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ABSTRACT

Discrete-event simulation and control-theoretic approaches

lend themselves to studying semiconductor manufacturing

supply-chain systems. In this work, we detail a mod-

eling approach for semiconductor manufacturing supply-

chain systems in a hybrid DEVS/MPC testbed that sup-

ports experimentations for DEVS and MPC models using

KIBDEV S/MPC . This testbed supports detailed analysis

and design of interactions between discrete processes and

tactical controller. A set of experiments have been devised to

illustrate the role of modeling interactions between Discrete

Event System Specification and Model Predictive Control

models. The testbed offers novel features to methodically

identify and analyze complex model interactions and thus

support alternative designs based on tradeoffs between model

resolutions and execution times.

1 INTRODUCTION

A variety of simulation and optimization approaches have

been proposed for semiconductor manufacturing supply-

chain systems for many years (e.g., Shapiro 2001 and Kempf

2004). Each approach aims at tackling specific aspects of

semiconductor enterprise systems. For example, Discrete-

Event Simulation (DES) is beneficial for capturing realistic

dynamic behaviors. Linear Optimization (LP) and Model

Predictive Control (MPC), on the other hand, are suitable

for modeling strategic planning and tactical control. More

recently, due to the increasing complexity in semiconductor

enterprise-level operations (e.g., on-demand manufacturing,

short product shelf-life, distributed operations, and lower

cost), synthesis of the complementary modeling approaches
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has been attracting researchers and practitioners (Gjerdrum

et al. 2001, Godding et al. 2004, Venkateswaran and Jones

2004, Sarjoughian et al. 2005, Xu and Sen 2005, Zeigler

2006).

Formalizing the composition is desirable to achieve

systematic synthesis of disparate models. Advances in

simulation interoperability and software engineering—e.g.,

HLA (HLA 2000), agent-based modeling (Gjerdrum et al.

2001) , and software service-oriented architecture (Tsai et al.

2006)—support integrating different simulation models as

independent components and enable interactions between

them. These approaches and their supporting technologies

employ low-level programming languages or high-level in-

teroperability concepts to allow simulators to interact. Such

approaches, however, are not based on model composability.

Moreover, lack of model composability concepts and meth-

ods adversely affects capturing domain-specific knowledge.

A modeling composition approach referred to as Knowl-

edge Interchange Broker (KIB)—was developed to formalize

integration of disparate models at the level of modeling for-

malisms (Sarjoughian and Plummer 2002). The conceptual

basis of KIB is that disparity between different syntax and

semantics should be accounted with a distinct model and thus

enabling independent data and control interactions required

for simulation models to interact. In particular, rather than

relying on middleware concepts and techniques, interaction

among models is specified as a pair: (i) model composabil-

ity at the level of modeling formalisms and (ii) simulation

interoperability at the level of simulation execution. The

separation of the disparate models and their composition

enables two key activities of simulation model development

—i.e., model validation and simulation verification.
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Hybrid discrete-event simulation with model predictive

control (Sarjoughian et al. 2005) and linear optimization

(Godding et al. 2004) have been developed using the KIB

approach. The realization of these approaches use DEVS-

JAVA (ACIMS 2001) as the discrete-event simulation tool,

SIMULINK/MATLAB as the MPC tool (Mathworks 2005),

and OPL Studio as the optimization tool (ILOG 2005).

1.1 Related Work

As noted in the previous section, multi-modeling approaches

are becoming increasingly popular for simulating integrated

supply-chain management modeling. For example, system-

theoretic simulation models are being used to evaluate spe-

cific supply-chain decision control models specified using

linear optimization (Xu and Sen 2005). This distributed

computing architecture supports interoperability between

discrete-event simulation and linear programming optimiza-

tion. In this approach, the LP model is wrapped as an atomic

DEVS model which allows its execution to be reduced to

input and output events. DEVS coupling and simulation

protocol are used to ensure correct input and output data

exchanges between process and decision models. Input and

output transformations have to be carried out inside DEVS

and/or optimization models. This approach for process and

decision models to interact is limited since the interactions

must be divided into simulation and optimization models at

a low level of abstraction; thus, timing and synchronization

are restricted and ad-hoc. Another key consequence of this

approach is partial support for reusability and scalability.

The manufacturing simulation model and decision con-

trol model can be specified within a homogeneous envi-

ronment. For example, a set of manufacturing simulation

models and one MPC model were developed in terms of

user-defined system blocks and executed as discrete-time

models in the SIMULINK/MATLAB environment (Wang

et al. 2005). The environment supports synchronous inter-

action between the simulation models and the MPC model

through customized couplings. It is difficult to capture

discrete-event behaviors —e.g., modeling unexpected events

using discrete-time modeling approaches. Ad-hoc support

for modeling discrete event dynamics adversely affects the

interactions between process and model predictive control

models.

There exist some other combined approaches for

simulation-based supply-chain modeling and decision con-

trol assessment (Gjerdrum et al. 2001, Venkateswaran and

Jones 2004). The interactions between the disparate models

are usually held within the model behavioral specification

using simulation interoperation and/or software engineer-

ing techniques. Very little research has concentrated on

studying formal specification of the interactions between

system-theoretic simulation modeling and advanced con-

trol modeling, although a separate formal interaction model
186
can offer clearer boundaries between distinct modeling for-

malisms, which are beneficial for composite system model

verification and validation.

2 SEMICONDUCTOR MANUFACTURING

SUPPLY-CHAIN PROCESS MODELING

Discrete-event simulation has been generally considered

suitable for modeling and simulating physical manufactur-

ing process in semiconductor supply-chain systems. Some

of its key advantages are handling unexpected events and

capturing stochasticity in time and state. Component-based

discrete-event modeling approaches can represent the com-

plex manufacturing dynamics at arbitrary levels of detail.

For example, a relatively high-level factory model specifi-

cation can be replaced with by a set of machine models

connected together to capture important details such as

availability, downtime, and efficiency.

Discrete EVent System specification (DEVS) (Zeigler

et al. 2000) is a mathematical modeling formalism for

describing (discrete and continuous) dynamical systems as

discrete event models—atomic models and/or coupled mod-

els.

For semiconductor manufacturing supply-chain sys-

tems, there exist a set of primitive process nodes (atomic

models)—e.g., factory, warehouse, transportation, and cus-

tomer (Godding et al. 2004, Singh et al. 2004). These nodes

can be combined to form complex nodes (coupled models)

such as Inventory-Factory (Sarjoughian et al. 2005). The

primitive and complex nodes can be connected to constitute

a variety of supply chain topologies.

All the supply-chain manufacturing process nodes

present common dynamics: (a) receive materials (prod-

ucts) from upstream process nodes and release commands

from decision models, (b) store and/or process materials

and process control commands or demands, and (c) send

materials to downstream process nodes and send status

information to the decision model. Given the data and

control flows among process models and also with other

models such as KIB, it is possible to specify common inter-

face structures for these nodes—i.e., generic input/output

ports Data ([Data In, Data Out]) and Control ([Control In,

Control Out]) are used to represent physical material flow

and logical information flow, respectively.

Each type of process node offers specialties as well.

A warehouse node can hold material and allow material

to leave according to release commands. A key piece of

information for a warehouse node is its inventory level—i.e.,

beginning-on-hand, BOH. A factory model can represent

daily manufacturing operations such as building, assembling,

testing, and splitting products, or some combinations thereof.

A factory model can have capacity as well as stochastic

yield and throughput time (TPT). The state information that

needs to be considered includes WIP (work-in-progress),
4
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// input ports and values

X = inport × invalues

inport = {Data In,Control In}
invalues = {Lot, Command}

// output ports and values

Y = outport × outvalues

outport = {Data Out, Control Out}
outvalues = {Lot, Status}

// state sets

S = phase × σ × Q

phase =

{

Initialize,WaitForDecision,

StartMaterial, Process, UpdateStatus

}

σ : ℜ+

0,∞

Q : Qinput × Qstorage × Qoutput

Figure 1: Partial Factory Model Specification

Figure 2: Factory Model State Chart

AO (actual-out), average TPT and yield. A transportation

node represents transportation delays; it can be treated as

a simplified factory model that cannot change products. A

customer node can send demands to both decision model

and process model and receive product orders from upstream

warehouses. The detailed DEVS specification of a factory

model is described as follows.

The structural specification of the atomic factory model

is defined in Figure 1 (Godding et al. 2004, Singh et al.

2004). The state set includes two generic state variables

Phase and sigma (σ) and domain-specific state variables

for capturing behavior of the factory. For the factory model

described here, σ0 = 0, σ1 = σ2 = σ4 = 0.1, and σ3 = 0.7
(see Figure 2).

A partial statechart depicting external and internal events

of the factory model is shown in Figure 2. External events for

a factory model can be from other manufacturing nodes (e.g.,

inventory) or external models. External events from a source

other than manufacturing nodes (e.g., KIB) are supported

with special Control ports. These Control and Data ports

play a key role in separating a DEVS manufacturing model

interaction with a non-DEVS model (e.g., computational

entity).

The processing procedure of each phase can be infor-

mally described in the following: 1) in the phase Initialize, a
set of model parameters are configured—e.g., capacity, nor-
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mal yield, or yield distribution, 2) commands, if there are any

from the decision control model, arrive as external messages

through Control In port in phase WaitForDecision, 3) at the

end of phase StartMaterial, the lots in Qoutput are sent out

to the downstream process models through Data Out port;

at the same time, the lots from upstream process models

may arrive as external messages through Data In port; they

are initially held in Qinput, 4) during the phase Process,

lots in Qinput are first moved into Qstorage and then the

lots in Qstorage are processed (e.g., lots’ processed-time

is increased and/or product names are changed); those lots

which have been completely processed are then transferred

to Qoutput, and 5) At the end of phase UpdateStatus, status

messages (e.g., WIP) are sent out to the decision control

model through Control Out port; meanwhile, the factory’s

local capacity is sent out to its immediate upstream inven-

tory. A daily operation cycle is completed. The model goes

back to step 2 for a new operation cycle.

Table 1: TPT-Load Model

Cases Load TPT (time unit)

(%) MIN AVE MAX

(0 − 70] 30 32 34

3 levels of (70 − 90] 32 35 38

distribution (90 − 100] 35 40 45

(0 − 70] 30 32 34

(70 − 80] 31 34 36

5 levels of (80 − 90] 32 35 38

distribution (90 − 95] 34 37 42

(95 − 100] 36 40 45

The lot processing needs to represent realistic manu-

facturing processes. It must account for not only various

processing operations but also stochastic characteristics. In

a more complicated circumstance, the uncertain behavior

can depend on one or more temporal properties. In particu-

lar, the TPT may vary depending on the run-time load of the

factory—i.e., heavier load results in longer throughput time.

The TPT-load relationship may be specified in discrete or

continuous forms given the source of data or assumptions

made on non-linearity and stochastic duration (time) for

each factory operation. Modeling of the TPT-load compu-

tational relationship play a significant role in representing

practical manufacturing processes, since linear or exponen-

tial relationships can lead to vastly different supply-chain

dynamics. One simplified approach is that TPT can be

divided into two or more ranges given different percentages

for factory loads. Within specific load percentages, the

TPT can be uniformly or triangularly distributed between

specified values (see Table 1).

3 PREDICTIVE OPTIMIZATION-BASED

PROCESS CONTROL MODELING

Model Predictive Control (MPC) is aimed at controlling

dynamical systems using a combination of control theoretic
5
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and optimization techniques (Qin and Badgwell 2003). It has

been shown that MPC can be used as a tactical controller for

high volume semiconductor supply-chain systems to handle

nonlinear, stochastic dynamics and unpredictable demand

changes while enforcing constraints on desired inventory

levels and production and transportation capacities (Wang

et al. 2005). In the MPC model, a system prediction model,

which is a simplified system as compared with the real system

or a detailed simulation model as described in the previous

section, estimates future inventory levels by considering

historical information such as warehouse inventories, actual

customer demands and factory release starts, reference points

(i.e., inventory targets), and forecasting customer demands.

In the optimizer, a sequence of factory starts is calculated by

solving the optimization whose objective functions include

keeping inventory levels close to targets, minimizing changes

in the manipulated factory starts, and maintaining the factory

starts at strategic planning targets.

To meet the requirements of the semiconductor supply-

chain tactical control, the MPC model offers different tuning

parameters defined for filters or controllers (e.g., Kalman

filter)(Wang et al. 2005). These parameter values are key

in achieving desired performance requirements for fore-

casted demands, inventory targets tracking, and unfore-

casted customer demands. For example, a tuning parameter

αj ∈ [0, 1), j = 1, 2, ..., n represents each inventory target

tracking speed—smaller can result in a faster response that

an inventory can achieve to track the target. A tunable pa-

rameter filter gain (fa) is used to deal with prediction errors

generated by the stochasticity and uncertainty in the system.

As fa approaches zero, the controller ignores most of the

prediction errors and the solution is mainly determined by

the deterministic information (e.g., normal system delays

and measured anticipations). In contrast, the controller will

compensate all of the prediction errors from the stochasticity

and uncertainty if fa equals one.

4 SIMULATION/OPTIMIZATION

ENVIRONMENT

In this work, the DEVS model captures complex dynam-

ics of semiconductor manufacturing processes whereas the

MPC model is responsible for tactical control. In industrial

settings, these are used complementary to each other for ana-

lyzing and solving real-world semiconductor manufacturing

supply-chain problems.

The Knowledge Interchange Broker (KIB) for a hybrid

DEVS/MPC modeling approach ensures the interactions

between two disparate models are modeled and executed

correctly (Sarjoughian et al. 2005). The KIB composition

specification is an independent model between the process

simulation model and the tactical control model. It ex-

plicitly describes model interactions in terms of message

transformation, concurrency, synchronization, and timing
186
properties, which account for both structural and behav-

ioral compositions.

The structural composition is to specify message trans-

formation between two distinct interface structures. For

example, in composing models expressed in DEVS and

MPC (Sarjoughian et al. 2005) or LP (Godding et al.

2004), the interface structure for a DEVS (atomic and cou-

pled) model consists of a set of input and output ports with

message bags to be exchanged with other model compo-

nents. The interface structure for an MPC model, on the

other hand, is a set of variables which can have primitive

values (e.g., integers). The modeling language (or environ-

ment) may also have an impact on interface structure. In

particular, DEVS model specification has complex message

types whereas MPC model specification does not. To en-

sure correct transformation, domain-specific knowledge also

needs to be considered, since an application domain (such

as semiconductor manufacturing supply-chain) contains its

own characteristics such as timing constraints, value ranges,

and frequency of information exchanges.

The process simulation model and MPC tactical control

models describe different aspects of a system. The process

simulation model can provide state information (e.g., WIP

and BOH) for each node at the end of an operation cycle

(e.g., number of products processed in a factory based

on hourly or daily time period). The tactical controller

may receive accumulated state information and provide

control commands for simulation nodes based on single or

multiple time periods. In this circumstance, the message

transformation must account for data abstraction consistency

(Godding et al. 2004).

In a homogeneous modeling framework, the correct in-

teraction between model components are generally ensured

by the individual model behavioral specifications (e.g., time

advanced function and internal/external transition function

in an atomic DEVS model) and its well-defined simulation

protocol. In a heterogeneous modeling environment, each

participating modeling formalism relies upon its own exe-

cution protocol to handle timing and synchronization needs.

Therefore, it is necessary to synchronize execution of the

DEVS simulation protocol and the MPC execution.

To guarantee correctness of execution of models de-

scribed in DEVS/MPC, the KIB specification is defined

as being strictly synchronized (Sarjoughian et al. 2005).

The KIB specifies the logical time instance at which the

send (or receive) messages must occur between disparate

models. In this approach, the wall-clock time consumed

by the MPC is abstracted to be instantaneous with respect

to the DEVS model and the KIB also does not consume

(logical or wall-clock) time.

The time synchronization specification must conform

to the synchronization discipline that is associated with

the coordination execution control which in turn relies on

correct execution of the disparate models throughout the
6
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Figure 3: Hybrid DEVS/MPC Model

combined DEVS/MPC simulation (i.e., it accounts for causal

ordering of messages and time management). The execu-

tion of the KIB model generates dynamic behavior of the

disparate model interactions and thus allows tracking the

data and control exchanges which is essential in validating

interactions between the models in a systematic fashion.

5 EXPERIMENTAL RESULTS

The manufacturing process network is limited to contain only

one pipeline process which consists of 3 factories (Fab/Test1,

Assembly/Test2, and Finish), 4 warehouses (Raw Resource,

Die/Package, Semi-finished and Customer Warehouse), one

Shipment and one Customer (see Figure 3). These manu-

facturing model components are described as atomic and

coupled DEVS models developed in DEVSJAVA, while the

MPC model is the tactical controller implemented in MAT-

LAB. The interaction of DEVS model and MPC model

is modeled using the KIBDEV S/MPC . The experimental

testbed also includes some other auxiliary models (e.g., a

transducer model is developed for collecting messages).

We have devised a set of experiments to investigate

the detailed dynamics of manufacturing process network

and to verify the correctness of the composite DEVS/MPC

model with KIBDEV S/MPC . These experiments help to

analyze alternative designs for a prototypical manufacturing

process, tactical controller, and their interactions.

Given the above goals, we have devised two categories

of experiments. One is to validate the Manufacturing Process

Network model with data sets for factory starts and customer

demand. The other is to study the MPC model robustness

given the detailed simulation of the Manufacturing Process

Network model.

In the first category, the factory-starts (i.e., commands

to inventories) and customer demand are given to the DEVS

simulation model for autonomous process simulation—this

enables the simulation model to interact with an idealistic

MPC and KIB models. Daily controller commands/demands

(defined as standard steps and sinusoidal regime) are sent
186
to inventory Raw Resource, Die/Package, Semi-finished and

Customer Warehouse to observe stochastic yield and TPT in

each factory and validate mass balance among the processing

models. The values of upstream factory-starts are set larger

than the values at downstream factory-starts given expected

yields. Similarly, factory-starts delays are chosen in a such

a way to represent realistic dynamics in factory or inventory

models. These experiments in this category are important

since the manufacturing process model specification will be

used in the hybrid DEVS/MPC model.

In the second category, only customer demand is sent

to the hybrid system. Sarjoughian et al. 2005 has verified

the model composition with KIBDEV S/MPC , by assuming

relatively simple manufacturing process dynamics. In our

experiment, the customer demand uses a square input regime:

the average customer demand is set at 951/day with a small

variance starting from day 61; the demand increases by about

500 (about 53% percent more than 951) from day 201 to day

400 and then it remains at the average customer demand with

a small variance after day 400 until the end of simulation.

The aim of this profile is to analyze the robustness of

the MPC with respect to sharp increases and decreases in

customer demands and thus to determine how well the MPC

controller can be tuned to handle unanticipated changes in

customer demand, DEVS simulation and KIBDEV S/MPC

models.

5.1 Autonomous Process Simulation Analysis

Each node in the Manufacturing Process Network model

has detailed dynamics (see Section 2). The factory models

can be configured with or without stochastic behavior. De-

terministic configuration is used to verify TPT and yield at

each factory and also ensure that mass balance across the

entire manufacturing process network is maintained (i.e.,

the total number of lots entering and exiting the Manu-

facturing Process Network remains constant). Stochasticity

in the factory nodes are modeled by assigning (triangular

or uniform) distribution functions to each lot for obtaining

actual yield and TPT. Factory-starts with sinusoidal and

square input regimes are sent to each inventory model. The

observed information in this experiment includes WIP and

AO for each factory model, BOH for each inventory model,

and run-time yield and TPT for each factory model.

It has been shown that, Lot size, which is defined as

minimal processing unit in every process node, plays an

important role since it directly affects a model’s stochas-

tic behavior. For example, when the Lot Size is set to a

maximum value, the stochastic TPT values generated from

the distribution function are assigned to only one lot which

includes the amount of all materials flowing in a factory.

In this circumstance, the AO from a factory may vary sig-

nificantly (e.g., from 0 in one day to maximum value in

the next day). Such sharp changes causing major change
7
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Figure 4: Fab/Test1 Starts & Load and Die/Package Inven-

tory with Different TPT-Load Granularity

in factory load and thus TPT do not reflect realistic be-

havior of a factory in semiconductor supply-chain system.

Appropriate choice of lot size, therefore, can significantly

impact the dynamics of the manufacturing process model.

As expected, the results from a series of experiments with

different lot sizes (e.g., maximum, 100, 50, 20 and 10)

show that smaller lot sizes give smoother factory behav-

ior as expected. However, a small lot size requires more

computation time, which adversely affects the performance

of the process and therefore combined DEVS/MPC simu-

lation (see Section 5.4). These experimental results show

open-loop DEVS manufacturing process simulations to be

logically correct and consistent with prototypical realistic

manufacturing systems (Rose 1999).

5.2 Process/OPT Simulation Analysis

The parameter settings for both the process simulation model

and MPC model are defined in Table 2. The more-than 50%

increase in customer demand can cause significant non-linear

dynamics in Fab/Test1 due to the TPT-load model. It is

helpful to know to what extent MPC can handle process

nonlinearity and uncertainty.

As shown in Figure 4, more transient states—i.e., inven-

tory level—occur in the Die/Package inventory models. This

was due to the large TPT changes in the upstream Fab/Test1

factory model. Ideally, when Fab/Test1 maintains its load

within a specific range (e.g., load ∈ [72%, 76%] ), the av-

erage TPT can be kept at 35 days in the process simulation

model. Accordingly, such average TPT value is consistent

with the corresponding nominal TPT parameter configured

in the predictive model inside the MPC model. However,

due to the significant increase in customer demand, the
1868
start on Fab/Test1, which is determined by the MPC model,

is increased accordingly to satisfy the customer demand.

Consequently, the load in the factory simulation model is

also increased. Since the run-time TPT is calculated based

on the load, a heavier load can result in longer delay in the

Fab/Test1 model. Long delays in turn impact the inventory

level of the downstream Die/Package model. Similarly, no-

ticeable transients occur when customer demand decreases

sharply.

In contrast to the DEVS simulation model, the nominal

TPT configured in the predictive model is deterministic.

If the difference between the nominal TPT in the predic-

tive model and the average run-time TPT in the process

simulation model is significant, the MPC cannot calculate

acceptable factory starts and consequently the DEVS simula-

tion dynamics are not robust. To demonstrate this, another

experiment in which a 5-level TPT-load computation re-

lationship is configured in Fab/Test1 model shows better

system dynamics (see Figure 4) since the 5-level TPT-load

model has smoother change in TPT in comparison to the

3-level TPT-load model.

The experiments help us analyze and evaluate tactical

control policies specified in the MPC model. For example,

based on the analysis of the experimental results, one of the

future research areas is to develop an adaptive MPC model

in which it can support dynamic nominal TPT on the basis

of certain criteria.

Given the experiments described above, apparently

small changes in either the process simulation model or the

MPC model can cause significant changes in the manufac-

turing supply-chain system dynamics. The hybrid discrete-

event simulation with optimization control makes it con-

venient for us to detail and extend manufacturing process

simulation and tactical control models separately. The sep-

aration gives us a better understanding of both of the mod-

els and their interactions. The component-based modeling

and simulation environment supports model reusability and

configuration flexibility, which also simplifies setting up

different experimentation scenarios.

5.3 Execution Time vs. Accuracy Analysis

Execution time for simulation studies depend on a variety of

a factors including details of models, efficiency of individual

components of the DEVS/MPC environment (DEVSJAVA,

SIMULINK/MATLAB and KIB) and the underlying com-

puting environment(Java Runtime Environment), and com-

puter operating system and hardware configuration. For

example, in the above experiments, we have chosen lot size

= 50 since it provides a suitable trade-off between accuracy

and performance. For example, the DEVSJAVA simulation

time can be reduced by about 30% when changing lot size

from 10 to 50 (see Figure 5) while maintaining acceptable

accuracy of the combined DEVS/MPC models. With this
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Table 2: Parameter Configurations in Manufacturing Process Network Model and MPC Model

Process Model MPC Model

TPT distribution Yield distribution (%) Ave Ave

Load (%) MIN AVE MAX MIN AVE MAX Capacity TPT Yield (%)

FAB/Test1 See Table 1 93 95 97 70,000 35 95

Factory Assembly/Test2 [0,100] 5 6 7 98 98.5 99 10,000 6 98.5

Finish [0,100] 1 2 3 98.5 99 99.5 5,000 2 99

Shipping [0,100] 1 1 1 100 100 100 2,500 1 100

Maximum Capacity Target Point

Inventory Die/Package 20,000 5,712

Semi-Finished 10,000 2,856

Customer Warehouse 10,000 1,787

Lot Size Simulation time fa

Others 50 638 days 0.01 0.05
Figure 5: Average DEVS and DEVS/MPC Execution Times

testbed, we can measure and compare wallclock execution

time for DEVSJAVA and SIMULINK/MATLAB.

Measurement of the execution times helps to under-

stand relative computational resources committed to each

component (e.g., DEVSJAVA) and to identify bottlenecks

and ways to make them more efficient while ensuring de-

sirable accuracy in simulation results. For example, in the

DEVS/MPC testbed, we have carried out a series of ex-

periments. The results of these experiments are average

execution times for a single execution cycle averaged over

5 simulation runs, each of which has 638 cycles—the exe-

cution times are shown in Figure 5. One complete execution

cycle is measured starting from DEVS to KIB to MPC and

back to DEVS. These experiments were conducted on a sin-

gle computer configured with a 3.2 GHz Intelr Pentiumr

4 CPU, 1G RAM and Microsoftr Windowsr XP Profes-

sional OS, DEVSJAVA 2.7, SIMULINKr/MATLABr 7.0,

and JAVATM Sun Microsystems JRE 1.5.0.

6 CONCLUSIONS

The experimental results described and discussed in Section

5 show in a quantitative setting the qualitative expectation

that higher precision TPT-load models are important in cap-

turing the detailed dynamics between manufacturing pro-

cesses and decision making and thus help in the modeling

of realistic supply-chain systems.
186
As shown in the experimental analysis, the separation

offers flexibility and convenience to explicitly observe and

analyze how specific factors on each side can affect the

holistic system dynamics. It enforces systematic interactions

between disparate models.
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