
Proceedings of the 2005 Winter Simulation Conference 
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds. 
 
. 
 

 
 

 
USING DISCRETE EVENT SIMULATION IN THE TEACHING OF DECISION ANALYSIS 

 
 

Ingolf Ståhl  
 

Department of Managerial Economics 
Stockholm School of Economics  
S-11383 Stockholm, SWEDEN 

 
 

ABSTRACT 

In this paper we discuss how Discrete Event Simulation 
(DES) was used in a course on Decision Analysis (DA). 
Against the background of the characteristics of the 
students and the purpose of the course, we discuss various 
types of problems and methods that were found suitable to 
include in the course, in order to show the place of DES in 
DA. We present a number of simple GPSS programs that 
have been used in the course and proved effective in 
promoting the students’ understanding of DA.  

1     INTRODUCTION 

1.1  Types of Students  
 

The background of this paper is a course in Decision 
Analysis (DA), given annually to around 40 students at the 
Stockholm School of Economics. The students are either 
seniors in an undergraduate program or taking electives the 
last year in an international masters program. While most 
students are Swedish, at least a quarter are from other coun-
tries, like the US and China. The course has been changed 
very much this year when I took it over. Earlier it was fo-
cused mainly on theoretical issues, often of a more behav-
ioral type. The problem examples were then mostly ex-
tremely simple and solved by hand. The use of computers 
was restricted to some use of a decision tree program.  
 One of my primary goals for the course was that the 
students, who should soon go out into the real world with 
evermore powerful PCs, should be able to use the computer 
also for complex decision problems. Although simple prob-
lems are suitable for explaining the general principles of 
DA, it is also important to show the students tools that are 
suitable for dealing with problems with many decision al-
ternatives and many possible outcomes.  
 No one in the class had ever had a course in computer 
programming. This ruled out teaching the students how to 
analyze the problems in a General Programming Language 
(GPL), like Visual Basic (VB), which would have allowed 
flexibility. Teaching students a GPL from scratch in five 

 

228
hours, the maximum time allowable for such an activity, 
would be impossible. Hence, we had to choose other types 
of software. Another limitation in our class was that we 
wanted to teach the students tools that they would be sure to 
be able to use in their future jobs. This implies that we 
could not use expensive packages that a graduate on the 
first job could hardly persuade management to buy. 
  In the course we used a mixture of three software 
products: TreePlan, an inexpensive decision tree software, 
Excel and WebGPSS, a DES that is available free on the 
Web. We shall in this paper try to motivate this choice, in 
particular the choice of a DES package, which is not so 
common in DA courses. We shall deal with some of the 
limitations of a decision tree software and Excel as regards 
important problems in DA and see how a DES tool like 
GPSS can solve them. To make these points more clear, it 
appears suitable to first present the different types of prob-
lem situations that we wanted to address in our course. 
 
1.2  Types of Problems 
 
The common thing for all problems dealt with in a course in 
DA is that they are all characterized by the fact that one or 
several decisions shall be made and that many decisions can 
lead to different events. Furthermore, the problems are 
characterized by uncertainty, mainly in the form of risk, in 
the sense that one can assign probabilities to the different 
events.  We make a distinction between situations that are 
characterized by a single one-shot decision and those in 
which there are sequential decisions, in the sense that first a 
decision is made and then the outcomes of this decision be-
come known, before another decision has to be made. 
 We also see the problem situations characterized by the 
number of decision alternatives in the decisions, distin-
guishing between if they are few or many, seeing a contin-
uum as the extreme case of many alternatives.  We further-
more see the problem situations characterized by the 
number of different events to which we assign probabili-
ties, distinguishing between just a few events and many 
events, seeing a continuous probability distribution as the 
extreme case of many events. 
0



 Ståhl 

 
 We shall also distinguish between situations with re-
gard to how important time is for the problem. We can 
mainly distinguish between (a) the case when no time is 
involved at all, in the sense that all decisions could be made 
at the same time, (b) the case of ordinal time, in the sense 
that only the relative order in which decisions and events 
take place matters, but not the actual length of time between 
them, and (c) the case of cardinal time, where the time ac-
tually passes between decisions, and events really matter 
for which decisions are selected.  

Furthermore, one can characterize problems on the ba-
sis of the goals involved, e.g. whether there is mainly one 
type of goal, like a financial goal, or multiple goals. Due to 
time limitation, we were in the course forced to focus on 
the case with only one goal, a financial one. Finally, one 
can characterize the problem situations on the basis of im-
portance of information availability. We shall here deal 
mainly with the ordinary case that the information avail-
ability will not change over time. 
 
1.3  Types of  Methods 

 
Against this background of different types of problem situa-
tions, one can discuss what kind of general methodology 
would be most suitable for our students to learn for dealing 
with these types of different problems. We here regard op-
timization and simulation as the two main forms of meth-
odologies that can be used in DA.  
 Optimization is seen as the calculation of expected 
value and then choosing the alternative that leads to the 
highest expected value. Using game theory terminology, the 
analysis of optimization can mainly be made using the Ex-
tended form or the Normal form. The Extended form refers 
to decision trees, either constructed using special decision 
tree software or made by the modeler directly e.g. in Excel. 
The Normal form can mainly take the form of a matrix, 
where all decisions are represented in the rows and all 
events and their probabilities in the columns. There is here, 
as discussed below, a great difference between the one-shot 
case and the sequential decision case. 
       Simulation can either take the form of static Monte 
Carlo simulation, e.g. in Excel, or dynamic simulation of 
the DES type. In a static simulation there is a limited num-
ber of time points to which we can assign events and re-
sults, while in a dynamic simulation every time point is 
possible. Excel is mainly limited to static simulation. In 
case we represent time over the columns, which is com-
monly done, we cannot have more than 256 time points at 
the very most. In many cases we would assign the results 
just to the end of the months. Dynamic simulation is pro-
vided by any DES, where the times of different events are 
determined usually by sampling a floating point number 
and the clock is then updated to the time of the most immi-
nent event. As we hence move from one event to another 
we can move to any possible floating-point value of time.  
22
 We shall below look a little bit closer at some of the 
methods outlined above to see how DES is positioned vis-à-
vis these methods, to see more clearly the role that DES can 
play in a course on DA.  

 
2     THE LIMITS OF OPTIMIZATION METHODS 
 
2.1  Decision Tree Software 
 
The study of the most commonly used text books in DA in-
dicates that the main computer software tools used in DA 
are decision tree tools, sometimes complemented with a 
tool for construction of Influence Graphs. Among the more 
noted decision tree tools one can mention DATA-TreeAge, 
TreePlan, DPL, Decision Pro and Precision Tree. They 
have in common that the user constructs the decision tree in 
a simple manner, e.g. by indicating the number and type of 
branches at different nodes. Usually there are decision and 
event branches, emanating from a node of the same type.  
To each branch one can in most systems assign a specific 
“marginal” value, influencing the end-nodes, which have 
the sum of all these marginal values connected to the path 
leading from the start node to the specific end node.   
 The decision tree software calculates the optimal deci-
sion and the value connected to this by a roll back method, 
where the roll back procedure starts with the end nodes. To 
each event node it assigns the expected value as the sum of 
the products of probability of the event * the value at the 
node at the end of the event branch. To each decision node 
it assigns the maximum value of all the values at the nodes 
at the end of the branches of this decision node. 
 This is generally a very illustrative, as well as useful, 
method, provided that the total number of nodes is fairly 
small. This number is dependent on the number of stages in 
the case of sequential decisions and the number of event 
branches at each event node and the number of decision 
branches at each decision node. For example, in the case of 
a decision problem with two stages, each with two decision 
alternatives and with each decision branch in turn leading to 
two event branches, we would, as seen in Figure 1, get a to-
tal of (2*2)*(2*2) = 16 end nodes. Hence, already in this 
simple case the tree becomes fairly large. If there are three 
stages, three decision nodes at each stage and three event 
nodes at each decision, we would have 36 = 729 end nodes. 
It is very difficult to get an overview of such a large tree. 
The more decision nodes and event notes, the larger the 
problems with the decision trees.   
 In our DA course we used the TreePlan software (a 
shareware, costing at most $29.00), since we did not want 
to base the course on expensive software that the students, 
as newly employed, might have trouble getting their future 
employer to buy for them. The students found TreePlan 
quite easy to use, but out of the roughly 10 examples of de-
cision trees used, no one had more than 16 end nodes, thus 
all allowing for a readable tree on one page. Since the deci-
81



åhl 
 St
 
sion trees are lined up to make the tree look like a real tree, 
with e.g. in case of two branches emanating from one node, 
one branch going upwards and one downwards, such a tree 
still takes a lot of space, as seen in Figure 1. 

 

 

 
 

Figure 1: Example of 2*2*2*2 Decision Tree 
 
A special case of many nodes is the case with a contin-

uum of decision alternatives and the case when the outcome 
of a decision can be seen as a continuous probability func-
tion. In these cases other methodologies than this type of 
decision trees are definitely needed. 

 
2.2  Excel Based Tree Emulation 
 
The tree in Figure 1 no doubt causes a problem by its 
height. One can save in height by using an Excel sheet 
where the branches are not written out, but the lines of the 
rows in the sheet indicate where the nodes are. An example 
of a problem with the same size as that above is presented 
in Figure 2, where the 2*2*2*2 tree of Figure 1 is “emu-
lated”. As in Figure 1, it is not important to read the text. 
The only thing of interest is the difference in height be-
tween the two figures. We mainly save in height by having 
all information referring to one end node on the same row, 
letting the top branch emanating from the node to the left 
22
follow directly on the same row and having all other “in-
visible” branches emanating from this node placed on a 
lower row. 

 

 
 

Figure 2: Excel Based Decision Tree Emulation 
 

Even in this case, it becomes difficult to get a good over-
view of a problem of the 36 size with 729 end nodes, since 
this would require 729 lines, corresponding to several 
pages. A disadvantage of this “tree emulation” approach, in 
contrast to the real decision tree case, is that one as user has 
to input many formulas one self, which can be quite time 
consuming. The teaching of how to do this involved just 
around one hour in our DA class. 
 
2.3  Decision Analysis in the Normal Form 
 
With this limitation of the decision tree approach in mind, 
whether we have it in its original tree form or in form of or-
dinary rows in an Excel-sheet, implying the same kind of 
methodology, one needs to look also at other methods for 
solving DA problems by optimization. Analysis of the 
problem in the normal form is then the natural alternative. 
One would here use a matrix, where one as rows would 
have the decisions and as columns the events. To each 
event one can assign a probability that it occurs, provided a 
certain decision has been made.  

We exemplify this with Figure 3, based on a problem 
from Eppen et al. (1998).  We have an outcome matrix, e.g. 
with the decisions on order quantity as rows (4–7) and the 
events (=demand) as columns (B-E). The possible profits 
of e.g. decision alternative 1 are in the array B5:E5, with 
the values that this alternative can lead to. On row 9, i.e. in 
the array B9:E9, we have the corresponding probabilities. 
 

 
 

Figure 3: Newsboy Problem in the Normal Form 
82



 Ståhl 

 
 We here have the simplest case when the same events 
occur whatever decision is made. To calculate the expected 
value of a decision we multiply the value of the cell with 
the probability of reaching this cell. In cell F5 we can hence 
calculate the expected value of alternative 1 as 
SUMPRODUCT(B5:E5,B$9:E$9). Having thus the ex-
pected value of each alternative in the column array 
(F4:F7), the value of the best decision can be given in cell 
H9 as MAX(F4:F7). If we then insert a column G, in which 
we repeat the values of the decisions of column A, the best 
value on the decision variable can be given in cell I9 as 
VLOOKUP(H9,F4:G7,2). 
 In the case that the probabilities of the events are dif-
ferent for each alternative, we would require a separate 
probability line for each event and a corresponding change 
in the SUMPRODUCT formula. This case would still be 
quite simple and easy to handle for one-shot decisions, as 
long as the number of alternatives and events do not be-
come very large.  
 The greatest problems arise when we have a sequential 
decision. If we would use this standard type of spreadsheet 
analysis, we would have to combine the decisions of the 
various stages and in a corresponding fashion combine the 
events, so that to each path of decision combinations we 
can assign a unique end value. For example, if we have 3 
stages and at each stage 3 decisions, each leading to one of 
3 possible events then we have, as noted above, 36 = 729 
end nodes and just as many paths. In order to model this 
problem in the normal form, we would need 33= 27 deci-
sions and  33= 27 events. With more decisions and events 
and hence an even larger matrix, we would soon reach the 
limit of feasibility of an ordinary spreadsheet analysis. A 
continuum of decision alternatives and/or continuous prob-
ability functions is not at all possible to handle in this way. 
Hence, analysis in the normal form suffers from almost the 
same kind of weakness as the analysis in the extensive form 
described above. Complex decisions are difficult to solve 
directly using the mentioned methods.  
 There are then two other alternatives, both involving 
approximations. One is simulation to be discussed later. If 
we want to stay within optimization, we can in the case 
where the problem lies in a continuous probability function, 
approximate this function with a few strategically chosen 
data points. This would allow us to use a small number of 
event nodes, coming out of each decision node. An example 
is the Pearson-Tukey method, where three points are se-
lected, namely the points for which the cumulative prob-
ability is 0.05, 0.5 and 0.95, respectively (Keefer and Bod-
ily 1983). These three points are given the discrete pro-
babilities 0.185, 0.67 and 0.185. One hence reduces the 
problem to deal with three events instead of a continuum.   
 There remains the question of how good this approxi-
mation is. If we are unable to make an exact analysis, we 
have to use another method for investigating how good the 
approximation is. We can also in this case use simulation. 
228
In the course, we dealt with several examples, which were 
solved both by optimization with the Pearson-Tukey 
method and by simulation. 

 
3 SIMULATION 
 
The main focus of simulation is, however, that it can handle 
not only the case with continuous probability distributions, 
but also the more general case of many alternatives and, 
perhaps even more importantly, the case of uncertainty over 
time, i.e. dynamic uncertainty, e.g. when there is uncer-
tainty about the time a certain job will take.  

If we start with the simpler static case, we can in many 
cases use either Monte Carlo simulation or DES.  

 
3.1 Monte Carlo Simulation  

 
For Monte Carlo simulation, we used in our course only 
ordinary Excel, without any external add-in. An alterna-
tive, used in many DA courses at other schools, is to use an 
add-in like @Risk or Crystal Ball. One reason for not do-
ing this was that we, as mentioned, wanted the course to 
rely on software that the students could be certain would be 
available in their future work. Another reason was that the 
Monte Carlo simulations that we did in this class are, as 
explained below, quite simple to do in Excel, with the stu-
dents in the process learning important features of Excel. 

Instead of calculating the expected value of each deci-
sion as the product of the probability of the event and the 
value at the node, one will in the Monte Carlo simulation 
make several runs and in each run sample a probability and 
then on the basis of this probability determine which alter-
native will be selected. Each specific run will imply that at 
each decision node only one alternative, out of the many 
alternatives emanating from this node, will be selected, 
leading in turn to one specific value for each run. This 
value is likely to change from run to run.  
 We illustrate this by the simple Newsboy problem in 
Figure 3. We can very easily change this spreadsheet so 
that it becomes suitable for a Monte Carlo simulation. We 
have in Figure 4 only included the rows below row 9, since 
the first 9 rows are the same as in Figure 3. 

 
 

 
 
Figure 4: Monte Carlo Simulation of the Newsboy problem 
3



hl 
 Stå
 
 We have here introduced cumulative probabilities in 
row 10 to determine the event of this run, based on the ran-
dom number sampled in cell B11, in this case 0.4988. Since 
this random number lies above the upper limit of the cumu-
lative probability for event 1, i.e. 0.4, but below the upper 
limit of the cumulative probability for event 2, 0.8, we have 
sampled the occurrence of event 2. This leads to the values 
for the decisions being the values of event = demand 2, as 
seen earlier in Figure 3.  This provides the value of each 
decision for this specific run as shown in column F, which 
is the sum of all the values from columns B to E, with all 
the cells except those of column D being 0. This provides 
the value of a specific run.  

We must now in order to have a great many simulation 
runs be able to sum the results of a decision from these 
runs. This is done in column G. We here have a special Ex-
cel formula in e.g. cell G15, namely as follows, 
=IF(run=0,0,G15+F15). run is the name given to the cell 
B19, where we at present see a value 1. If we set this cell to 
0, the cell G15 will become 0. If we then set the cell run to 
1, we start the addition. We would here normally get a Cir-
cular reference error message, since cell G15 refers to itself. 
Since we on purpose want this to happen, we have to click 
on Tools|Option and then on the tab Calculation. Here we 
must get a check mark in the box Iterations and in the field 
Maximum iterations we write 1. We should also in the field 
Maximum change write 0. The idea is that we shall just 
make one iteration at a time, where an iteration implies that 
Excel determines the values from cell A1 down to the low-
est row with a non-blank cell, on each row to the right-most 
non-empty cell. When in this iteration the determination of 
values passes though the cell B11, with =RAND(), a new 
random number is generated and then a new value is given 
to each decision for this run. Consequently a new value 
would be added to the sum in cell G15.  

To start the sum, we have to reset G15 to 0. This is 
done by setting the cell run to 0. If we next write 1 in cell 
run, B19, (and then e.g. press Enter), a new iteration will be 
made and a new result will be added to the sum in cell G15. 
If we then again write 1 (or in principle any other value 
than 0) in the cell run, we will make yet another run and 
add yet another value to cell G15. A copy of the formula in 
G15 to G16:G18 allows a similar addition in these cells. 
 Below the cell run, we have cell B20 with the number 
of runs. This contains the formula =IF(run=0,0,B20+1). 
This also implies a summing up. When we set run to 0, we 
set the number of runs to 0. When we then set run to 1, we 
add 1 to the present number of runs, i.e. cell B20 is first set 
to 1. The second time we give run the value 1, the number 
of runs is increased to 2, and so on. We can now use this 
number of runs to calculate, in H15:H18, the average as the 
sum of values, in G15:G18, divided by the number of runs 
thus far. Thus each run will give us a new set of averages. 
The more runs we make, the closer the averages should get 
to the true average, i.e. the expected value.  
22
 It is cumbersome to do the simulation manually, by 
writing 1 and pressing Enter, a great number of times. It is 
here natural that the students learn to record a macro, by 
Tool|Macro|Record New Macro. It is suitable to assign a 
short cut letter, like M, to the macro in the dialog then 
opened and click on OK. We then start by moving to the 
run cell, write 0 here and press Enter. Next we write 1, fol-
lowed by Enter, a number of times. Finally we click on 
Tools|Macro|Stop recording (or the stop recording button). 
We can next edit the macro, by Tools|Macro|Edit macro. 
We might then see a code looking a follows: 
 
Sub Macro1() 
' Macro1 Macro 
' Keyboard Shortcut: Ctrl+m 
  Range("B21").Select 
  ActiveCell.FormulaR1C1 = "0" 
  ActiveCell.FormulaR1C1 = "1" 
….. 
  ActiveCell.FormulaR1C1 = "1" 
  ActiveCell.FormulaR1C1 = "1" 
  End Sub 
 
 It is obviously also cumbersome to have a manually 
constructed macro like this, if we want to run the simulation 
e.g. 10000 times. We can then change the program by delet-
ing all but one of the lines with ActiveCell.FormulaR1C1 = 
"1", and instead write For j=1 To 10000 in front of it and 
Next j after it, so that the program looks as follows, with the 
comments (starting with ‘) excluded: 

 
Sub Macro1() 
Range("B21").Select 
ActiveCell.FormulaR1C1 = "0" 
For j= 1 To 10000 
     ActiveCell.FormulaR1C1 = "1" 
Next j 
End Sub 
 
 When we return to the Excel-sheet (e.g. by Alt Q), we 
can run the simulation 10000 times by just typing Ctrl M. 
After these 10000 runs we should obtain an average for the 
value of decision 2 (= the best value) that is close to the 
expected value of 22.5.  

 
3.2 Discrete Event Simulation  

 
We hence see that we can for some decision problems 
build up a Monte Carlo simulation simply. It should be 
mentioned that we could build up a model in a discrete 
events simulation language like GPSS roughly as easily. 
We used WebGPSS as the language in our course for DES, 
because some students in the course had studied WebGPSS 
in an earlier course and the other students could in four ex-
tra class room hours, using Ståhl (2003) and Born and 
Ståhl (2003), learn enough GPSS to be able to write the 
programs in this paper. Finally, since WebGPSS is avail-
able free of charge on the Web, our students could be sure 
of being able to access GPSS also in their future work. 
84



hl 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Stå
 
 We can solve the Newsboy problem with the follow-
ing WebGPSS program. 
 
       simulate                                             
       help      experi,x$order,x$avepro,4,0,3,100          
demand function  rn4,r                                      
0 1                                                         
1 3                                                         
2 4                                                         
3 2                                                         
run    generate  1                                          
       let       x$demand=fn$demand                         
       if        x$demand>x$order,miss                      
*                                                           
nomiss let       x$sold=x$demand                            
       let       x$lost=0                                   
       goto      profit                                     
*                                                           
miss   let       x$sold=x$order                             
       let       x$lost=x$demand-x$order                    
*                                                           
profit let       x$profit=x$sold*75-x$order*40-x$lost*50    
       let+      x$sumpro,x$profit                          
       let       x$avepro=x$sumpro/n$run                    
       terminate 1                                          
       start     10000,np                                   
       end  
  

The program produced among other things the following 
results as regards the expected outcome of the decisions:  
                                                            
    Invalue   Outvalue:    Limits with 95 % probab. 
               Average     Lower limit  Upper limit 
      0.00     -84.98        -85.07  -    -84.90 
      1.00     -12.45        -12.54  -    -12.37 
      2.00      22.50         22.40  -     22.59 
      3.00       7.47          7.34  -      7.61 

 
We here run the program 10000 times in 100 batches, i.e. a 
million times, to see the variance of the batches. For the de-
cision variable 2, with the expected value 22.5 we get an 
average value of 22.5, i.e. the expected value, but we can 
only with 95 percent confidence say that the expected value 
lies between 22.4 and 22.59. 
 It should be stressed that running this program, involv-
ing 1,000,000 runs, on an ordinary PC took roughly the 
same time as running just 10,000 runs with the Excel model 
above. It might, however, be argued that the increase in pre-
cision is marginal and might not warrant the extra effort 
learning some GPSS. In fact, for the problem shown above 
the direct calculation of the expected value, as shown in 
Figure 3, is quite straight forward and it is not necessary to 
use simulation at all. The programs above were, however, 
shown to, and run by, the students so that they would ap-
preciate the number of runs necessary in order to get a good 
estimate of the expected value. Such a comparison could be 
made here, but not in later cases when the direct calculation 
of the expected value is not possible and simulation is the 
only feasible method. To these problems, the student could 
then come with an understanding that a very large number 
of runs are necessary.  
  
3.3  Simulation of Sequential Decisions 
 
The simple example above dealt with a one-shot decision. 
In this case, the simulation was quite easy both in the Excel 
228
           
         
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           

and the DES-GPSS case. When we come to the case of a 
sequential decision situation, the DES simulation will still 
be simple, but the simulation in Excel will be much harder, 
if not outright infeasible. To understand this, we must first 
notice that in a spreadsheet (where we do not have circular 
reference or use VBA) all values of each cell will be the 
same regardless of whether we move them to other cells in 
the spreadsheet. Excel has its special way of calculating the 
values of all cells, moving from the upper left-hand corner 
to the right on the first row until all cells to the right are 
empty, then moving to the left-most cell on the next row 
and then moving on this row until the right-most non-
empty cell, and so on. This implies that the Excel user can-
not determine the order in which the values are calculated. 
We cannot easily determine that one set of cells shall get 
their values calculated first when another set of cells have 
had their values determined.  This is of importance when 
trying to do a Monte Carlo simulation in Excel by a great 
number of runs.  

To fully understand the problem involved in Excel, we 
shall first look at how a simple multi-stage simulation can 
be done in DES. In the case of a simulation involving two 
sequential decisions, where we want to simulate the roll 
back method involved in the solution of decision trees, the 
outcomes of the second stage decisions should be com-
pletely determined before we turn to the solution of the de-
cision in the first stage. In GPSS this can be done easily, 
since we can provide ordinal time by using the cardinal 
timing of the GPSS system.  

The easiest way to explain this is by providing an ex-
ample and a GPSS program. The example is from a text-
book by Clemen (1996, p. 105), used in our DA class. This 
is a two stage decision, though of low complexity. Figure 5 
shows the situation. The first decision is whether to accept 
Texaco’s bid of $ 2 Billion for our company or to give a 
counteroffer of $ 2 Billion. The second decision occurs 
when Texaco in turn has given a counteroffer of $3 Billion. 
Shall we then accept Texaco’s counteroffer or go to court?  

 

 
 

Figure 5: A Two-stage Decision Problem (Figure 4.2 in 
Clemen 1996) 

 

5



hl 
 Stå
 
 The expected value of the best decision is 4.635. This 
can be calculated directly in Excel, but we cannot do a 
straight-forward simulation in Excel to get an estimate of 
this result. This can, however, be done in GPSS, as shown 
by the following program . 
 
       simulate  1                  
       help      experi,x$val,x$eval,1,1,1,100  
out    function  rn4,r        
win  2                                         
medi  5                                       
loose  3                                      
out1   function  rn3,r                          
taccep 17                                             
trefus 50                                       
tcount 33                                  
       let       x$accept=2              
       let       x$taccep=3 
       generate  ,,,10000                    
       goto      fn$out                          
win    let       x$countr=10.3             
       goto      choice                         
medi   let       x$countr=5            
       goto      choice                    
loose  let       x$countr=0                    
choice let+      x$sum,x$countr 
let    x$tref=x$sum/10000                      
       terminate                       
       generate  ,,1,1             
       if        x$taccep>x$tref,accep   
ref    let       x$count=x$tref           
       terminate                
accep  let       x$count=x$taccep               
       terminate                                 
       generate  ,,2,10000                
       goto      fn$out1    
taccep let       x$countr=5                
       goto      choic2                             
trefus let       x$countr=x$tref            
       goto      choic2                     
tcount let       x$countr=x$count               
choic2 let+      x$sum1,x$countr                  
       let       x$countr=x$sum1/10000            
       terminate               
       generate  ,,3,1                
       if        x$accept>x$countr,accept                
countr let       x$eval=x$countr                   
       terminate 1                 
accept let       x$eval=x$accept                
       terminate 1                
       start     1,np                          
       end                           

 
 The program contains four segments, each one starting 
with a GENERATE block.  
 The first one with GENERATE ,,,10000 will at time 0 
generate 10000 transactions. Twenty percent of these trans-
actions are sampled to go to WIN, where the outcome of 
the court settlement is determined as 10.3; 50 percent go to 
MEDI, for a settlement of 5 and 30 percent to LOOSE for a 
settlement of 0. All transactions in this segment then meet 
at CHOICE, where we add up and take the average of these 
court settlements to calculate one expected value, x$tref. 
This segment, which refers to the right parts of the tree in 
Figure 5, is thus guaranteed to be calculated first.    
 The second segment with GENERATE ,,1,1 implies 
that  a single transaction is generated at time 1, i.e. after the 
expected value of the court settlement has been calculated. 
Here we calculate x$count as the highest value of x$taccept 
and the just calculated value of the court settlement.  
228
 The third segment with GENERATE ,,2,10000 will at 
time 2, i.e. after x$tref and x$count have been calculated, 
generate 10000 transactions. Seventeen percent are sampled 
to go to TACCEP for Texaco accepting 5, 50 percent go to 
TREFUS, implying that one gets the value of the court de-
cision x$tref, and 33 percent go to TCOUNT, where Tex-
aco counters leading to x$count, just calculated in segment 
2. Finally all transactions meet in CHOICE for the calcula-
tion of the expected value x$countr of a counter offer.  
 The fourth segment, with GENERATE ,,3,1 generates 
one single transaction which determines the best value of 
the problem as the highest of what we get by accepting, 
x$accept, and by counter offering, x$countr, just calculated. 
After this the simulation is stopped by TERMINATE 1. 

This is a simulation that cannot be done easily in Ex-
cel. The reason is that we cannot in Excel first run the cal-
culations corresponding to the first segment 10,000 times; 
then with the average from these runs determine the value 
of the second decision and then run the events in the first 
stage 10,000 times. In Excel we cannot, without resorting to 
programming in VBA, outside the scope of most of our stu-
dents, first run only specific parts of the spreadsheet many 
times and later other parts many times. All cells in the 
spreadsheet get their values determined in each run.  

We have studied this program mainly to see what can 
be done in DES and not in Excel, but we also want to see 
how well we approximate the exact solution. We get an ex-
pected value, printed with 2 decimals, as 4.64, to be com-
pared with the true result of 4.635. We should mention that 
the simulation takes only a few seconds on an ordinary PC. 

However, we can easily make the problem more inter-
esting, e.g. by assuming that in the 50 percent case when 
the court settlement is assumed to be medium, we instead 
have an exponential distribution with the average of 5. We 
replace the block medi let x$countr=5 with the block 
medi let x$countr=5*fn$xpdis. The solution is now no 
longer so easy to calculate without simulation. It is the use 
of many alternatives and continuous probability distribu-
tions in the case of multi-stage decisions that makes simula-
tion with a DES like WebGPSS of interest in the static case.  
 
4 PROBABILITY CALCULATIONS 

 
We have in our DA course, just like in many other DA 
courses, included parts on how different forms of joint 
probabilities are calculated. We want to show that by using 
the computer, e.g. with DES software, one could for more 
difficult probability calculations, do these not only faster, 
but also with greater chance of a correct answer, at least as 
regards the most significant decimals. One can well pay the 
price of getting the answer wrong as regards the fourth or 
fifth decimal, if one thereby substantially reduces the risk 
of the students getting an answer wrong by say 20 percent. 
In the course we illustrated this use of DES for probability 
calculations with two examples found in the literature. 
6



 Ståhl 

        
        
        
        
        
        
        
        
        
        
        
        
        
        
       
        
 
 The first example deals with a Car-Trip Example, 
presented by Barton (2002). “D. Event owns two cars, one 
old, the other older. Each day, he uses a car to get to school 
and back. Car 1 is old and has probability 0.79 of starting 
on any day, while Car 2, even older, starts with probability 
0.71. For either car, once it is started, the chance that it 
completes a trip to or from school is 0.95. Compute the 
probability that D. Event will make it to school and back on 
any particular day.” As pointed out already by Barton, most 
students assume that the system consists of two cars in par-
allel, and they perform calculations leading to a probability 
of 0.762. The correct value can, with some effort, be calcu-
lated as 0.65878. A simpler and safer way of getting the 
correct solution is by DES. Barton used ARENA; our stu-
dents WebGPSS. The program requires only very basic 
WebGPSS, as seen in the block diagram in Figure 6.   
 

 
 

Figure 6. Block Diagram of Car Trip Model 
 

 In the block statistics we find that 65979 have come to 
the block with the address HOME, i.e. the calculated prob-
ability is 0.65979, implying an error of only 0.00101. 
 The next example is by Kim (2004). “There is a small 
theater. The ticket price is $10 each. There are 2N people 
waiting in line to buy tickets. Among 2N people, N people 
carry only one $10 bill and the rest carry one $20 bill. The 
theater has zero money. So they need to give $10 bills they 
receive as change to those with $20 bills. People waiting in 
line can buy tickets from the booth only and the theater 
228
sells tickets on first come first serve basis. What is the 
probability that the theatre will be able to sell 2N tickets 
without any problem when 2N people line up randomly?” 
 The students were asked to write a program, which cal-
culates the probability of not running out of money, not 
only when one starts with zero, but also with any starting 
amount. A GPSS program, for the case of 100 ticket buyers 
(N=50), run 500 times, would look as follows: 

 

       simulate  1                                           
       help      experi,x$cash,x$prob,1,0,0,500               
start  generate  ,,,100                                       
       goto      dol10,0.5                                    
       let-     x$cash,10                                    
       if        x$cash<0,fail                                
       goto      finish                                       
dol10  let+      x$cash,10                                   
finish if        n$start=100,succ                             
       terminate 1                                            
succ   let       x$prob=100                                   
       terminate 1                                           
fail   let       x$prob=0                                     

terminate 100                                          
start     100,np                                       

       end                                                    
 

At the end of the run, we get the following report: 
 
 Result in run 500      0.00 
 After 500 runs: 
 Average:      8.20   Standard deviation:     27.46 
 With 95 percent probability: 
 Average lies between      5.74 and     10.66 

 
We see that we had failure in run 500, but of the 500 runs 
8.2 percent resulted in success. The average success prob-
ability would in the long run lie between 5.74 and 10.66 
with 95 percent probability. We can run the same program 
with a starting cash of 50, replacing the second statement in 
the program with help experi,x$cash,x$prob,1,50,50,500.  
 
5 A BIDDING EXAMPLE 
  
We included in our course also other examples where DES 
could be important. Samuelson and Bazerman (1985) pro-
vided a bidding example, for which DES provides a power-
ful and illustrative solution. The problem is as follows: 
 Company A is considering acquiring Company T by 
means of a tender offer in cash for 100% of T’s shares. The 
value of T depends on the outcome of an oil exploration 
project that T is currently undertaking. If the exploration 
fails completely, T will under current management be 
worth $0 per share, but in the case of a complete success, a 
share of T will be worth $100. All values between $ 0 and 
$ 100 are equally likely. Regardless of outcome, T will be 
worth 50% more under A’s management than under its 
current management. The price of the offer to T must be 
determined before A knows the outcome of the drilling 
project, but T will know the outcome when deciding 
whether or not to accept A’s offer. T is expected to accept 
any offer from A that is greater than the per share value of 
T under its current management. What price should A of-
fer? 
7



 Ståhl 

         
         
         
         
         
         
         
         
        
         
         
         
 
 A typical student view is that the expected value of T 
to its current owner is $ 50 and that is worth 50 % more to 
A. Hence, A should bid in the interval of $ 50 to $ 75. To 
demonstrate that this is wrong, we simulate the expected 
value for A for a given price offer by the program in Figure 
7 with two segments. The first segment starts at times 1, 2, 
..,100, in the case of 100 contract cases being investigated. 
We determine the value of T as a value lying between 0 
and 100. In order to illustrate the results, we also print the 
time and the value computed. In the second segment, we 
generate the bids which come at times 1.5, 2.5, .., 100.5, 
i.e. always a little later than when the value was deter-
mined. We here leave with no contract if the bid is lower 
than the just determined value. Otherwise, we set the profit 
of A to 1.5 times the value minus the bid. We print that the 
value has been accepted and the resulting profit. We sum 
up all the profits and calculate the average of all profits.  

 

 
Figure 7:  Block Diagram of Bidding Price Model 
 

 The program provides an output of the following sort 
for the case when we have input 55 as A’s bid. We have 
just included a few of the lines for illustration. 
  
 At      1.00 value determined as      3.79          
 Accept at       1.50  with profit of    -49.32      
.                                                                           

 At     38.00 value determined as     14.96          
 Accept at      38.50  with profit of    -32.57      
 At     39.00 value determined as     74.44          
.                                                                              
228
                           
                           

                           
                                                                                                      
                           

This output explains why there is a negative expected 
profit. In the cases when the value is larger than the bid, 
there is no acceptance. In the cases when 1.5*value is less 
than the bid there is a loss. There is a profit only in the 
cases when 1.5*value  > bid  > value.  

To establish the optimal bid, we run the following ex-
tension of the program (without any print-outs): 
 
      simulate  1                                           
       help      experi,x$bid,x$proave,10,0,90,20           
      generate  1                                           
      let       x$value=rn1*100                             
      terminate 1                                           
       generate  1,,1.5                                     
      if        x$bid<=x$value,bye                          
       let       x$profit=1.5*x$value-x$bid                  
       let+      x$prosum,x$profit                           
num    let       x$proave=x$prosum/100                       
bye    terminate                                             
       start     100,np                                      
       end  
           

In this program we run the program for all even 10 
dollar bids from $0 to $90, with 20 runs for each bid, and 
see in the output the expected value and their ranges. We 
clearly see that 0 is the optimal bid. Every one of the other 
bids will with at least 97.5 (=95+2.5) probability lead to a 
negative expected value.  
                                                   
    Invalue   Outvalue:    Limits with 95 % probab. 
               Average     Lower limit  Upper limit 
      0.00       0.00          0.00  -      0.00 
     10.00      -0.21         -0.31  -     -0.12 
     20.00      -1.03         -1.25  -     -0.81 
.. 

     80.00     -16.96        -18.43  -    -15.50 
     90.00     -21.58        -23.39  -    -19.76 

 
6    TIME DEPENDENT SIMULATION 
 
The real advantage when it comes to using DES for DA is 
when there is uncertainty about the time that certain proc-
esses take and time is an important variable. Then we must 
involve time explicitly and a simulation using WebGPSS 
becomes very much simpler than doing the simulation in 
Excel. In the course, the students studied an example deal-
ing with the decision on the manning of a team that shall 
develop a new software product. The product is expected to 
be of interest only during the next four years. After that the 
company believes that the product can no longer be sold. 
We are hence only interested in the profits during the next 
four years.  

The product can only be put on the market once the de-
velopment is finished. The expected value of the finishing 
time varies with the number of developers. The real time 
will, however, be subject to random fluctuations, which 
management believes can best be described as an Erlang 
function with a shape factor 4, corresponding to the average 
value of four samplings from the negative exponential dis-
tribution. 

There is a cost per developer per day of  $1.6 K. If the 
software has not been developed within three years, devel-
opment is stopped. The development cost is to be paid at 
8



 Ståhl 

 
the end of each month. Once the development is ready, 
sales start in the immediately following month. Average 
sales are expected to be 3,500 units per month. Actual sales 
vary according to a normal distribution with a standard de-
viation of 700 units. The foreseen price $ 49. The unit cost 
of production is $ 6. 

All monthly profits are discounted back to the present. 
The discounting rate is 18 percent, corresponding to 0.05 
percent per day. We want to estimate the total expected dis-
counted profit for different numbers of developers, what 
variations are likely and which number of developers seems 
most suitable.  The expected relationship between the num-
ber of developers and the average development time is ex-
pressed by a function with 9 data pairs.  

The following WebGPSS program solves the problem.  
 

       simulate  1                                          
       help      experi,x$man,x$pval,9,1,9,100              
       let       x$start=1500                               
       let       x$daycos=1.6                               
       let       x$ucost=6                                  
       let       x$price=49                                 
       let       x$sales=3.5                                
       let       x$drate=0.0005                             
man    function  x$man,c                                    
1 1000                                                      
. 

9 125                                                       
       generate  ,,,1                                       
       let       x$time=fn$rlng4*fn$man                     
       advance   x$time                                     
       let       x$start=cl                                 
       if        x$start>1080,tofail                        
       terminate                                            
tofail terminate 1                                          
       generate  30                                         
       if        cl>x$start,next                            
       let       x$devcos=30*x$daycos*x$man                 
       let       x$mincom=0                                 
       let       x$mtocos=0                                 
       goto      joint                                      
next   let       x$rsales=x$sales*(1+0.2*fn$snorm)          
       let       x$mincom=x$rsales*x$price                  
       let       x$mtocos=x$rsales*x$ucost                  
       let       x$devcos=0                                 
joint  let       x$mprof=x$mincom-x$mtocos-x$devcos         
       let+      x$pval,x$mprof*fn$exp(-x$drate*cl)         
       terminate                                            
       generate  1440                                       
       terminate 1                                          
       start     1,np                                       
       end                                                  

 
In the first segment we sample x$time as the development 
time. We give the start of production, x$start, the value of 
the simulation clock, CL. If the development is finished 
later than at time 1080 we terminate the simulation.  

In the second segment, we do the reporting of each 
month. If it is a month when the development is still going 
on, we have a development cost, but the income and pro-
duction costs are 0. If it is a month when the product is de-
veloped, we have sales, income and production costs. Re-
gardless of type of month, we finally calculate the monthly 
profit, and in x$pval we sum up the present value of all the 
monthly profits.  

It should be mentioned that the students were also al-
lowed to do this simulation in Excel, which many did, but 
22
     
            
            
            
            
            
            
           
            
            

            
            
            
            
            
            
            
             
            
            
            
            
            
           
            
            
            
            
            
            
            
            
            
            
            

most of them solved this problem using quite large and 
complex spreadsheets, e.g. with one row for each manning 
alternative and one column for each of the 48 months. The 
GPSS solutions were clearly very much simpler. 
 
CONCLUSIONS 
 
The examples above show that there are several cases 
when a course in Decision Analysis can be improved by 
the use of Discrete Events Simulation (DES). The use of 
the traditional decision trees is mainly limited to very small 
problems. Simulation in Excel works well for many one-
shot problems, but for sequential decisions DES is needed. 
DES is also needed when the decision problem deals with 
uncertainty regarding the length of different times. 
 
REFERENCES 
 
Barton, R. 2002. Using simulation to teach probability: 

Panel. In Proceedings of the 2002 Winter Simulation 
Conference, ed. E. Yücesan, C-H.Chen, J Snowdon 
and J. Charnes, 1816-7. NewYork: ACM. 

Born, R. and I. Ståhl.  2003.  WebGPSS slide presentation. 
DeKalb, IL: R. Born (available on request from R. 
Born: <rborn@niu.edu>) 

Clemen, R. 1996. Making hard decisions. 2nd edit. Duxbury 
Press, Pacific Grove, CA. 

Eppen, G., F. Gould, C. Schmidt, J. Moore and L. 
Weatherford. 1998. Introductory management science. 
5th edit. Upper Saddle River, NJ: Prentice Hall. 

Keefer  D. and S. Bodily. 1983. Three-point approximation 
for continuous random variables. Management Sci-
ence, 29, 595-609.  

Kim, S-H. 2004. The puzzle: Theater with no money. In-
forms College on Simulation Newsletter. Volume 28. 
Number 2. 

Ståhl, I. 2003.  Simulation made simple with WebGPSS – a 
tutorial.  Stockholm: Stockholm School of Economics. 

Samuelson, W. and Bazerman, M. 1985. Negotiating under 
the winner's curse. In V. Smith (Ed.), Research in ex-
perimental economics (Vol. 3, pp. 105-137). Green-
wich, CT: JAI Press. 

 
AUTHOR BIOGRAPHY 
 
INGOLF STÅHL is a Professor at the Stockholm School 
of Economics, Stockholm, and has a chair in Computer 
Based Applications of Economic Theory.. He has taught 
GPSS for almost thirty years at universities and colleges in 
Sweden, Norway and the USA. Based on this experience, 
he has led the development of the micro-GPSS and 
WebGPSS educational simulation systems. His email ad-
dress is <ingolf.stahl@hhs.se>. His WebGPSS 
system is at <http://www.webgpss.com/>. 
89

mailto:rborn@niu.edu
mailto:<ingolf.stahl@hhs.se>
http://www.webgpss.com/

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



