dimensional deterministic discrete optimization prob-
lem. We may solve the problem by line search algorithms.
We require the line search algorithm used in Algorithm 1
to satisfy the following conditions:

Condition 1 The local minimizer y∗ of Problem (2)
satisfies Ḡ(x̂∗

k−1 + y∗ ei , Nk) ≤ Ḡ(x̂∗
k−1, Nk).

Condition 2 The number of solutions visited in the
line search is bounded above by some constant M > 0 for
all iterations.

Condition 3 If y∗ = 0 is a local minimizer to
Problem (2) and solutions in {x̂∗

k−1 ± ei} ∩ N (x̂k−1) have
all been visited through iteration k − 1, then only y = 0
and y = ±1 can be evaluated at iteration k.
805
Condition 1 requires that the sample best solution at
the end of iteration k should be at least as good as the
sample best solution at the end of iteration k − 1 based on
the Nk simulation observations allocated to each of them.
This condition makes sure that the quality of the solution
keeps improving.

Condition 2 ensures that only a finite number of solu-
tions are visited in each iteration. If Problem (1) is fully
constrained, Condition 2 is automatically satisfied since the
number is bounded by |�|. If Problem (1) is partially con-
strained or unconstrained, we need this condition to ensure
the local convergence of Algorithm 1. However, we may
set M to be a large number such that it almost has no impact
on the algorithm.

Two approaches are typically used in the line search:
backtracking and forward searching. In the backtracking line
search algorithms, we first set the maximum distance along
a descent direction and then move backwards until finding
a local minimizer. In the forward line search algorithms,
we move from the starting point gradually along a descent
direction until finding a local minimizer. When backtracking
line search is used, Condition 2 is automatically satisfied
if the maximum distance is fixed for all iterations. When
forward line search is used, however, we need to set a
maximum distance to satisfy Condition 2.

If Algorithm 1 has converged to a solution and all
solutions in the neighborhood of the solution are visited.
Then in each iteration, we only need to compare the solution
to its two neighboring solutions along xi direction to check
if the solution is still a local minimizer along the coordinate
direction. If it is, then we find a local minimizer that
satisfies Conditions 1 and 2; if not, we may conduct a full
line search. This is the basic idea behind Condition 3. To
guarantee the convergence of Algorithm 1, Condition 3 is
not required. However, it is useful when analyzing the
limiting distributions (see Section 4.2).

In the following of this section we provide a forward
line search algorithm. The algorithm first evaluate x̂∗

k−1 +ei

or x̂∗
k−1 − ei depending on their feasibilities and identify

a descent direction, either ei or −ei . Then the algorithm
search along the decent direction. Initially, the step size
of the search is large. It is shortened when an infeasible
solution or a worse solution is visited. The algorithm will
stop when a local minimizer is identified. As described
in Algorithm 1, all visited solutions in the line search are
checked to see if they have been visited before to reuse the
simulation observations allocated before the iteration. To
satisfy Condition 2, we set an upper bound for the maximum
moving distance. To satisfy Condition 3, we first check if
two neighboring solutions of x̂∗

k−1 have been visited. Notice
that Condition 1 is satisfied automatically by the algorithm.

In the following description of the algorithm we assume
that it is in iteration k of Algorithm 1 and the coordinate is
xi .

Hong
Algorithm 2: Line Search

Step 0 : If both x̂∗
k−1 +ei and x̂∗

k−1 −ei are not feasible
(i.e., they are not in �), then stop and return
y∗ = 0. Otherwise, let y = 1 if x̂∗

k−1+ei is feasible
and y = −1 if it is not. Evaluate Ḡ(x̂∗

k−1, Nk)

and Ḡ(x̂∗
k−1 + yei , Nk). If Ḡ(x̂∗

k−1 + yei , Nk) <

Ḡ(x̂∗
k−1, Nk), let d = y and z0 = 1; otherwise, let

d = −y and z0 = 0. Let y0 = d · z0.
Step 1 : If x̂∗

k−1+y0ei +dei has been visited before and
Ḡ(x̂∗

k−1 + y0ei + dei , Nk) ≥ Ḡ(x̂∗
k−1 + y0ei , Nk),

then stop and return y∗ = y0. Otherwise, let
m = m0 be a nonnegative integer and go to Step
2.

Step 2 : Set z = z0+2m and y = d ·z. If x̂∗
k−1+yei /∈ �

and m = 0, then stop and return y∗ = y0; if x̂∗
k−1 +

yei /∈ � and m > 0, then let m = m−1 and go back
to Step 2; otherwise, evaluate Ḡ(x̂∗

k−1 + yei , Nk).
Step 3 : If Ḡ(x̂∗

k−1 + yei , Nk) < Ḡ(x̂∗
k−1 + y0ei , Nk)

and z < zmax, then let z0 = z and go to Step 2.
If Ḡ(x̂∗

k−1 + yei , Nk) < Ḡ(x̂∗
k−1 + y0ei , Nk) and

z ≥ zmax, then stop and return y∗ = y. If Ḡ(x̂∗
k−1+

yei , Nk) ≥ Ḡ(x̂∗
k−1 + y0ei , Nk) and m = 0, then

stop and return y∗ = y0. If Ḡ(x̂∗
k−1 + yei , Nk) ≥

Ḡ(x̂∗
k−1 +y0ei , Nk) and m > 0, then let m = m−1

and go to Step 2.

InAlgorithm 2 the descent direction is dei . The quantity
z is the distance (always nonnegative) along the descent
direction from x̂∗

k−1, the quantity y is z if the descent
direction is ei and −z if the descent direction is −ei .
The constant m0 controls 2m0 , which is the maximum step
size the line search may take. It should be set according
to the size of the feasible region of the problem. The
constant zmax controls the maximum distance from x̂∗

k−1
and z ≤ zmax +2m0 . This ensures that Algorithm 2 satisfies
Condition 2. We suggest to set zmax as some large number.

When Algorithm 2 is used for solve Problem (2) in
Algorithm 1, Conditions 1–3 are all satisfied.

4 ASYMPTOTIC PROPERTIES OF COORDINATE
SEARCH

In this section we give the asymptotic properties ofAlgorithm
1, including local convergence and limiting distributions.
The proofs of the theorems are omitted in this paper, they
follow from the theorems in Hong and Nelson (2005).

4.1 Local Convergence

When Problem (1) is fully constrained, � is a finite set.
Therefore, x̂∗

k equals to some solutions in � infinite often.
We are able to show that, according to Hong and Nelson
806
(2005), those solutions are all local minimizers to Problem
(1). The convergence result for fully constrained problem
is summarized in the following theorem:

Theorem 1 If Assumption 1 and Condition 1 are sat-
isfied, and if Nk → ∞ as k → ∞, then the infinite sequence
{x̂∗

0, x̂∗
1, . . .} generated by Algorithm 1 converges with proba-

bility 1 to M in the sense that P{x̂∗
k /∈ M infinitely often} =

0.
When Problem (1) is partially constrained or uncon-

strained, � includes a countably infinite number of solutions.
By Condition 2, only a finite number of solutions are visited
in each iteration. Since x0 is included in the comparison
in each iteration of Algorithm 1, then we can show that x̂∗

k

may be outside of the level set L at most a finite number
of times. Since L is a finite set according to Assumption 2,
the partially constrained or unconstrained problem behaves
like a fully constrained problem asymptotically. Therefore,
the conclusion of Theorem 1 also holds. The convergence
result for partially constrained or unconstrained problem is
summarized in the following theorem:

Theorem 2 If Assumptions 1 and 2 and Conditions
1 and 2 are satisfied, and if Nk → ∞ as k → ∞, then
the infinite sequence {x̂∗

0, x̂∗
1, . . .} generated by Algorithm

1 converges with probability 1 to M in the sense that
P{x̂∗

k /∈ M infinitely often} = 0.
For the partially constrained or unconstrained problems,

the coordinate search requires fewer assumptions compared
to COMPASS algorithm of Hong and Nelson (2004). Since
COMPASS cannot guarantee that the number of solutions
visited in each iteration is bounded above, it requires that the
number of simulation observations allocated to a solution
visited in iteration k, which is similar to Nk in Algorithm 1,
to grow above certain rate. In coordinate search, however,
line search algorithms, e.g., Algorithm 2, may guarantee
that the number of solutions visited in each iteration is
bounded above (as required in Condition 2).

4.2 Limiting Distributions

To analyze the limiting distributions of the coordinate search,
we make the following assumptions:

Assumption 3 For any x ∈ �, simulation obser-
vations, G1(x), G2(x), . . ., are a sequence of independent
and identically distributed random variables with mean g(x)

and variance σ 2(x) < ∞.
Assumption 3 is more restrictive than Assumption 1.

If Gi(x), i = 1, 2, . . ., satisfy Assumption 3, they also
satisfy Assumption 1 according to the Strong Law of Large
Numbers. Assumption 3 is used to show that the sequence
of simulation observations obtained at the local minimizer
satisfies a central limit theorem.

Assumption 4 Problem (1) has only one local min-
imizer x∗.

Hong
If there are more than one local minimizer, Algorithm 1
may converge to any of them and it is difficult to characterize
the probability of converging to a particular local minimizer.
By makingAssumption 4, we focus on the problem with only
one local minimizer and we know the algorithm converges
to this solution. Though Assumption 2 is restrictive, we
believe that it also provides some insights on the problems
with multiple local minimizers.

We will need the following notations: the symbol ⇒
denotes “converges in distribution,” the symbol ∼ denotes
“has distribution” and N(μ, σ 2) denotes a normal distribu-
tion with mean μ and variance σ 2.

Theorem 3 When Algorithm 1 is applied to solve
Problem (1), if Assumptions 3 and 4 are satisfied when
the problem is fully constrained, or Assumptions 2–4 are
satisifed when the problem is partially constrained or un-
constrained, and if there exists a deterministic sequence
{ck} such that Nk/ck → 1 and ck → ∞ as k → ∞, then

√
Nk

[
Ḡ

(
x̂∗
k , Nk

) − g(x∗)
] ⇒ σ(x∗) · Z as k → ∞,

where Z ∼ N(0, 1).
When Problem (1) has only one local minimizer x∗, by

Theorems 1 and 2 we know that x̂∗
k �= x∗ for only a finite

number of k with probability 1 for both fully constrained
problem and partially constrained or unconstrained problem.
Therefore, showing Theorem 3 is equivalent of showing that

√
Nk

[
Ḡ

(
x∗, Nk

) − g(x∗)
] ⇒ σ(x∗) · Z as k → ∞,

where is a direct result of Assumption 3 and the standard
Central Limit Theorem.

Theorem 3 gives the limiting distribution in terms of
the simulation effort allocated to x̂∗

k . However, it is more
interesting to know what the limiting distribution is in terms
of the total simulation effort. Let nk denote the total number
of simulation observations allocated to all solutions through
iteration k, nk represents the total amount of computational
effort that has spent to solve the problem through iteration
k. The following corollary gives the conditions under which
we are able to find the limiting distribution.

Corollary 1 In addition to the conditions of Theo-
rem 3, if there exists a constant c such that nk/Nk → c in
probability as k → ∞, then

√
nk

[
Ḡ

(
x̂∗
k , Nk

) − g(x∗)
] ⇒ √

c σ (x∗) · Z as k → ∞.

When Condition 3 is satisfied by the line search al-
gorithm, e.g., Algorithm 2, only the solutions in N (x∗)
are visited infinite often besides x∗ for fully constrained
problems. For partially constrained or unconstrained prob-
lems, besides solutions in N (x∗) and x∗, x0 is also visited
infinitely often. If Nk/Nk−1 → 1 as k → ∞, which means
that Nk does not increase by orders of magnitute, then we
80
are able to show that, for fully constrained problems,

nk/Nk → |N (x∗)| + 1 in probability

and, for partially constrained or unconstrained problems,

nk/Nk → |N (x∗)| + 2 in probability.

Therefore, the variance of the limiting distribution is either
(|N (x∗)| + 1)σ 2(x∗) or (|N (x∗)| + 2)σ 2(x∗).

When globally convergent algorithms are applied to
solve Problem (1) and if the problem is fully constrained,
then the globally convergent algorithms guarantee the global
convergence by showing that all solutions are visited in-
finitely often. Andradóttir (1999) provides the limiting
distribution for the algorithms. If in the limit that all so-
lutions obtain the same number of simulation observations
and if the problem has only one local minimizer, then

√
nk

[
Ḡ

(
x̂∗
k , Nk

) − g(x∗)
] ⇒ √|�| σ(x∗) ·Z as k → ∞.

The variance of the limiting distribution is |�|σ 2(x∗) which
may be much larger than (|N (x∗)| + 1)σ 2(x∗) when the
size of problem is large. This explains the advantage of
local convergence and locally convergent algorithms. For
partially constrained or unconstrained problems, no limiting
distributions have been provided for the globally convergent
algorithms.

5 NUMERICAL RESULTS

In this section we compare the performance of the coor-
dinate search to the performance of COMPASS. We use
Algorithm 2 to solve the one-dimensional subproblems in
the coordinate search. We have conduct a number of simu-
lation experiments, and we first summarize our findings as
follows:

• COMPASS is a random search algorithm. It gen-
erally performs well at the beginning of the search
since it enables the algorithm to jump far away
from the starting point since the probability of find-
ing a better solution than the starting solution is
often large at the beginning of the search. When
the sample best solution is getting closer to the op-
timal solution, however, the probability of finding
better solutions may get lower. Then COMPASS
may not find a better solution for a large number
of consecutive iterations. Coordinate search is a
deterministic algorithm and it looks for better so-
lutions systematically. It may not be as good as
COMPASS at the beginning. However, it keeps im-
proving the objective values almost in all iterations
until finding optimal solutions.
7

Hong
• COMPASS simulates all visited solutions in each
iteration. As the number of visited solutions be-
come large, the simulation observations required
in each iteration becomes larger. This significantly
slows down the search process of COMPASS. Co-
ordinate search, however, does not simulate the
irrelevant solutions in each iteration. It spends
much fewer simulation observations in each itera-
tion when iteration count becomes large compared
to COMPASS. This also explains why coordinate
search has better performance later in the search.

• In each iteration, COMPASS constructs a most
promising area using all visited solutions. Then
it uses a Markov-chain based algorithm to sample
uniformly from the solutions in the area. The sam-
pling algorithm requires a significant computational
overhead especially when the number of visited so-
lutions becomes large. Compared to COMPASS,
coordinate search requires less computational over-
head.

• COMPASS is constructed based on the geomet-
ric properties of the Euclidean space. It gener-
ally works well for small dimensional problems
since the geometry of low dimensional space can
be clearly pictured. When the dimension of the
problem becomes large, however, the geometry be-
comes more intriguing and less intuitive. It seems
that COMPASS is not good at solving problems
over 20 dimensions. Coordinate search, however,
searches along each coordinate direction. It works
well even for DOvS problems of more than 20
dimensions.

In the rest of the section we compare the performances of
coordinate search and COMPASS through two examples: a
traditional (s, S) inventory problem and a thirty-dimensional
quadratic function.

5.1 (s, S) Inventory Problem

Consider a classic (s, S) inventory problem (Koenig and
Law 1985 and Hong and Nelson 2004) in which the level
of inventory of some discrete unit is periodically reviewed.
The goal is to select s and S such that the steady-state
expected inventory cost per review period is minimized.
The constraints on s and S are S − s ≥ 10, 20 ≤ s ≤ 80,
40 ≤ S ≤ 100, and s, S ∈ Z . The optimal inventory policy
is (20, 53) with expected cost per period of 111.1265. To
reduce the initial-condition bias, the average cost per period
in each replication is computed after the first 100 review
periods and averaged over the subsequent 30 periods.

Figure 1 shows the performances of COMPASS and
coordinate search when applied to solve the problem. Each
curve in the figure represents the average of 50 sample paths
80
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
111

112

113

114

115

116

117

118

119

120

Number of Simulation Observations Consumed

O
bj

ec
tiv

e
V

al
ue

 o
f t

he
 S

am
pl

e
B

es
t S

ol
ut

io
n

COMPASS Coordinate Search

Optimal Objective Value

Figure 1: Average Performances of COMPASS and Coor-
dinate Search when Solving (s, S) Inventory Problem

(realization of the algorithm). From the figure we can see that
COMPASS performs well at the beginning and coordinate
search soon catches up and finds optimal solution or solutions
that close to the optimal solution more quickly. Since the
differences between the objective values of the optimal
solution and its neighboring solutions are very small, the
noise in the function evaluations dominates the differences.
Therefore, coordinate search does not always find the optimal
solution within 5000 simulation observations.

5.2 A Thirty-Dimensional Quadratic Problem

Consider a 30-dimensional quadratic function, g(x) =
x2

1 + x2
2 + · · · + x2

30 + 1. Let G(x) = g(x) + ε(x) and
ε(x) has a normal distribution with mean 0 and stan-
dard deviation 0.05g(x), and we let −100 ≤ xi ≤ 100,
i = 1, 2, . . . , 30. The optimal solution of the problem is
xi = 0, i = 1, 2, . . . , 30, with the optimal objective value 1.
Notice that the problem has about 1.25×1069 feasible solu-
tions. We set the starting point as xi = 80, i = 1, 2, . . . , 30.
The objective value of the starting point is 192000 with the
standard deviation 9600. The noise dominates the differ-
ences of the objective values of the starting point and its
neighboring solutions.

Figure 2 shows the performances of COMPASS and
coordinate search when applied to solve the problem. Each
curve in the figure represents the average of 50 sample
paths. From the figure we see that the coordinate search
performs better. Among all 50 sample paths, 49 of them
find the optimal solution and one has an objective value 9.
From Figure 3 we can see that the average objective value is
below 10 after consuming 60000 simulation observations.
We also tried DOvS problems with even larger dimensions,
coordinate search may also solve them by a reasonable
number of simulation observations.
8

Hong
0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Number of Simulation Observations Consumed

O
bj

ec
tiv

e
V

al
ue

 o
f t

he
 S

am
pl

e
B

es
t S

ol
ut

io
n

Coordinate Search

COMPASS

Figure 2: Average Performances of COMPASS and Coor-
dinate Search when Solving the 30-dimensional Quadratic
Function

4 5 6 7 8 9 10

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Number of Simulation Observations Consumed

O
bj

ec
tiv

e
V

al
ue

 o
f t

he
 S

am
pl

e
B

es
t S

ol
ut

io
n

Coordinate Search

Optimal Objective Value

Figure 3: Average Performance of COMPASS when Solving
the 30-dimensional Quadratic Function

ACKNOWLEDGMENT

This research was partially supported by the Hong Kong
Research Grants Council grant number DAG04/05.EG04.

REFERENCES

Alrefaei, M. H. and S. Andradóttir. 1999. A simulated
annealing algorithm with constant temperature for dis-
crete stochastic optimization. Management Sciences,
45:748–764.

Andradóttir, S. 1999. Accelerating the convergence of ran-
dom search methods for discrete stochastic optimiza-
tion. ACM Transactions on Modeling and Computer
Simulation, 9:349–380.
80
April, J., M. Better, F. Glover and J. Kelly. 2004. New
advances and applications for marrying simulation and
optimization. Proceedings of the 2004 Winter Simula-
tion Conference, 80–86.

Baras, J. S. 2003. Modeling and simulation of telecommu-
nication networks for control and management. Pro-
ceedings of the 2003 Winter Simulation Conference,
431–440.

Fu, M. C. 2002. Optimization for simulation: Theory vs.
practice. INFORMS Journal on Computing, 14:192–
215.

Gerencsér, L., S. D. Hill and Z. Vágó. 1999. Optimization
over discrete sets via SPSA. Proceedings of the 38th
Conference on Decision and Control, 1791–1795.

Gong, W.-B., Y.-C. Ho and W. Zhai. 1999. Stochastic
comparison algorithm for discrete optimization with
estimation. SIAM Journal on Optimization, 10:384–
404.

Hong, L. J. and B. L. Nelson. 2004. Discrete Optimization
via Simulation using COMPASS. Operations Research,
forthcoming.

Hong, L. J. and B. L. Nelson. 2005. A framework of locally
convergent algorithms for solving discrete optimization-
via-simulation problems. Department of Industrial En-
gineering and Logistics Management, The Hong Kong
University of Science and Technology, Working Paper.

Kleywegt, A., A. Shapiro and T. Homem-de-Mello. 2001.
The sample average approximation method for stochas-
tic discrete optimization. SIAM Journal on Optimiza-
tion, 12:479–502.

Koenig, L. W., and A. M. Law. 1985. A procedure for
selecting a subset of size m containing the l best of k

independent normal populations, with applications to
simulation. Communications in Statistics: Simulation
and Computation,14:719–734.

Shi, L. and S. Ólafsson. 2000. Nested partitions method for
stochastic optimization. Methodology and Computing
in Applied Probability, 2:271–291.

Truong, T. H. and F. Azadivar. 2003. Simulation based op-
timization for supply chain configuration design. Pro-
ceedings of the 2003 Winter Simulation Conference,
1268–1275.

Vogt, H. 2004. A New Method to Determine the Tool Count
of a Semiconductor Factory Using FabSim. Proceed-
ings of the 2004 Winter Simulation Conference, 1925–
1929.

Wieland, F. and T. C. Holden. 2003. Targeting aviation
delay through simulation optimization. Proceedings of
the 2003 Winter Simulation Conference, 578–584.

Yan, D. and H. Mukai. 1992. Stochastic discrete opti-
mization. SIAM Journal of Control and Optimization,
30:594–612.
9

Hong
AUTHOR BIOGRAPHY

L. JEFF HONG is an assistant professor in the Depart-
ment of Industrial Engineering and Logistics Management
at The Hong Kong University of Science and Technol-
ogy. He received his Ph.D. in Industrial Engineering and
Management Sciences from Northwestern University in
2004 and his research interests include optimization via
simulation and simulation ranking and selection. His e-
mail address is <hongl@ust.hk> and his web page is
<ihome.ust.hk/˜hongl>.
810

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

