Proceedings of the 2005 Winter Simulation Conference

M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

NEWSVENDOR PROBLEM WITH PRICING: PROPERTIES, ALGORITHMS, AND SIMULATION

Roger L. Zhan

ISE Department
University of Florida
Gainesville, FL 32611-6595, U.S.A.

ABSTRACT

When a newsvendor faces stochastic price-sensitive de-
mands, he/she has to make the pricing and inventory deci-
sions before the demand is realized. In the literature, this
problem is typically solved by reducing it to an optimization
problem over a single variable. In contrast, we treat this
problem as a nonlinear system of two variables and provide
some solution properties (e.g. existence, uniqueness) of
the system. We also develop an iterative algorithm and a
simulation based algorithm for this problem.

1 INTRODUCTION

The classic newsvendor problem is to make a single-period
procurement decision of a single product under stochastic
demands. This problem, because of its simple but elegant
structure as well as its rich managerial insights, is a crucial
building block of the stochastic inventory theory. It has been
extensively studied over decades with extensions including
different objectives and utility functions, multiple products
with substitution, multiple locations, and different pricing
strategies. For extensive reviews see Khouja (1999) and
Porteus (1990).

In this paper, we study the extension that incorpo-
rates pricing decisions into the classic newsvendor problem.
In this scenario, the newsvendor faces stochastic demands
which are influenced by the price. The problem is to deter-
mine the procurement and pricing strategies that maximize
the expected profit over a single period. We call this problem
the Newsvendor Problem with Pricing (NPP).

The research on NPP started in 1950s with the work of
Whitin (1955) and Mills (1959). Petruzzi and Dada (1999)
provide a good review on this problem. Recent studies
incorporate more market features such as price markdown
and inventory sharing among multiple retailers (e.g., Sosi¢
2004 and Karakul and Chan 2004).

To the best of our knowledge, literature on NPP mostly
focuses on transforming this problem of two decision vari-
ables (price and order quantity) to a problem of a single
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variable, either price (p) or quantity (Q), then solving the
problem by using the first order conditions or an exhaustive
search method. In this paper, we approach the problem
by directly dealing with a system of two equations that are
derived from the first order conditions. Using this approach,
properties of the solutions to the problem, as well as a good
geometric explanation of the problem, can be obtained. Fur-
thermore, solution algorithms are developed based on this
approach. In particular, we propose an efficient iterative al-
gorithm and a simulation based algorithm. In the simulation
based algorithm, random samples of demands are generated
and the Sample Average Approximation (SAA) scheme and
IPA (Infinitesimal Perturbation Analysis) gradients are used.
The simulation based algorithm can be extended to more
general cases, which involve multiple newsvendors.

The rest of the paper is organized as follows. Section
2 presents the model and the existence and uniqueness
properties of the solution. Section 3 proposes the algorithms
for the NPP problem. Finally, Section 4 summarizes the
results and discusses future work.

2 MODEL AND ITS PROPERTIES

2.1 Notation

p = retail price.
Q = order quantity.
v,s,c = per unit salvage value, shortage cost,
and purchase cost, respectively.
D(p,e) = a—bp+e.
€ = stochastic term defined on the range
[A, B] with mean pu.
f(), F(-) = pdf and cdf of the distribution of €.
z= Q—(a—bp).
IT(z, p) = expected profit function.
z*, p* = optimal solution.
0 _ a+bc+u
P = 2%
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2.2 Model

In this paper, the stochastic price-sensitive demand D is
modeled in an additive demand form, i.e., D(p,€) = a —
bp+e€(a > 0,b > 0). € is a random variable defined on
[A, B] with mean u, cumulative distribution function (cdf)
F(-) and probability density function (pdf) f(-). Before
the stochastic term € is realized, the newsvendor determines
simultaneously an order quantity, O, and a retail price, p,
to maximize the expected profit. We also assume that v < ¢
to avoid the trivial solution.

Denote x* = max{x, 0}, the newsvendor’s profit can
be expressed as the difference between the revenue and the
total cost:

w(Q, p)

—s(D(p,e) — D",

This profit function can be rewritten by substituting
D(p, €) with a — bp + € and defining z = Q — (a — bp):

p(a—bp +min{z,€}) —c(a —bp + z)
+v(z—e)T —s(e —2)T. (2)

7(z, p)

This variable transformation simplifies the computations
and its economic meaning is provided in Petruzzi and Dada
(1999). Noticing that (x — y)* = x — min{x, y}, the profit
function can be further expressed as:

(p —c)a—bp) — (c —v)z — se
+(p + s — v)min{z, €},

7(z, p)
3)

with the expected value

I(z, p) E[n(z, p)l=(p—c)a—bp)—(c—v)z

—su~+ (p+ s — v)E(min{z, €}). 4

The objective of the newsvendor is to maximize the
expected profit I1(z, p) by choosing z and p. However, the
optimal solution is not necessarily an interior solution, in
particular, the value of z can be on the boundary, i.e., A or
B. In the next subsection, we explore the conditions that
guarantee the existence of the interior optimal solution. The
geometric explanation of these condition is also provided.

2.3 Solution Properties

Define ©(z) = fZB (u — z) f (u)du. Notice that

z B
E(min{z, €}) = / uf (u)du —l—/ zf w)du = u — 0(z),
A 4

pmin{Q, D(p,€)} —cQ +v(Q — D(p,€))"
(1)
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and

d(E(min{z, €})) _

n a(z(1 — F(2))) _
0z

z2f(2) P

1—F(2).

The first partial derivatives of I1(z, p) are

Tl (z,

gzzp) = —(c—v)+(p+s—vl—-F@I 5
BH;z_,p) = a+bc+pu—2bp—0()

p

2b(p° — p) — O(2). (6)

Equations (5) and (6) imply the relationship between
z and p as following:

¢ = =D, )
®
p = p(z)zpo—%- (®)

Equation (7) is simply the solution formulation for
the classic newsvendor problem. It naturally requires that
p > ¢ —s. And Equation (8) implies that p < p°. Thus,
the boundary condition for p is ¢ —s < p < p°.

In the literature, researchers usually utilize Equation (8)
to reduce the original problem to an optimization problem
over a single variable z. Our approach, however, works on
these two first order conditions directly, and provides more

insights into the problem.
f)

Let r(z) = —F: We have
az(p) _ 1 ©)
op r@)(p+s—v)’
ap(2) 1—F(2)
0z 2b (10)

Equations (9) and (10) imply that the functions z(p)
and p(z) increase in p and z, respectively.
And the second partial derivatives are

dr(z) 1

Pxp) _ & O an
wpr  (pt+s -0’

P pz) [
8Z2 = —7 < 0. (12)

Thus function p(z) is concave in z and based on Equa-
tion (11) the following lemma is established.

Lemma 1 If F(-) is a distribution function satisfy-
ing the condition r2(z) + % > 0 for z € [A, B], z(p) is
concave in p. '

This condition is satisfied by all nondecreasing hazard
rate distributions, which include P F, distributions and the



Zhan and Shen

log-normal distribution (Barlow and Proschan 1975). In
particular, uniform, normal, logistic, chi-squared and ex-
ponential distributions all belong to this category (Bagnoli
and Bergstrom 1989).

The next result follows from Lemma 1 and the fact
that if functions z(p) and p(z) are increasing and concave
in p and z, respectively, then the system of the equations
z =2z(p) and p = p(z) has at most two solutions.

Lemma 2 If the condition for Lemma 1 is satisfied,
then the system of Equations (7) and (8) has at most two
solutions.

Geometrically, the lemma states that the two curves in
Figure 1 have at most two intersections. We denote the
upper intersection as “UC" and the lower intersection as
“LC".

Figure 1: Two Solutions

By considering the boundary conditions, A < z < B
and c—s < p < po, properties of the NPP problem can
be established.

Proposition 1 If the condition for Lemma 1 is sat-
isfied and a — b(c — 2s) + A > 0O, then equations (7) and
(8) have a unique solution, which is also optimal for the
problem.

The conditiona—b(c—25)+A > 0,i.e., DLHA > g
is to ensure there is only one intersection of the two curves
in the feasible region. This case is geometrically shown in
Figure 2.

Figure 2: Unique Solution
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Figure 4: No Solution

If the condition @ — b(c —2s) + A > 0 is not satisfied,
then there are two scenarios. The first scenario is where
Line A in Figure 2 moves lower than point “LC", and the
system has two solutions (see Figure 3); the other scenario is
where Line A moves higher than point “UC", and the system
then has no solution, which implies NPP problem has no
interior solution (see Figure 4). The following propositions
characterize these two cases.

Proposition 2 If the condition for Lemma 1 is sat-
isfied, a —b(c—25)+ A < 0and f(A) < 752290
then equations (7) and (8) have two solutions. The one
with the larger p value is the optimal solution for the NPP
problem.

Proposition 3
isfied, a —b(c —2s)+ A <0 and f(A) > m,
then equations (7) and (8) have no solution. The NPP
problem has the optimal solution on the boundary.

All the above properties are derived under the condition
that Lemma 1 holds. If Lemma 1 does not hold, an exhaustive
search method is not avoidable. In the next section, we
develop the algorithms that are based on the properties
derived in this section.

If the condition for Lemma 1 is sat-
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3 ALGORITHMS

Propositions 1 and 2 state the conditions for the NPP problem
to have an interior solution. Past research usually limited the
analysis on theoretical results, identified some simple cases
that can be solved analytically and did not present algorithms
that could be used to solve more general problems. In
contrast, we develop an iterative algorithm, as well as a
simulation based algorithm, to solve the system of Equations
(7) and (8), which leads to the solution for the NPP problem
under the conditions given by Propositions 1 and 2.

3.1 Iterative Algorithm

Recall the relationship between z and p:

¢ = wp=r1ETTE
pts—v
O()
= — 0__
p = p@=p T

As shown later in Proposition 4 of this section, the
above system can be solved iteratively and the solution
converges to the optimal one. The algorithm works in this
fashion: Start with an initial price, pO, the value of z can
be calculated using Equation (7), and with Equation (8), a
new price can be uniquely determined. This new price can
then be used to update z in the next iteration. The algorithm
repeats this process till the optimal solution is found.

The procedure is summarized in a pseudo-code format
in the following, where § represents the precision that is used
in the stopping criterion. In practice, we can also simply
specify the number of the iterations as the stopping criterion.

Iterative Algorithm

Set §;

Set pg < p%

begin loop
Calculate z using equation (7);
Calculate p using equation (8), denote the value
by p1;
if po — p1 < 8 then stop the loop;

else set pp < p1, continue the loop;

end if;

end loop

If the initial price starts from p°, the above algorithm
finds the solution to the system of Equations (7) and (8),
which has a larger value of p if the system has two solutions
as shown in Proposition 2. The following proposition shows

that the algorithm converges to the optimal solution, z* and
*

p*.
Proposition 4 Starting from p°, the iterative algo-
rithm converges to the optimal solution, 7* and p*.
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Proof. From Equation (8) and ®(z) > 0, we know that
po > p*. To prove the convergence result, we examine the
two sequences: po = p°, p1 = p(z0), p2 = p(z1)... and
z0 = 2(po), z1 = z(p1), 22 = z(p2)..., where p(-) and z(-)
are the functions given in Equations (7) and (8).

Since po = p® > p*, due to the monotonicity of the
function z(-), zo > z*. Similarly, due to the monotonicity of
the function p(-), we get pg > p1 > p*. The same analysis
carries on while the algorithm keeps producing the elements
in the sequences. That is, we have py > p; > p;... > p*
and zo > z1 > z2... > z*. Therefor these two sequence
are monotonically decreasing and bounded. Thus they will
converge to p* and z* respectively. O

3.2 Simulation Based Algorithm

The iterative algorithm will work well and converge to the
optimal solution very fast, if it is not difficult to solve Equa-
tion (7) analytically and easy to compute ®(z) in Equation
(8). To bypass these two potential difficulties, we need to
resort to a different approach. Therefore, parallel to the it-
erative algorithm, we propose a simulation based algorithm
to solve the NPP problem, which will work particularly
well if the random instance can be easily generated. The
simulation based algorithm is more promising if we want to
extend the algorithm to deal with more complicated cases
which may involve multiple newsvendors.

From Equation (4), the first order conditions can be
written as

oTl(z, p)
T - Y
.
tps - EIED g
W = —2bp+bc+a+ E(min(e, z)). (14)
p

The information of Equation (13) can be used to update
the value of z by the gradient search method. However,
we need to estimate %’;(“)) by E 3(’"+Z(”))) This
estimation is justified by the unbiased IPA estimator for the
gradient because min (e, z) is almost surely continuous with
respect to z. A detailed discussion of the application of IPA
can be found in Fu (1994). Furthermore, the expectation is
approximated by the sample average value, which is usually
called the Sample Average Approximation (SAA) scheme.

The procedure is summarized in a pseudo-code format
in the following, where U represents the number of
regenerative cycles, and a; represents the step size at
iteration k, and § represents the precision that is used in the
stopping criterion. In practice, we can use other stopping
criteria such as a preset number of iterations.
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Simulation Based Algorithm
Set §;
Set U;
Set po < p%
begin loop
Set u < 1;
begin loop
i. Generate an instance of the random
variable ¢;
ii. Accumulate the desired gradients, dmin;
. u <~ u+1;
end loop until u = U;
Calculate the desired gradient, dmin/U;
Update the z value, z < z + ax(dmin/U);
k< k+1;
Find p using the new z, denote the value by p;
if po — p1 < 8 then stop the loop;
else set py < pi, continue the loop;
end if;
end loop

In step (ii) of the algorithm, we use IPA to compute
the gradient. In the computer implementation, it works
as follows: if the instance of € is greater than z, then
dmin = dmin+ p+s —c; otherwise dmin = dmin—c+v.
These equalities are derived from Equation (13). Starting
with dmin = 0 and dividing dmin by U yield the derivative
estimation.

3.3 Numerical Results

In this section, we use two small numerical examples to
illustrate the quality of the solutions from the the simulation
based algorithm.

Example 1 In this example, the parameters are set as
v=05,5s =c=1,a =200,b = 35, and € follows the
normal distribution with mean of zero and standard deviation
of 20. Starting from p® = 3.357, the iterative algorithm
gives the optimal solution p* = 3.3385 and z* = 22.5033.

We set U = 100 in the simulation based algorithm.
The program is coded in Matlab and results from 10 runs
are reported in Table 1.

Example 2 In this example, the parameters are set as
v=20.5,5s =c=1,a =200, b = 35, and € is exponentially
distributed with mean value of 10. The iterative algorithm
gives the optimal solution p* = 3.4821 and z* = 20.7495.
The simulation solutions are shown in Table 2.

Tables 1 and 2 clearly indicate that we can find the high
quality solutions that are very close to the optimal solutions
using the simulation based algorithm.

Although this paper mainly considers the single
newsvendor problem, we believe the simulation based al-
gorithm would have more advantage over the analytical
algorithms in scenarios with multiple newsvendors.

1747

Table 1: Simulation Algorithm:
Normal Distribution

Run No. p Z
1 3.3285 | 22.4839
2 3.3396 | 22.5082
3 3.3431 | 22.4387
4 3.3378 | 22.5185
5 3.3365 | 22.5516
6 3.3379 | 22.5288
7 3.3320 | 22.4193
8 3.3415 | 22.5225
9 3.3407 | 22.4822
10 3.3380 | 22.4869
Mean 3.3376 | 22.4941
Std. Dev | 0.0044 | 0.0409
Optimal | 3.3385 | 22.5033

Table 2: Simulation Algorithm:
Exponential Distribution

Run No. )2 z
1 3.4754 | 20.7815
2 3.4838 | 21.0357
3 3.4879 | 20.7068
4 3.4764 | 20.8121
5 3.3786 | 20.6466
6 3.3758 | 20.5008
7 3.4870 | 20.6694
8 3.4812 | 20.7523
9 3.4854 | 20.8333
10 3.4802 | 20.6616
Mean 3.4812 | 20.7400
Std. Dev | 0.0047 0.1420
Optimal | 3.4821 | 20.7495

4 CONCLUSIONS

In this paper, we analyze, from a different perspective,
the solution properties of the newsvendor problem with
pricing. The analysis focuses on the system of the two
equations derived from the first order conditions. The
derived properties guide us to develop both the iterative
algorithm and the simulation based algorithms.

There are several extensions to this paper. The simula-
tion based algorithm can be generalized to deal with more
complicated scenarios which may involve multiple products
and multiple newsvendors. The model analyzed in this pa-
per uses the additive demand form. Extending the model to
other demand forms, such as multiplicative demand form,
is also an interesting topic for future research.
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