
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

SHARING EVENT DATA IN OPTIMISTICALLY SCHEDULED MULTICAST APPLICATIONS

Garrett Yaun
David Bauer

Christopher D. Carothers

Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180, U.S.A.

ABSTRACT

A major consideration when designing high perfor-
mance simulation models is state size. Keeping the
model state sizes small enhances performance by us-
ing less memory, thereby increasing cache utilization
which leads to reduced model execution time. Assum-
ing an otherwise efficient simulation executive and min-
imal model state, the only remaining area for reduc-
ing model size is within the events they create. The
event population is typically the most memory inten-
sive region within a simulation especially in the case of
multi/broadcast like applications which tend to sched-
ule many events within the atomic processing of a single
event. To tackle the issue of excessive event memory
consumption in multicast applications, this paper in-
troduces the idea of shared event data. Here, the read-
only data section is shared for a multicast event, which
may then be delivered to several LPs. The critical as-
pect to processing events with shared data is that the
simulation executive must ensure that the shared data
is properly maintained not destroyed prematurely. In
this paper we present an approach for sharing event
data within optimistic simulation system and demon-
strate performance on a multicast benchmark applica-
tion. From our performance study, we report a 22% re-
duction in the data cache miss rate, a processor utiliza-
tion in excess of 80% and a reduction in model memory
consumption by a factor of 20.

1 INTRODUCTION

One of the more challenging issues in model design is
keeping the model size small. A good way to address
this problem is to reduce the amount of duplicate in-
formation. As mentioned in (Yaun et al. 2003) Logi-
cal Processes (LPs) that share common data can have
a global information pointer to the shared data which
reduces the total state of the model. From this, the
question of “why must this just be limited to the LPs?”
arises. Could a sharing approach be employed in event

data as well? Our experimentation shows that the an-
swer is yes and one good example is a multicast network
model (Deering 1989) because of the duplicate nature
of the events. However, this approach could be used
in several, more generic model scenarios. In fact, at
any point in a model where an event is to be broadcast
to two or more LPs there can be a significant memory
savings attributed to this approach.

In the multicast protocol, data transmission is min-
imized by sending messages through a multicast tree
before being broadcast to each subscriber. The goal
is to minimize individual transmissions sent separately
to each subscriber. This protocol model has duplicate
information being sent to each subscriber where there
are branches in the multicast tree. In a simulation with
shared memory we have the ability to have a global view
of the system. Typically, a multicast model generates
messages that result in multiple, identical messages be-
ing sent to each subscriber LP in the system. Each LP
would then read those messages, update it’s state, and
possibly generate more events in the system.

Rather than identical events being sent to each sub-
scriber with the same data attached, in our system we
keep a pointer to the data in the event header and
send each subscriber LP this pointer. Each LP is re-
quired not to overwrite the data, as it is understood
in the model that this event data is being shared glob-
ally throughout the system. Our second requirement is
that only once each subscriber has received the multi-
cast event is the attached data reclaimed.

This optimization is important because it drastically
reduces the most memory exhaustive component of sim-
ulation: the event population. This optimization can
be applied to all types of simulation: sequential, par-
allel and even distributed. In this paper, we will dis-
cuss the sequential and parallel implementation of this
approach. Additionally, there are two types of par-
allel synchronizations. With sequential and conserva-
tive synchronization the implementation of this idea is
trivial because attached data can immediately be re-

Yaun, Bauer and Carothers

Figure 1: Multicast graphic from Cisco (Cisco 2002)

claimed.
Optimistic simulators pose a greater design and im-

plementation challenge because processed events are
maintained for possible future rollback scenarios. These
scenarios are much more difficult to address because
events must have been read by all receivers prior to
reclamation. In fact, there are several cases that we
outline in this paper where this optimization must be
managed properly by the optimistic simulation execu-
tive.

We chose the multicast protocol model as our pri-
mary example for this experimental investigation. We
follow with possible implementations of the method as-
sume different synchronization mechanisms. There will
be a detailed discussion of the implementation of the
method in a discrete event simulation which employs
optimistic synchronization. For the performance results
a benchmark multicast-like model will be used in the
evaluation.

2 MULTICAST BACKGROUND

The multicast protocol is a bandwidth-conserving tech-
nology that aims to reduce packets in a network by
transmitting a single stream of data to thousands of
receivers on the network. Many applications take ad-
vantage of this protocol, including: video conferencing,
corporate communications, distance learning, and dis-
tribution of just about any type of information.

Multicast has been in use on large scale networks
since the introduction of the Mbone (Macedonia and

Brutzman 1994) in 1992. Today, Microsoft China has
one of the largest multicast networks, and plans to be-
gin providing multicast television to viewers in 2005
(IPMSI 2004). The multicast solution will become
widely used on the Internet as a solution to higher band-
width costs due to ever increasing numbers of Internet
subscribers.

The multicast model works by delivering traffic
from a single source to multiple receivers through
the multicast tree. Multicast receivers subscribe to
a given source, and the information is then dissemi-
nated through the multicast tree back to the multicast
group of receivers. Internet routers replicate packets at
branches in the multicast tree so that all subscribers
will receive the same packet data. This low-cost solu-
tion not only reduces the amount of bandwidth required
to transmit a large stream of data to multiple receivers,
it also reduces the number of requests serviced by the
source. The multicast protocol is efficient in it’s design
compared to other protocols which commonly require
the source to send individual copies of the same infor-
mation to multiple receivers. When the amount of data
being transmitted is large, it quickly becomes difficult
for the source to send multiple copies across a network,
as in the case of MPEG video. A large amount of net-
work resources are consumed providing an individual
stream for each receiver. The multicast protocol can
also provide a substantial savings when the data trans-
mitted from the source is small because there may be
thousands of receivers to be serviced. Figure 1 demon-
strates how data from a single source is delivered to

Yaun, Bauer and Carothers

multiple recipients through a multicast tree.
Our model of the multicast protocol clearly illustrates

the performance impact of our shared event data opti-
mization. It is easy to see that if we are able to move
X bytes into a shared message and there are 1000 mul-
ticast subscribers the savings will be roughly 1000-fold
bytes. Conversely, if X is very large, and there are only
few receivers, the memory savings will also yield a sig-
nificant performance improvement as the large event
memory segment would only need to be written into
memory once. Furthermore, as these large packets tra-
verse the network the number of copy operations is zero.

3 IMPLEMENTATION

In order to successfully deploy this new idea in a cur-
rent simulator executive, two restrictions must be met.
Once the shared event data has been identified, it can be
allocated and written only once, and then dereferenced
for each subscriber event created. The first restriction
is that each subscriber may not destroy or modify the
shared event data. The second restriction is that the
simulation executive may not prematurely reclaim the
shared event data. Only once each subscriber has re-
ceived the event can the shared event data be freed.

3.1 Sequential and Conservative Simulation

In the sequential simulation this optimization can easily
be implemented entirely within the model. The modeler
can keep a pointer to the shared event data. For each
newly created event that will forward the shared data,
the pointer to the shared data is set. Next, there needs
to be a way to free the shared data once the event has
been processed by all subscribers. If the final subscriber
is known, the shared event data can be freed once that
subscriber has processed the event. Another approach
is to maintain a counter that indicates the number of
sends and receives. When the last subscriber receives
the event and does not forward it to any other sub-
scriber, the counter will be zero and the shared data
segment is safe to reclaim. Since the execution is se-
quential, only one LP will be accessing the counter at
a time and there is no need for mutual exclusion. Fi-
nally, the last subscriber to receive the event will be the
correct one to free it.

With conservative simulation systems such as DaSSF
(Nicol a d Liu 2002), this optimization can also be im-
plemented by the model. Once again the modeler cre-
ates a pointer in the event message for the shared data
segment. Each newly created event that is going to be
forwarding the data can point to the same shared data
segment. The freeing of the data can be done the same
way as in the sequential case because in conservative

if(e has been ABORTED)
{

if(*b)
{

lock(&((*b)->mem_lck));
if((*b)->counter != 0)
{

unlock(&((*b)->mem_lck));
return;

}

//free the memory pointed by event e
free(e->memory);
unlock(&((*b)->mem_lck));
*b = NULL;

}
return;

}

lock(&((*b)->mem_lck));
(*b)->counter++;
unlock(&((*b)->mem_lck));

e->memory = *b;
return;

Figure 2: Memory Set Routine. This routine is pre-
formed when setting a memory buffer to an event. B is
the memory buffer. E is the event.

simulation there are no roll backs and all events exe-
cuted are processed in the correct causal order. How-
ever, the execution is parallel and so would require mu-
tual exclusion for the counter if that is the method used
to determine the second restriction.

3.2 Optimistic Simulation

Within optimistic simulation there are additional issues
to address. In particular, speculative execution com-
plicates the allocation/deallocation process when roll-
backs occur. We chose to implement this novel idea
within ROSS (Carothers, Bauer, and Pearce 2002) be-
cause it provides a reversible memory library similar
to the structures described in GTW (Carothers, Peru-
malla, and Fujimoto 1999) and ROSS and it is these
memory buffers which form the shared event data seg-
ments. ROSS handles causal errors through reverse
computation. When a rollback occurs, an event’s re-
verse computation event handler is called, which has
the inverse effects on the LP’s state compared to the
forward execution of the event. ROSS includes a mem-
ory library which allows for the dynamic allocation of

Yaun, Bauer and Carothers

if(e->memory)
{

lock(&e->memory->mem_lck);
e->memory->counter--;

if(e->memory->counter == 0)
{

unlock(&e->memory->mem_lck);
//free the memory pointed by event e
free(e->memory);

}
else

unlock(&e->memory->mem_lck);

e->memory = NULL;
}

Figure 3: Memory free routine. This routine is pre-
formed on all event allocations. B is the memory buffer.
E is the event.

statically allocated memory. This library was designed
to overcome the problem of reverse computing memory
operations such as malloc and free during event execu-
tion. The memory library greatly reduces the complex-
ity of many models by allowing them to create memory
buffers and either maintain them in their LP state or to
send them as part of the event data. When we discuss
reclaiming the shared event data segments, it is these
memory buffers to which we are referring.

Our implementation used a counter within the event
header to track subscriber sends. The easiest implemen-
tation of this idea is not to try to reclaim the shared
data when it reaches the end points. The reason is the
supposed final end point might not be the final end
point due to the fact that other end points might be
rolled back. In an optimistic solution, the event data
segments are reclaimed only once the possibility of a
rollback is eliminated by the passing of the global vir-
tual time (GVT) (Jefferson 1985). Only those events
with a timestamp less than the current GVT value may
be reclaimed by the system (Fujimoto 2000). Typi-
cally, for caching purposes, those events are made read-
ily available for the next event creation. This improves
the cache hit rates because we know that the newly re-
claimed event is in our cache, and so it should be the
next event to be allocated. On the reallocation of the
event the shared event data can be reclaimed. This
method requires additional memory because the shared
event data is being reclaimed later in the simulation,
but still dramatically less than the amount of memory
needed for a non-shared data approach. Within the
shared data there is a counter and a mutual exclusion

Figure 4: Memory required with respect to levels.

lock which the simulation executive manages. This op-
timization is entirely transparent to the model.

A second issue is that the execution of an event
might not create the desired new event. For example
in ROSS, once all event-memory is allocated, a spe-
cial event called the abort event is returned as opposed
to returning a null pointer. This enables regular opti-
mistic processing to continue until the scheduler reaches
a point at which it can correctly and safely re-claim
memory. This approach is similar to the approach taken
in Georgia Tech Time Warp (GTW) (Fujimoto and Hy-
binette 1997) as well as ROSS. In the “event-send” rou-
tine, if it finds an abort event has been scheduled, it
continues processing but does not send that event. Ad-
ditionally, when the current event execution completes,
it is rolled back and any events which it created are
cancelled.

The steps for the memory set routine are illustrated
in Algorithm 2. Here, the newly allocated memory
buffer denoted by b, has its access control counter in-
creased by one provided the owning event, e, is not the
abort buffer. If the abort buffer is encountered, and
the counter is zero, then that shared memory segment
is freed. Otherwise, this routine returns. Next, Al-
gorithm 3 shows how a shared event segment is freed.
In this routine, the memory segment’s access counter
must be zero prior to the actual release of the mem-
ory segment. Please note, critical sections are denoted
by the lock and unlock routines. Both increment and
decrement operations of the access counter variables are

Yaun, Bauer and Carothers

Figure 5: Memory required with respect to shared data
segment size. One case is 8 multicast trees, 10 levels
and 8 start events and the other case is 16 trees, 10
levels and 4 start events.

“locked”. Additionally, any tests for zero are placed
within the lock since one and only one processor should
free a shared memory buffer.

We observe that this interface only affects forward
event processing. When a rollback occurs, the reverse
event handling code is not effected and no new func-
tion calls or code modifications are required to support
shared event segments.

4 PERFORMANCE STUDY

4.1 Itanium Architecture

The Itanium-II processor (Intel 2002) is a 64 bit archi-
tecture based on Explicitly Parallel Computing (EPIC)
which intelligently bundles instructions together that
are free of data, branch or control hazards. This ap-
proach enables up to 48 instructions to be in flight at
any point in time. Current implementations employ
a 6-wide, 8-stage deep pipeline. A single system can
physically address up to 250 bytes and has a full 64-
bit virtual address capability. The L-3 cache comes
in a 3 MBs configuration and can be accessed at 48
GBs/second which is the core bus speed.

In contrast to other processors, this processor clearly
has the largest “core speed” cache of any available on
the market. For example, the Apple G5 64-bit processor
provides only has 512KB level-2 cache or 14.3% of the

Figure 6: Event Rate with respect to shared data seg-
ment size. One case is 8 multicast trees, 10 levels and
8 start events and the other case is 16 trees, 10 levels
and 4 start events

available cache on the Itanium-II processor. However,
the core bus speed on this processor is 64 GBs/second.

4.2 Benchmark Multicast Model

For the performance study we implemented a bench-
mark multicast model. We constructed binary trees
to describe the network topology of sources, routers
and subscribers. All of the trees were disjointed. The
leaf nodes off the routers were the subscribers. The
source root node was responsible for generating the
packets. Once the packet was received by the left-most
subscriber in the tree, the root will generate the next
packet.

4.3 Model Parameters and Results

We experimented with many parameters in the mul-
ticast benchmark model. The most significant model
parameters were the number of LPs and the size of the
shared data segments. We varied the number of trees
from 2 to 16 and the number of levels from 5 to 15. A
power of two was not chosen because 15 was the largest
number of levels that would still fit into memory. The
shared data size ranged from 4 integers to 1024 integers
and was modeled using individual memory buffers of the
respective sizes. In addition we varied the number of
start events from 2 to 8.

Yaun, Bauer and Carothers

Table 1: Sequential Performance with and without shared data. T is the
number of trees in the multicast graph. L denotes the number of level
within each tree. Estart is the number of initial events each LP schedules
at the start of the simulation. S is the size of the data size in the messages.
Mtraditional and Mshared are the required memory for the traditional and
shared event data models respectively. ERtraditional and ERshared are the
event rate for the traditional and shared event data models respectively.

T L Estart S Mtraditional Mshared ERtraditional ERshared

8 10 8 4 14.4 MB 14.8 MB 377986.673 370801.924
8 10 8 16 17.4 MB 14.8 MB 350491.922 378053.970
8 10 8 64 29.4 MB 14.8 MB 336866.703 377541.440
8 10 8 256 77.4 MB 14.9 MB 330823.230 370219.797
8 10 8 1024 269.3 MB 15.4 MB 324083.951 367463.726
16 10 4 4 19.1 MB 19.4 MB 342921.408 335885.514
16 10 4 16 22.1 MB 19.4 MB 322796.458 341562.543
16 10 4 64 34.1 MB 19.4 MB 311617.293 342541.110
16 10 4 256 82.0 MB 19.6 MB 306166.442 336635.595
16 10 4 1024 273.9 MB 20.0 MB 300169.391 333708.054
16 15 8 256 4936.3 MB 842.0 MB 137519.194 146734.510
16 15 8 1024 17224.1 MB 842.9 MB 57867.255 146681.164

For the first set of experiments we ran ROSS sequen-
tially with and without a shared data segment in the
events. Obviously, as the number of trees and start
events increase the memory increase according. When
the number of levels in the trees grow, an exponential
increase in memory usage was experienced. This can
be seen in Figure 4 and is explained by the exponential
nature of the data structure.

It can be observed that there was a smaller bene-
fit for the small shared data segments. However, in the
larger sized data segments the benefits are quite notice-
able. This can be seen in Figures 5, 6 and table 4.1. In
the larger cases the share data segments lead to signifi-
cant decreases in memory and increases in performance.
The decrease in memory is explained by the fact that
the over head of the share data segment is surpassed
by the duplicate information. In some cases the shared
data models used 1/20th of the memory required by tra-
ditional sequential simulations (i.e., not sharing event
segments). One observed result showed a speedup of
2.5. This performance is explained by the fact that the
traditional model was in swap and thrashing. For the
other data points, the speedup is attributed to a smaller
memory footprint which enables more events to fit in
the cache. Another part of the speedup was the model
only had to assign values to pointers instead of copying
data from events.

Table 2 is the profiling results of the models. It
shows the data cache misses per memory reference for
the shared event data and traditional models. The
ratio was obtained by dividing DCU LINES IN by
DATA MEM REFS which are counters that Oprofile

monitored on a Pentium III. The table shows that as the
event data size increases the shared event data model
has fewer data cache misses than the traditional model.
These fewer misses can also explain the speedup which
is shown in table 4.1.

One out-lier result was in the 16 integer case, the
traditional model had a better ratio. Certain models
are more sensitive than others to how the model fits into
the L2 cache, yielding better performance in some cases.
It appears that the 16 integer case was one of these
situations. More investigation is needed to determine
the precise effects of caching on performance.

Table 3 shows the result of the tests on the 1.5 GHz
quad processors Itanium-IIs. The maximum speedup
attain was 3.22 on four processors. The low values of
speedups can be explained by the fact that the systems
does not have enough work and can be remedied by
increases the number of start events in the system. This
can also be observe in the table.

5 RELATED WORK

Much of the research in parallel simulation for shared
data was based on modifying and reading multiple LP’s
states. For example sharks world breaks a model down
into sectors and each sector needed to be able to read or
modify entities on its neighbor state (Conklin, Cleary,
and Unger 1990). One method would be to use the
push method, in which messages are passed to the cor-
rect neighbors with the entities information. The other
way is posed in the space-time memory paper (Ghosh
and Fujimoto 1991). This concept has shared objects

Yaun, Bauer and Carothers

Table 2: Data cache misses per memory reference. T is the number
of trees in the multicast graph. L denotes the number of level within
each tree. Estart is the number of initial events each LP schedules at
the start of the simulation. MRshared and MRtraditional are the data
cache misses rates for the shared event data and traditional models
respectively. Finally, % Reduction is the amount the miss rate is
reduced by the event sharing scheme.

T L Estart S MRshared MRtraditional % Reduction
8 10 8 4 0.0221 0.0221 0.00 %
8 10 8 16 0.0221 0.0211 -4.73 %
8 10 8 64 0.0221 0.0231 4.33 %
8 10 8 256 0.0224 0.0259 13.51 %
8 10 8 1024 0.0224 0.0290 22.75 %
16 10 4 4 0.0224 0.0224 0.00 %
16 10 4 16 0.0225 0.0213 -5.63 %
16 10 4 64 0.0228 0.0234 2.56 %
16 10 4 256 0.0228 0.0261 12.64 %
16 10 4 1024 0.0229 0.0293 21.84 %

Table 3: Parallel results for shared event data. T is
the number of trees in the multicast graph. L de-
notes the number of level within each tree. Estart is
the number of initial events each LP schedules at the
start of the simulation. 2-4 PEs is performance mea-
sured in speedup (i.e., sequential execution divided
by parallel execution time) for 2 to 4 processors.

T L Estart S 2 PEs 3 PEs 4 PEs
8 10 4 256 1.36 1.95 2.34
8 10 4 1024 1.35 1.94 2.32
8 10 8 256 1.49 2.22 2.73
8 10 8 1024 1.48 2.21 2.74
8 15 4 256 1.56 2.43 3.21
8 15 4 1024 1.55 2.43 3.22
8 15 8 256 1.54 2.41 3.19
8 15 8 1024 1.54 2.41 3.19
16 10 4 256 1.51 2.25 2.80
16 10 4 1024 1.51 2.23 2.79
16 10 8 256 1.59 2.40 2.94
16 10 8 1024 1.59 2.43 2.64
16 15 4 256 1.54 2.42 3.20
16 15 4 1024 1.53 2.42 3.20
16 15 8 256 1.53 2.38 3.06
16 15 8 1024 1.54 2.37 3.04

with a time log attached to them. It allows for a easier
model development over the push method. A distrib-
uted method for sharing variables is discussed in (Mehl

and Hammes 1993). The main difference between this
paper and these other papers is that our shared mem-
ory is not allow to be modify. This eliminates the issue

Yaun, Bauer and Carothers

of whether the memory is safe to read.
In the context of shared memory performance op-

timization, Panesar and Fujimoto have two key re-
sults. In (Panesar and Fujimoto 1995), they present
a event buffer management scheme that reduces mem-
ory overheads on a cache-coherent shared memory mul-
tiprocessor (KSR systems). To efficiently avoid over-
optimistic execution, as well as ensure that event mem-
ory is equally distributed among all processors, they de-
vise a control flow technique which treats event memory
like a window of network packets and apply a conges-
tion control approach to throttling Time Warp event
processing rates (Panesar and Fujimoto 1997).

Multicast is also used in the High-Level Architecture
(fujimoto 2000, HLA 2005) also known as IEEE 1516.
This is a general purpose architecture for simulation
reuse and interoperability. Here, simulators communi-
cate through a publish and subscribe interface. One of
the key challenges is how to correctly disseminate up-
date information. To address this problem, multicast
groups are employed as a means to allow simulators to
subscribe to regions of interest. Each “region” is as-
signed a multicast group identifier. This approach en-
ables the efficient dissemination of update information
about simulation entities of interest. The key differ-
ence here is that our shared-memory approach reduces
memory consumption whereas the HLA’s implementa-
tion reduces network bandwidth, but overall memory
consumptions remains the same.

Finally, we note that sharing event data has
some linkages to multi-resolution modeling (Natrajan,
Reynolds, and Srinivasan 1997). Here, MRM is pri-
marily concerned with the correct temporal and spatial
aggregation and disaggregation of simulation objects.
The key difference between our approach is that we are
only concerned with a spatial aggregation of event data
that would be scheduled to a number of simulation ob-
jects at or about the same point in virtual time. Ad-
ditionally, we are unaware of any MRM approach for
an optimistic synchronization environment. In partic-
ular, how one would rollback either an aggregation or
disaggregation operation is still an open question.

6 CONCLUSIONS

From the idea of shared data in the LP we transform
it into the idea of shared data in the event. This paper
shows that the idea of shared event data is possible
and shows that there are benefits of 2 to 20 in memory
savings. There are also speedup gains from this idea due
to eliminating the copying for hop to hop. We show that
it can be implemented in all major types of simulation
engines. In addition we show parallel speedups of 3.22
on a quad processor system.

REFERENCES

• Carothers, C. D., K. S. Perumalla, and R. M. Fuji-
moto. 1999 Efficient optimistic parallel simulations
using reverse computation. ACM Transactions on
Computer Modeling and Simulation (TOMACS),
9(3): 224–253.

• Carothers C. D., D. Bauer, and S. Pearce. Ross:
A high-performance, low memory, modular time
warp system. Journal of Parallel and Distributed
Computing. #62, 1648–1669.

• Cisco, 2002. Internet Proto-
col Multicast. Available via
<http://www.cisco.com/univercd/cc/td/
doc/cisintwk/ito doc/ipmulti.htm> [accessed
April 13, 2005].

• Conklin, D., Cleary, J., and B. Unger. 1990. The
sharks world: A study in distributed simulation de-
sign. In Distributed Simulation (1990), SCS Sim-
ulation Series, 157–160.

• Ghosh, K., and R. M. Fujimoto. 1991. Paral-
lel Discrete Event Simulation Using Space-Time
Memory. In 20th International Conference on Par-
allel Processing (ICPP)

• Fujimoto, R. M., and M. Hybinette. 1997. Com-
puting Global Virtual Time in Shared-Memory
Multiprocessors. ACM Transactions on Modeling
and Computer Simulation. Volume 7, issue 4, 425–
446.

• Fujimoto, R. M. 2000. Parallel and distributed
simulation systems. John Wiley & Sons, New
York.

• HLA. 2005. Department of Model-
ing and Simulation. Available via
<https://www.dmso.mil/public/transition/
hla/> [accessed April 13, 2005].

• IPMSI. 2004. Microsoft to co-operate with
World Multicast China. Available via
<http://www.ipmulticast.com/> [accessed
April 13, 2005].

• Intel. 2002. Intel Itanium-II Ref-
erence Manuals. Available via
<http://www.intel.com/design/itanium2/
documentation.htm#manuals> [accessed July 8,
2005].

• Jefferson, D. R. 1985. Virtual time. ACM Trans-
actions on Programming Languages and Systems,
7 (3):404–425.

Yaun, Bauer and Carothers

• Mehl, H., and S. Hammes. 1993. Shared Variables
in Distributed Simulation. In Proceedings of the
7th Workshop on Parallel and Distributed Simula-
tion (PADS93). 68–76.

• Macedonia, M. R., and D. P. Brutzman. 1994.
Mbone Provides Audio and Video Across the In-
ternet. IEEE Computer, Volume 27 Issue 4, 30–35.

• Natrajan, A., P. F. Reynolds, and S. Srini-
vasan. 1997. MRE: A Flexible Approach to
Multi-Resolution Modeling. In Proceedings of the
Eleventh Workshop on Parallel and Distributed
Simulation. 156–163.

• Nicol, D., and J. Liu. 2002. Composite Syn-
chronization in Parallel Discrete-Event Simulation.
IEEE Transactions on Parallel and Distributed
Systems, Volume 13, Number 5.

• Panesar, K. S., and R. M. Fujimoto. 1995. Buffer
Management in Shared-Memory Time Warp Sys-
tems. In Proceedings of the 9th Workshop on Par-
allel and Distributed Simulation (PADS ’95). 149–
156.

• Panesar, K. S., and R. M. Fujimoto. 1997. Adap-
tive Flow Control in Time Warp, In Proceedings of
the Eleventh Workshop on Parallel and Distributed
Simulation. 108–115.

• Deering. S. 1989. RFC1112, Host Ex-
tensions for IP Multicasting. Available via
<http://rfc.net/rfc1112.html> [accessed April
13, 2005].

• Yaun, G., D. Bauer, H. Bhutada, C. D. Carothers,
M. Yuksel, and S. Kalyanaraman. 2003. Large-
scale network simulation techniques: examples of
TCP and OSPF models. ACM SIGCOMM Com-
puter Communication Review, Volume 33 Issue 3

AUTHOR BIOGRAPHIES

