
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

THE ROLE OF COMPOSITION AND AGGREGATION IN MODELING
MACROMOLECULAR REGULATORY NETWORKS

Clifford A. Shaffer∗, Ranjit Randhawa∗, and John J. Tyson∗∗

Departments of Computer Science∗ and Biological Sciences∗∗

Virginia Tech
Blacksburg, VA 24061

shaffer|rrandhawa|tyson@vt.edu

ABSTRACT

Today’s macromolecular regulatory network models are
small compared to the amount of information known about
a particular cellular pathway, in part because current mod-
eling languages and tools are unable to handle significantly
larger models. Thus, most pathway modeling work today fo-
cuses on building small models of individual pathways since
they are easy to construct and manage. The hope is someday
to put these pieces together to create a more complete pic-
ture of the underlying molecular machinery. While efforts
to make large models benefit from reusing existing com-
ponents, unfortunately, there currently exists little tool or
representational support for combining or composing mod-
els. We have identified four distinct modeling processes re-
lated to model composition: fusion, composition, aggrega-
tion, and flattening. We present concrete proposals for im-
plementing all four processes in the context of the Systems
Biology Markup Language (SBML).

1 REGULATORY NETWORK MODELING

Macromolecular regulatory network models attempt to de-
duce the physiological properties of a cell from wiring dia-
grams of its control systems. These networks of interacting
proteins are intrinsically dynamic. They describe the molec-
ular mechanisms by which a cell changes in space and time
to respond to stimuli, grow and reproduce, differentiate, and
do all the other remarkable tricks that are necessary to stay
alive and propagate the species.

A simple example of a regulatory network is the set of re-
actions controlling the activity of MPF (mitosis promoting
factor) in Xenopus oocyte extracts (Marlovits et al. 1998),
which we refer to herein as the frog egg model (see Fig. 1).
Such networks are often represented as graphs where ver-
tices represent substrates and products (collectively referred
to as species), and labeled directed edges connecting vertices
represent the reactions. Chemical reactions cause the con-
centrations of the chemical species (Ci) to change in time
according to the equation

P

P

MPF

Wee1

Cdc25P

PPase

PPase

Wee1P

Cdc25

Cyclosome

2

2

3 1

(4)(4)

2

Cdk1

Cyclin B

Figure 1: Pathway diagram for the frog egg cell cycle. Cy-
clin B, synthesized in reaction 1, combines with Cdk1 (reac-
tion 3) to form active MPF. MPF is inactivated by phospho-
rylation of the Cdk1 subunit by Wee1. Cdc25P reverses the
phosphorylation step, converting inactive MPF back to ac-
tive MPF. Finally, a protein complex (called the cyclosome)
degrades cyclin B protein (reaction 2).

dCi

dt
=

R∑
j=1

bijvj , i = 1, . . . , N

where R is the number of reactions, vj is the velocity of
the jth reaction in the network, and bij is the stoichiometric
coefficient of species i in reaction j (bij < 0 for substrates,
bij > 0 for products, bij = 0 if species i does not take part
in reaction j).

The full set of rate equations is a mathematical represen-
tation of the temporal behavior of the regulatory network.
Modelers are faced with many computational problems: ac-
curately and efficiently solving equations when velocities
are characterized by widely varied time constants, finding
steady state solutions, estimating rate constants by fitting
numerical solutions to experimental data, and identifying bi-
furcation points in the multi-dimensional parameter space.

A realistic model of the budding yeast cell cycle consists
of about 30 differential equations containing 100 rate con-
stants (Chen et al. 2004). The parameters are estimated from
the cell-cycle behavior of more than 100 mutants defective
in the regulatory network. Simulating the entire set takes
a few minutes on a desktop PC for one choice of kinetic
constants. To fit the model to the mutant data by nonlinear

Shaffer, Randhawa, and Tyson

regression requires thousands of repetitions of the full calcu-
lations. A model of such complexity (10-100 equations) is
approaching the limit of what a dedicated modeler can pro-
duce and analyze with the tools available today. Beyond this
size, we begin to lose our ability even to meaningfully dis-
play the wiring diagram that represents the model, let alone
comprehend the information it contains. To adequately de-
scribe fundamental physiological processes (such as the con-
trol of cell division) in mammalian cells will require models
of at least 100-1000 equations. To handle this next gener-
ation of dynamical models will require sophisticated soft-
ware to automate the modeling cycle: network specification,
equation generation, simulation and data management, and
parameter estimation. Ongoing efforts such as the DARPA
BioSPICE initiative (DARPA 2005) and the DOE Genomes
to Life project (DOE 2005) aspire to support models at least
one order of magnitude larger than are currently used.

2 BUILDING LARGE NETWORKS

There is a correlation between the size of a model and the
amount of biological information it represents. The ability
to construct large biological models provides the potential
for better insights into the workings of a cell under investiga-
tion, if only we can handle the complexity involved. Models
that exist today are small compared to the amount of infor-
mation known about a particular organism or cellular path-
way/process. Modelers work on individual pieces (cellular
processes or certain pathways) that are easy to construct and
manage. Their ultimate goal is to put these pieces together to
construct a more complete picture of the underlying molecu-
lar machinery of the organism. Merging the pieces together
will provide researchers with more complete and biologi-
cally accurate models with which to perform simulations.
Currently this merging step is an error-prone process as it is
done manually. The level of complexity is difficult to deal
with as the number of models and their sizes increase. When
making large models it is better to start from existing mod-
els in order to reuse information from smaller models, rather
than to start from scratch. This is analogous to adding fea-
tures to an existing program rather than having to completely
re-write it to incorporate new functionality.

Modeling languages and modeling tools help modelers
construct their models by providing a computational envi-
ronment or framework that minimizes the amount of human
error during the construction step. While modelers are cur-
rently able to construct small to medium models by hand,
the process is simplified by using computational tools which
not only decrease the time taken to input a model but also
ensure that the modeler does not make mistakes while in-
putting the model. In this paper we describe features that
are intended to enable modelers to create larger models than
previously possible. We describe four distinct modeling pro-
cesses whose purpose is to support the construction of larger

models: Fusion, Composition, Aggregation, and Flattening.
Model Fusion is a process that combines two or more

models in an irreversible manner. The identities of the indi-
vidual models (called submodels) being combined are lost,
however the aggregate information remains the same. Fu-
sion enables modelers to incorporate information from an-
other model into an existing model, thereby creating larger
models. Eventually, fused models will become too large to
grasp and manage as single entities. Large models will need
to be made up of distinct components to infer any mean-
ingful insight into their underlying biology. Thus, we view
model fusion as a useful tool for manipulating small to mid-
sized models, but not a viable solution in the long run.

Model Composition provides a potential solution to our
limited ability to comprehend larger pathway models. With
composition, one can think of models not as monolithic en-
tities, but as collections of smaller components (submodels)
joined together in a particular manner. A Submodel is a com-
plete model, not an element such as a species, parameter, etc.
Given two or more submodels, a composed model is built
by describing their inter-model relationships/interactions.
Composition is a reversible process, in that removing the
inter-model interactions that holds the composed model to-
gether recovers the individual submodels.

We distingusih Model Aggregation as a restricted form of
composition. A collection of model elements is represented
as a single entity (a “module”). A module contains a list of
input and output ports that link to internal species and pa-
rameters. These ports define the module’s interface, which
provides restricted access to the components in the module.
The process of aggregation (connecting modules via their
interfaces) allows modelers to create larger models in a con-
trolled manner.

Model Flattening converts a composed or aggregated
model with some hierarchy or connections to one without
such connections. The result is equivalent to fusing the sub-
models. However, the relationship information provided by
the composition and/or aggregation process should be suf-
ficient to allow the flattening to take place without human
intervention (such intervention is needed in the fusion pro-
cess). The relationships used to describe the interaction be-
tween the models and submodels are lost, as the composed
or aggregated model is converted into a single large (fused)
model. Flattening a model allows us to use existing tools
that have no support for composition or aggregation.

3 CONTEXT AND PRIOR WORK

The XML-based Systems Biology Markup Language
(SBML) (Hucka et al. 2003) has become widely supported
within the pathway modeling community. Thus, we choose
to present concrete implementations for the various mod-
eling processes through added SBML language constructs
that express the necessary glue that connects submodels to-

Shaffer, Randhawa, and Tyson

gether. It is not necessary that our proposals be implemented
in SBML, but doing so provides clear reference implemen-
tations in the same way that an algorithm is often expressed
in a particular programming language. Fusion is presented
in terms of a tool to aid modelers hand-compose large mod-
els from smaller components, while flattening a composed
or aggregated model will result in a valid SBML Level 2
model without our added language features.

A number of authors find that successful composition or
reuse requires components that were designed for composi-
tion or reuse (Davis and Anderson 2004, Garlan, Allen, and
Ockerbloom 1995, Kasputis and Ng 2000, Malak and Pare-
dis 2004, Spiegel, Reynolds, and Brogan 2005). Bulatewicz,
Cuny, and Warman (2004) suggest using a coupling inter-
face for model coupling and provide a number of solutions,
from a brute force technique to using frameworks designed
to support coupling. Liang and Paredis (2003) describe a
port ontology for automated model composition. While au-
tomating composition is outside the scope of our work, the
ontology for representing ports is useful in detailing the dif-
ferent roles and functions port structures can take.

Proposals have been made within the SBML commu-
nity (Finney 2003, Ginkel 2003, Schroder and Weimar 2003)
that describe the mechanics of composition through addi-
tional language features for SBML, as we will do. The com-
mon idea among the various pathway modeling composi-
tion proposals is to support the composition of larger mod-
els from smaller ones (submodels). In all these proposals a
model can contain:

1. Submodels: Models can be contained within an SBML
document or can be externally referenced.

2. Instances: Models may contain one or more instances
or (copies) of submodels. Composed models represent
a hierarchy of submodel instances connected together

3. Links: Models may contain directional links between
objects (SBML components).

4. References: Components within a model can be refer-
enced from another model.

Finney (2003) proposes that a model can be composed of
instances of submodels, which themselves are full-fledged
models. Finney lists three ways of describing composi-
tion in SBML by creating connections between components
in different models using links, ports or direct links. The
<Link> structure connects two components together di-
rectly. Finney’s <Port> structure creates interfaces of com-
ponents within a model. The <Direct Link> structure en-
ables direct access to components within a submodel with-
out having to define it beforehand. An example is compos-
ing of two models together by creating a reaction between
them. Finney’s approach duplicates everything in one model
within another. Alternatively, modifying the existing SBML
element <simpleSpeciesReference> can make this connec-
tion, to allow referencing a component directly. In an object-

oriented analogy, submodels are analogous to class defini-
tions and instances to object declarations. Two types of con-
nections are possible, one is analogous to pointers (direct
links) and the other to overloading parameters (links).

Weimar’s method of modularization (Schroder and
Weimar 2003) considers SBML <modules> and their de-
pendencies. Modules are defined as the smallest part of the
SBML definition, which can be removed independently of
other modules. There are two types of dependencies that
exist: syntactic dependencies are due to the XSD schema;
while semantic dependencies exist due to variations in intu-
ition in English text.

Ginkel (2003) highlights the advantages of modularity
and describes features necessary for creating modular mod-
els. These include: modules (encapsulated logical/physical
submodels) with the same set of elements as the SBML
model; namespaces (hierarchical names) to access and spec-
ify parts of modules; interfaces to integrate modules into a
larger model; model assembly consisting of model instan-
tiation and connection; and parameterization to adjust ini-
tial and parameter values and compartments of model in-
stances. Ginkel considers separating the interface from the
implementation of a model by creating terminals represent-
ing inner species to the outside or outer species to the inside.
Links establish connections between terminals of model in-
stances, which contain attribute information for species and
reactions. An SBML extension proposed by Ginkel would
have <listOfTerminals> composed of a list of <terminal>
elements that define model interfaces. <ListOfLinks> con-
tains lists of terminals and species that should be connected
together. The links establish mathematical equations, and
<speciesSpecification> and <reactionSpecification> allow
changing attributes, but prevent the addition of new parts to
the model instances.

A small number of tools exist that provide support
for composition (in the context of pathway models) in
some form or another. However none of these tools pro-
vides any support for composition in SBML. Pathway
Builder (Gilman 2003) skirts the issue of model composi-
tion: while a user can arrange elements hierarchically in the
diagram, the actual model is kept flat. In ProMoT (Ginkel
and Krasnyk 2002), encapsulated modules are ordered in an
object-oriented form of inheritance. Terminals within mod-
els act as interfaces and enable variables to be exported for
use outside the model/namespace they are in. Links exist
connecting different terminals and provide a rudimentary
ability for model composition in this manner. Teranode De-
sign Suite (Li 2005) provides support for grouping models
together as model collections. Models in Teranode Design
Suite are analogous to compartments in SBML. Model col-
lection is therefore analogous to being able to link species in
different compartments to each other.

Shaffer, Randhawa, and Tyson

4 MODEL FUSION

Model Fusion is an iterative process to make larger models
by merging two or more submodels together. Unlike compo-
sition or aggregation (where submodels are not modified but
only referenced), fusion takes the the submodels and actu-
ally combines them together. In fusion there is no glue (ad-
ditional SBML language constructs), which describes how
submodels are combined. The goal of fusion is to combine
submodels into a single unified model containing all the in-
formation of the original collection, without any redundan-
cies that might occur across submodels in the original col-
lection. Our approach to fusion is to provide tools that aid
modelers attempting to perform the fusion process.

Consider two models, m1 and m2, each containing two
chemical species (A and B in m1, A and D in m2). They
will be fused together to produce model (mf). The mod-
eler does this by producing a mapping table for each of the
eight SBML component types. They are processed in the
following order to avoid conflicting dependencies: (1) Com-
partments; (2) Species; (3) Function Definitions; (4) Rules;
(5) Events; (6) Units; (7) Reactions; and (8) Parameters. A
column in a mapping table represents a model and a row
represents an SBML component in that model. Duplicate
names within a model are not allowed, therefore a species
name will only occur once in any particular column. The
first column in the mapping table is reserved for the fused
model and is referred to as mf). The two actions available
to the modeler during fusion are:

1. define two or more SBML components to be equivalent
2. remove the link/association between two or more

SBML components (which have previously been incor-
rectly linked together) across the different submodels.

The construction of the species mapping table using the
example models m1 and m2 is shown in Tables 1 and 2; the
other mapping tables are constructed using the same pro-
cess. Each row in the species mapping table corresponds to
a distinct species in some submodel. The modeler is able to
change the name of a species in mf , but is unable to change
the name of species in any of the other columns/models.
Suppose species name A appears in both models (m1 and
m2). mf initially assumes these are the same species in both
models (Table 1, Row 1). This might or might not be correct,
and can be changed by the modeler if desired. The name of
the species in mf can also be changed. Species B and D
each appear in only one model.

When a modeler defines two species with different names
to be equivalent to each other, the two rows are combined.
The resulting empty row is automatically deleted, and the
modeler selects which name to give this species in the fused
model. In our example the modeler defines a new species
name C for row 2 in the fused model. The resulting mf

contains the species A and C. If two species (say species

Table 1: Initial Species Map (with shared species names ini-
tially on the same row).

mf m1 m2

1 A A A
2 B B
3 D D

Table 2: A completed mapping table for species.

mf m1 m2

1 A1 A
2 C B D
3 A2 A

A in m1 and species A in m2) were incorrectly identified
by the computer as being equivalent to each other, the user
can separate them into separate species, each with distinct
names. The results of these changes are shown in Table 2.

5 MODEL COMPOSITION

Model composition describes the process of connecting
models, called submodels, together to generate a hierarchy
of models (called a composed model) that interact with each
other. Larger models can be thought of as a collage of
smaller submodels held together by new language features.
The language additions for SBML described in this section
allow modelers to compose models from submodels, and in-
clude support for multiple instances of a given submodel.
The features both describe the hierarchy of the submodels,
and represent the interactions, relationships, links and reac-
tions between the submodels.

To illustrate model composition, consider a large model
(called Global), composed of two submodels (A and B).
Model A contains the chemical species x and model B con-
tains the species y. It is now possible to make a new reaction
in the Global model that represents x→ y, by referring to x
and y in A and B respectively. The Global model consists of
a model with only one reaction. The names of reactants and
products for that reaction refer to the corresponding species
in the two submodels.

Models can be composed together in a number of ways.
The first step is to assign or select the global model (the root
node in the model tree hierarchy), which can either be one of
the submodels or a new model. Once the global model has
been assigned, the next step is to specify its list of submod-
els using the <listOfSubmodels> and <submodels> struc-
tures. After the list of submodels have been declared in the
global model, the modeler needs to instantiate the submod-
els in order to use/access them using the <Instance> struc-
ture. Finally, different components (species, reactions, etc)
within either the submodels or the global model are con-

Shaffer, Randhawa, and Tyson

Big

comp1

Little

comp2

Figure 2: Submodel example showing a link between two
compartments

nected/accessed using <link> structures.
We adopt a naming convention to enable modelers to

uniquely identify an SBML component (e.g. species, pa-
rameters, etc) within a model (or submodel). Our format is:

<link>
<from object="comp1">
<to object="little">

<subobject="comp2">
</to>

</link>

We also describe this using the syntax ObjectIdenti-
fier.SubobjectIdentifier. This convention makes it possible
to refer to SBML components with the same name in differ-
ent models without having to change their names.

A composed model can contain one or more submod-
els within its structure. A <submodel> structure con-
tains a valid SBML model (an SBML <model> structure),
with its own namespace and can be a composed model.
Since there is no restriction on the number of submodels a
model can contain, a <submodel> structure is enclosed in a
<listOfSubmodels> structure. A simple example (Figure 2)
shows how model Big contains a submodel called Little,
and both models contains a single compartment (comp1 and
comp2 respectively).

Each <instance> refers to a particular <model>. An
<instance> indicates that a copy of a submodel is being
instantiated within the current model. Models can be com-
posed of more than one instance of a particular submodel.
The instance structure will use the XML Linking Language
(XLink) (DeRose, Maler, and Orchard 2001) to refer to sub-
models, as it is a standard mechanism for linking XML ele-
ments inside and outside a given SBML document. XLinks
describe links between XML documents. An instance of
submodel Little (called Submodel Little) can be made in
model Big in order to use/access submodel Little in model
Big. The <instance> structure contains attributes id (the
unique identifier for the <instance>), the XLink’s type,
and the XLink’s href (an XPointer string that points to ei-
ther an SBML model document or a model element within

the current SBML document) The type attribute takes the
values simple and extended. A simple link is a link
that associates exactly two resources, one local and one re-
mote. The direction of the link is from the former to the lat-
ter and thus is always an outbound link. An extended link
associates an arbitrary number of resources. The participat-
ing resources may each be local or remote. For our purposes
we only need to link together two objects (resources) and so
the value of the type field will be simple.

A <link> links two entities in separate submodels
of a composed model. A <link> should be able to
link two <species>, <parameters>, <reactions>, or
<compartments> to each other. A <link> is composed of
two fields: <from> and <to>. The <to> field references
an object (the to object) whose attribute values will be over-
ridden by the object referenced by the <from> field (the
from object). The objects referenced by <from> and <to>
fields must be of the same type. Only those attribute values
that have been declared in the from object will be overridden
in the to object. This is somewhat analogous in C/C++ to
treating the to object as a pointer, and the from object as its
target. However, a to object can have attribute values that
are retained if no overriding attribute value is declared in the
from object. Note that if we have two components inside a
(sub)model we are still able to link subobjects of the com-
ponents using our object/suboject naming convention. The
following example shows how the two compartments in Big
and Little can be linked together (Figure 2).

<model id="Big">
<listOfCompartments>
<compartment id="comp1" volume="1"/>

</listOfCompartments>
<listOfSubmodels>
<model id="Little">
<listOfCompartments>
<compartment id="comp2" volume="1"/>

</listOfCompartments>
</model>

</listOfSubmodels>
<listOfInstances>
<instance
id="Submodel_Little"
xlink:type="simple"
xlink:href="#xpointer(/sbml/model/
listOfSubmodels/model[@id=Little])"/>

</listOfInstances>
<listOfLinks>
<link>
<from object="comp1"/>
<to object="Submodel_Little">
<subobject object="comp2"/>

</to>
</link>

</listOfLinks>
</model>

Shaffer, Randhawa, and Tyson

The above example shows an href attribute where the
submodel Little occurs within the same SBML docu-
ment. If the submodel Little occured in another SBML
document named temp.sbml in the current directory,
the href attribute of the <instance> structure would have
temp.sbml prepended to it.

A <link> structure contains a merge attribute. A
value of true indicates a merge link; false indicates a
replacement link. To see the difference, consider models R
and T which each contain a chemical species called S1 with
different attributes. S1 in Model R has attribute A = 1.0. S1
in Model T has attributes A = 2.0 and B = 3.0. Linking S1
in R to S1 in T with a merge link uses S1’s attributes from
T .S1 that have not been declared in R.S1. Thus, the result is
that S1 has attributes A = 1.0 and B = 3.0 since it keeps its
old value for A and gains the definition for B. If S1 in R is
linked to S1 in T using a replacement link, then only R.S1’s
attributes are used. Thus, the result will be that S1 will have
attribute A = 1.0.

The <link> structure can link certain combinations of
differing SBML component types to each other, such as
species ↔ parameters and rules ↔ species/parameters. A
link can take a <species> structure as the from object and
a <parameter> structure as the to object, and vice versa.
An example of this type of link is found when composing
the two sample models sharing a degradation reaction CycB
(CycB →). In Model1 this reaction contains the modifier
Cdc20a, but in Model2, this species does not exist so the
reaction instead contains the parameter A. In the composed
model the species Cdc20a from Model1 will be linked to
the parameter A in Model2. The reason for this link is be-
cause when Model2 was created, knowledge about Cdc20a
was not known so the modeler used the entity (parameter) A
in their model instead. When Model1 was created the mod-
eler had knowledge about the effects of Cdc20a on CycB
degradation. With this additional knowledge it is now desir-
able to replace A with Cdc20a when composing (or fusing)
the two models together.

6 MODEL AGGREGATION

Naturally occuring molecular networks seem to arise from
simpler modules that carry out specific tasks and combine
together (Tyson, Chen, and Novak 2003). By allowing mod-
elers to substitute an aggregate for groups of reactions, and
enabling aggregated modules to be connected to one another,
we envision that model construction will become faster and
more intuitive. Modularization is defined here as the process
of grouping reactions together as a single entity (a module)
with a defined set of inputs and outputs. Aggregation is the
process of connecting modules together (by linking outputs
of one module to inputs of another) in order to create a larger
model (an aggregate of modules). The fundamental differ-
ence between aggregation and composition is the amount

of access to model information. The basic building blocks
permitted for composition and aggregation are the same –
in both cases, a building block is one or more reactions.
However,in composition, model information is not hidden.
A modeler can link to any variable or component in a sub-
model. In aggregation, model information is hidden, and a
modeler can only link to variables or components that are
explicitly made visible by a given module.

Our models can be viewed as graphs with nodes and
edges, where reactions are edges and reactants, products,
and parameters are nodes. Interfaces allow access informa-
tion outside the model they occur in. A module is not a
simplification of the group of reactions (or their behavior);
it is purely representational and is used to aid better under-
standing of how parts of the model (the modules) interact
with each other. Like composition, we propose to imple-
ment aggregation by means of new language features added
to SBML. Most of the language features for composition are
used also for aggregation, with the addition of features that
allow us to define an interface.

Modelers need not know all reactions that exist within a
module to use it, only the list of inputs and outputs. Con-
straints exist on what can be defined as an input or output to
a module. Inputs are parameters (with fixed values), while
outputs are species (any reactant or product in any reaction
in the module could be defined as an output). These con-
straints ensure that a consistent set of differential equations
will always be produced from a network of modules.

To construct a module, a modeler would take a set of reac-
tions and group them together (e.g. by putting them in a new
submodel). The modeler then needs to define the input and
output ports for the module using the <listOfPorts> struc-
ture (discussed below). The input ports can be one or more
of the parameters that appear within the set of reactions. The
output ports can be one or more of the species that appear
within the set of reactions. Once ports are selected, a mod-
eler can use the module by itself or link modules together
(by linking the output of one module to the input of another
modules) to create more complex models. The link between
two <port> structures is unidirectional and is made using
the <link> structure from Section 5.

An example of creating and linking modules together to
create a complex aggregated model is provided in the fol-
lowing figures from Tyson, Chen, and Novak (2003). A
toggle switch (Figure 3.C), a type of two-way discontinu-
ous switch (also referred to as hysteresis) is an example of
a mutual inhibition signal response element. It is a model
that can be created by linking together two simpler models,
a linear response element (Figure 3.A) and a hyperbolic re-
sponse element (Figure 3.B). Figure 4 shows the same com-
ponents as icons with input and output ports. Note that the
toggle switch created in Figure 4 can now be made into a
new model with its own set of inputs and outputs (see Fig-
ure 5), by defining its set of port structures.

Shaffer, Randhawa, and Tyson

RPR

R

S

k1'+k1"*S k2'+k2"*Q

S
(k1'+k1"*S)R

J1 + R

(k2'+k2"*Q)RP
J2 + RP

(A)

(B)

(C)

B.RB.RP

(B*k1'+B*k1"*A.R)*B.R
B*J1 + B.R

(B*k2'+B*k2"*B.Q)*B.RP
B*J2 + B.RP

A.R

S

A*k1'+A*k1"*A.S

A*k2'+A*k2"*B.R

Create
Toggle
Switch

+

Q

Q

Q

Figure 3: Toggle switch.

S

Q
R(A)

S

Q

RP

R
(B)

Create
Toggle
Switch

S

Q
R(A)

S

Q

RP

R
(B)

Figure 4: Iconified toggle switch with input and output ports.
S and Q are signals, R and RP are responses

The <port> (enclosed in a <listOfPorts> structure) al-
lows a modeler access to a particular species or parameter in
a submodel for aggregation. A <port> is composed of two
fields: id and target. The id gives a unique identifier to the
port. The target specifies a single species or parameter by its
SBML identifier or by an object reference. The syntax for a
port structure is as follows:

<listOfPorts>
<port id="PortId"

target="SpeciesId or ParameterId"/>
</listOfPorts>

Input and output ports are distinguished from each other
by their target type. <Port> structures are used in conjunc-
tion with the other language constructs described in Sec-
tion 5. The <listOfSubmodels> and <listOfInstances>

Create
Toggle
Switch
Module

S

Q
R(A)

S

Q

RP

R
(B)

(C)
A.S

B.Q
B.RP

Figure 5: Iconified toggle switch model with its own input
and output ports. S and Q are signals, R and RP are re-
sponses. From the naming convention mentioned earlier A.S
refers to parameter R in model A and B.R refers to species
R in model B.

structures are used to define the layout of the aggregated
model. Connections between the submodels within the lay-
out is made using the <listOfLinks> structures (Section 5)
which can only connect <port> objects to each other.

7 MODEL FLATTENING

Model Flattening is the process of taking a model which
contains our additional SBML language constructs (i.e.
<listOfSubmodels>, <listOfInstances>, <listOfPorts>
and <listOfLinks>), and generating a valid SBML Level
2 model (i.e., with our language constructs removed). The
flattening process is done automatically, using the informa-
tion provided by the composition/aggregation glue to per-
form the steps that otherwise are done by hand when a mod-
eler fuses models (as described in Section 4).

Flattening has three steps: separation, saving and res-
olution. During separation, first submodels are separated
based on the information within the <listOfSubmodels>
and <listOfInstances> structures. Then components are
separated one at a time in the same order as described
for fusion (Section 4). The information required to fuse
models together is encoded by our added SBML language
features used for composition and aggregation. This in-
formation is translated to create a single flattened model.
Once this is done the connections/links between models
is saved for reference during flattening. Finally, during
the resolution step the components of the submodels are
sorted/separated/assigned based on the model (or submodel)
they originated from. The resolution step in flattening is sim-
ilar to the resolution stage in fusion, except here it is done
automatically rather than by the modeler.

8 CONCLUSIONS

Model composition is widely viewed within the systems bi-
ology community as a prerequisite for building significantly
larger pathway models. Such scaling up is necessary for
building models of mammalian cells. However, we note that
none of these proposals have been published in the peer-
reviewed literature, nor to our knowledge have any been
implemented, whether in terms of SBML extensions with
suitable support tools, or in any other model representation
language. While some commercial tools might have more
or less support for various forms of composition, we are
unaware of any non-proprietary implementations for model
composition in this application domain. Model composition
for pathway models remains very much an open problem.

Our proposals for model composition are unique in recog-
nizing the distinctions beween model fusion, composition,
aggregation, and flattening. We have begun implementing
the fusion tool described above, and are implementing the
SBML language features necessary to support model com-

Shaffer, Randhawa, and Tyson

position and aggregation. We hope to present these tools to
the modeling community in the near future.

ACKNOWLEDGMENTS

We thank the reviewers of this paper, who greatly con-
tributed to the clarity of our presentation. This work
was supported by NSF Biocomplexity Program, Grant No.
MCB-0083315, NIH Grant 1 R01 GM64339-01, DARPA
and Air Force Research Lab, Air Force Materiel command,
USAF, under agreement F30602-02-0572.

REFERENCES

Bulatewicz, T., J. Cuny, and M. Warman. 2004. The poten-
tial coupling interface: Metadata for model coupling. In
Winter Simulation Conference, 183–190.

Chen, K., L. Calzone, A. Csikasz-Nagy, F. Cross, B. No-
vak, and J. Tyson. 2004. Integrative analysis of cell cycle
control in budding yeast. Mol Biol Cell 15:3841–3862.

DARPA 2005. DARPA BioSPICE website. Available at
community.biospice.org.

Davis, P. K., and R. H. Anderson. 2004. Improving the com-
posability of DoD models and simulations. Journal of De-
fense Modeling and Simulation 1 (1): 5–17.

DeRose, S., E. Maler, and D. Orchard. 2001. XML Linking
Language (XLink) Version 1.0 W3C Recommendation.
Available at www.w3.org/TR/xlink.

DOE 2005. US Department of Energy Genomes to Life web-
site. Available at doegenomestolife.org/.

Finney, A. 2003. Systems Biology Markup Language
(SBML) Level 3 Proposal: Model Composition Features.
Available at www.sbml.org/forums/index.php?
t=tree&goto=171&rid=0.

Garlan, D., R. Allen, and J. Ockerbloom. 1995. Architec-
tural mismatch or why it’s hard to build systems out of
existing parts. In International Conference on Software
Engineering, 179–185.

Gilman, A. 2003. PathwayBuilder. Available at
biospice.lbl.gov/PathwayBuilder/.

Ginkel, M. 2003. Modular SBML Proposal for an Extension
of SBML towards Level 2. In Proceedings of 5th Forum
on Software Platforms for Systems Biology.

Ginkel, M., and M. Krasnyk. 2002. ProMoTDIVA.
Available at www.mpi-magdeburg.mpg.de/
research/projects/1002/comp bio/
promot/distrib.

Hucka, M., A. Finney, H. Sauro, and 40 additional authors.
2003. The systems biology markup language (SBML): a
medium for representation and exchange of biochemical
network models. Bioinformatics 19 (4): 524–531.

Kasputis, S., and H. C. Ng. 2000. Model composability: for-
mulating a research thrust: composable simulations. In
Winter Simulation Conference, 1577–1584.

Li, Z. 2005. Teranode Design Suite. Available at
teranode.com/products/index.php.

Liang, V. C., and C. J. J. Paredis. 2003. Foundations of
multi-paradigm modeling and simulation: a port ontology
for automated model composition. In Winter Simulation
Conference, 613–622.

Malak, R. J., and C. J. J. Paredis. 2004. Foundations of val-
idating reusable behavioral models in engineering design
problems. In Winter Simulation Conference, 420–428.

Marlovits, G., C. Tyson, B. Novak, and J. Tyson. 1998. Mod-
eling M-phase control in Xenopus oocyte extracts: the
surveillance mechanism for unreplicated DNA. Biophysi-
cal Chemistry 72:169–184.

Schroder, D., and J. Weimar. 2003. Modularization of
SBML. Available at www.sbml.org/workshops/
ninth/VortragSBMLForum.pdf.

Spiegel, M., P. Reynolds, and D. Brogan. 2005. A case
study of model context for simulation composability and
reusability. In Winter Simulation Conference, 437–444.

Tyson, J. J., K. C. Chen, and B. Novak. 2003. Sniffers,
Buzzers, Toggles and Blinkers: Dynamics of Regulatory
and Signaling Pathways in the Cell. Current Opinion in
Cell Biology 15:221–231.

AUTHOR BIOGRAPHIES

CLIFFORD A. SHAFFER is an associate professor in the
Department of Computer Science at Virginia Tech since
1987. He received his PhD from University of Maryland in
1986. His current research interests include problem solv-
ing environments, bioinformatics, component architectures,
visualization, algorithm design and analysis, and data struc-
tures. His Web address is www.cs.vt.edu/shaffer.

RANJIT RANDHAWA is a PhD candidate in the Depart-
ment of Computer Science at Virginia Tech. He received
BS degrees in Computer Science and Genetic Biology from
Purdue University, and an MS degree in Computer Science
from Virginia Tech. His research interests include software
design, systems biology, synthetic biology, computational
biology, bioinformatics and modeling and simulation.

JOHN J. TYSON is University Distinguished Professor of
Biological Sciences at Virginia Tech. He received his PhD
in chemical physics from the University of Chicago in 1973
and has been specializing in theoretical cell biology since
that time. His current interests revolve around the gene-
protein interaction networks that regulate features of cell
physiology such as cell division, circadian rhythms, intra-
cellular signaling networks, and programmed cell death.

