
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

SWORD: SCALABLE AND FLEXIBLE WORKLOAD GENERATOR FOR DISTRIBUTED
DATA PROCESSING SYSTEMS

Kay S. Anderson*
Joseph P. Bigus

Eric Bouillet
Parijat Dube
Nagui Halim

Zhen Liu
Dimitrios Pendarakis

IBM T. J. Watson Research Center
19, Skyline Drive

Hawthorne, NY 10532, U.S.A.
*US Department of Defense.
ABSTRACT

Workload generation is commonly employed for perfor-
mance characterization, testing and benchmarking of com-
puter systems and networks. Workload generation typically
aims at simulating or emulating traffic generated by different
types of applications, protocols and activities, such as web
browsing, email, chat, as well as stream multimedia traf-
fic. We present a Scalable WORkloaD generator (SWORD)
that we have developed for the testing and benchmarking
of high-volume data processing systems. The tool is not
only scalable but is also flexible and extensible allowing the
generation of workload of a variety of types of applications
and of contents.

1 INTRODUCTION

The wealth of novel Internet applications deployed today,
such as web-browsing, chat, VoIP and IPTV offer unprece-
dented opportunities for enhancing our collaborative envi-
ronment by enabling us to exchange, organize and search
through vast amounts of information. These opportunities
also inevitably create new challenges in harnessing the ca-
pabilities of these applications while protecting from their
misuses: service providers must size their hardware and
middleware appropriately in order to guarantee SLAs; IT
departments must take proactive measures to ensure that
their network is secure against intrusions and fraudulent
activities; institutions must protect sensitive information
(financial, medical, intellectual property) from advertently
or inadvertently being leaked out and illegal or copyrighted
materials from being leaked in; email users want to auto-
21091-4244-0501-7/06/$20.00 ©2006 IEEE
matically and safely filter out unwanted emails before they
reach their mailboxes. It is thus becoming crucial that we
develop, in parallel to these applications, systems and tools
that enable us to understand and make the most efficient
and secure use of these applications. This, in turn, requires
systematic methods for measuring the effectiveness of these
tools in test-bed environments, and the ability to simulate
information exchange resulting from the interactions of po-
tentially millions of individuals in ways that are statistically
and semantically realistic, reproducible and controllable.

There has been some prior work on devising benchmark-
ing tools for emulating a collaborative environment. We
envision that successful benchmarking of these approaches
relies on testing them over diverse scenarios, incorporating
myriad of users and/or machines, each of them character-
ized by different attributes resulting in a rich variety of
data characteristics, different type of explicit or implicit
semantic information (keywords, topics) and represented
by different underlying social networks, which delineate
message content and exchange behaviors between the par-
ticipants. One approach for testing and benchmarking such
systems and algorithms is to use prerecorded logs, such as
combinations of chat logs, intrusion forensics, and VoIP
records from pilot programs, which are publicly available
on various internet sites. However relying only on these
logs for testing the algorithms might be too restrictive and
limited to the nature of information and embedded corre-
lations present in these logs. Furthermore, this approach
prevents testing of algorithms under activities which have
not been observed earlier. Another approach is to develop
parametric models for the behavior of users in interactive
collaborative environments over the Internet using statistical

Anderson, Bigus, Bouillet, Dube, Halim, Liu, and Pendarakis
studies of these web logs. Once these models are developed
and well understood, we can use them to simulate infor-
mation exchange data for different hypothetical scenarios
with prescribed spatio-temporal correlations.

A critical challenge with the second approach is that it
requires both volumetric and contextual statistics associated
with the application of interest for efficient and accurate
modeling. Volumetric statistics define the length of a session,
fraction of time spent in different session states, transition
probabilities between different session states, packet size
distributions, etc. Contextual statistics define the topics and
language used, marginal and/or conditional distributions of
words or message lengths, vocal features (VoIP), etc.

In this paper we present a tool that addresses these
challenges by providing a flexible and extensible platform
for generating a wide range of workload types with both
volumetric and contextual correlations.

The paper is organized as follows. Sec. 2 provides
a background on the requirements of an ideal workload
generator for distributed data processing systems dealing
with high volume, contextually rich data and the challenges
to develop such a tool. The section also discusses available
tools and their limitations in meeting those requirements.
Sec. 3 introduces SWORD and provide an overview of its
architecture and run-time environment highlighting our key
design choices. Sec. 4 describes our approach for modeling
and representation of contents in SWORD. Sec. 5 talks
about SWORD data factories and their APIs. Performance
results on the scalability of SWORD are provided in Sec. 6.
Finally we conclude in Sec. 7 with our ongoing and future
works.

2 WORKLOAD GENERATION: CHALLENGES
AND EXISTING TOOLS

We next discuss critical requirements for an ideal work-
load generator for testing data processing systems, which,
in particular, processes, analyses, and makes intelligent de-
ductions from high-volume, continuous, multi-modal stream
data in a highly resource constrained environment.

2.1 Requirements and Challenges

Scalability: A crucial requirement is to generate very high
traffic rates (of the order of Gbps) with relatively small
amount of hardware resources to effectively test resource
constrained systems dealing with large volumes of internet
traffic. The difficulty is to reach a tradeoff that achieves
the desired amount of background traffic while maintaining
the adequate level of realism. For instance, we need to
determine the optimum distribution of resources spent on
replaying prerecorded traffic, synthesizing content, and per-
forming real-time client-server transactions (i.e., stress-test
a server application using a client agent under the control of
2110
the workload generator). These tradeoffs have to be empiri-
cally determined according to available CPU speeds, RAM
sizes, storage capacities, storage transfer rates, programming
languages used, and the objective of the simulation.

Content Rich: For testing tools that process content for
filtering or indexation (as for spam-filters and search en-
gines), we must be able to also produce a stream of coherent
data content that is statistically and semantically realistic.
The content may be topic-based, with possible correlations
within streams. The content may further undergo multiple
stages of real-time signal processing, such as noise inser-
tion (static, background sounds), encoding (GSM, MPEG,
MP3), and encryption.

Versatility of applications and protocols: There are lit-
erally hundreds of protocols, and new protocols are regularly
created. As a consequence the workload generator must be
modular, allowing existing protocols to be added as needed
and new protocols to be added later on. The spectrum of
protocols and applications representation should be tunable
so that it can be offered in realistic proportions, with the
ability to produce statistically realistic flow dynamics and
traffic volumetrics, at user, application and transport level.

Specification and Insertion of Challenges: A challenge
is a relatively subtle data compound or artifact that is explic-
itly concealed in the background traffic in order to recreate
situations in which a given hypothesis is known to be true.
It typically reflects the temporal and spatial correlation of
multiple data sources interacting according to a prescribed
pattern. It may also be a trigger that causes a component
to break or introduces a change that the tested application
must automatically detect and react in order to stress its
component designs and autonomic aspects. The purpose of
a challenge is to:

• Test the system’s ability to accurately corroborate
hypotheses in general, i.e., detect true positives
versus false negatives, and also to test its ability to
adapt to system/architecture perturbations. This is
of concern to the algorithm developers who desire
to verify the performance of particular algorithms
and strategy embedded within the tested applica-
tion. For instance, in order to test the analytics
of an information processing system for intrusion
detection, the challenge may consist of coordinated
activities, such as Http, telnet, ftp, which appear
innocuous when observed independently, but ex-
hibit the hallmark of an exploit when viewed as a
whole.

• The ability of the system architecture and com-
ponents to support these strategies, the necessary
system responses, and to handle the required vol-
umes of data. It enables the system designers to
stress and test the architecture and their design im-
plementation. This type of challenge may consist,

Anderson, Bigus, Bouillet, Dube, Halim, Liu, and Pendarakis
for instance, of commands that shutdown part of
the system in order to test its resiliency in the event
of a system failure.

Challenges must mimic the background traffic to avoid
detection based solely on obvious statistical dissimilarities.
One of the difficulties is to be able to generate challenges
that exhibit intricate, controllable, multi-source spatial and
temporal correlations, having the same statistical properties
as the background traffic. Or conversely to generate gigabits
of background traffic that possess the statistical properties
but not the particular correlations of the challenges in order
to create background traffic to camouflage the challenges
and thus stress the system’s analytics.

Correlation and Synchronization of Contents: There is
an increased need to test and benchmark stream processing
systems that process a large number of continuous streams
containing potentially correlated information. In particular
we want to emulate the collective appearance of individuals
- humans or machines - acting simultaneously. The result-
ing dynamics is a rich spectrum of interleaved networking
activities. Analytics modules may process multiple streams
to detect common patterns, interdependent events, content
generated by common sources or related users. In testing
such modules, the challenge is to generate a large number
of streams, “inject” correlated test patterns across them and
trace the ability of the tested system to successfully detect
these correlations. Multiple types of correlation should be
reproduced by such testing and traffic generation systems:

• Contextual Correlations: refers to the existence
of related content (and hence challenges to the
tested system) across different streams, possibly
of different types.

• Temporal Correlations: corresponds to the appear-
ance of related events or contents, separated by a
time shift. Temporal correlations can appear both
within the same stream (intra-stream) and across
different streams (inter-stream).

Example of data generation that exhibit both contextual and
temporal correlation is a sentence appearing in a chatroom,
and a semantically related sentence which is later spoken
in a different language in a VoIP conversation. Addition-
ally, there is a need to capture correlations stemming from
(stochastic) set relationships; for example to represent com-
munity of interests, with user being part of a group or a
company or a company being subset of another company.
More broadly, such testing tools need to support complex
set relationships defined by social networks.

Flexible and Controllable Traffic Generation: In ad-
dition to the content model and statistical representation,
which can be specified offline, the workload generator must
also provide the ability to orchestrate the data generation and
2111
dynamically control the generated traffic both at volumetric
and contextual levels. In particular it must provide tunable
and dynamically controllable traffic intensity and traffic mix,
and tunable content accuracy and challenge levels.

2.2 Existing Tools

The existing workload generation tools focus primarily on
matching predetermined volumetric and timing properties
and ignore statistical properties at the content level, such
as content and contextual semantics. Most of the existing
approaches for traffic generation are either application spe-
cific or lack scalability and/or modularity. Some candidate
distributed workload generation tools of interest are LAR-
IAT (Haines et al. 2001; Rossey et al. 2002), StreamGen
(Mansour, Wolf and Schwan 2004) and D-ITG.

LARIAT developed by MIT Lincoln Laboratory and
supported by DARPA is specifically optimized for intrusion
detection (ID) evaluations. LARIAT uses models for us-
age patterns of different applications and use them for the
synthesis of realistic user-sessions using real service and
protocols. However, the emphasis is mostly on volumetric
statistics of the generated traffic and not on the richness
of the content. Further LARIAT lacks scalability (the best
possible rate achievable is 100 Mb/s) and is also based on
linux-systems. This may be a limitation for many commer-
cial vendor applications and tools dealing with Windows
supported internet applications. LARIAT is also costly to
deploy (as it is all based on real-time sessions running over
testbed) and there is no run-time control and tuning of the
volumetric of the generated traffic. LARIAT also does not
incorporate the ability for the users to specify scenarios
and to specify and control cross-stream (multi-modal) cor-
relations (volumetric, contextual and/or semantical) in the
generated traffic.

StreamGen developed at Georgia Institute of Tech-
nology can be used to create a set of distributed services
interacting via an application-level overlay. StreamGen
is targeted at testing and benchmarking high performance
computationally intensive distributed information-flow ap-
plications by generating the distributed computational and
communication loads imposed by these applications. Since
StreamGen is based on HttpPerf (Mosberger and Jin 1998),
it only supports HTTP transport method. Further Stream-
Gen lacks scalability, is linux-based and does not have the
feature of real-time control of generated workload. Also
there is no provision for content modeling in StreamGen
and the generated traffic is mostly replay of prerecorded
traces.

D-ITG developed at Univeristy of Napoli, Italy is a
distributed multiplatform traffic generator for network test-
ing and planning. D-ITG can generate multiple independent
flows from a given traffic profile. However, the only tunable
parameters for traffic profiling in D-ITG are the inter-packet

Anderson, Bigus, Bouillet, Dube, Halim, Liu, and Pendarakis
ABLE PLATFORM

Content
Model
(XML)

synthetic
data

User Space / ABLE IDE
Runtime WLG GUI

Data Factory Controller

Co
nt

ro
l &

M
on

ito
rin

g

Vi
de

o

G
SM

Sy
st

em
 d

at
a

Ch
at

HT
TP

 C
lie

nt

M
on

ke
ys

HT
TP

 S
er

ve
r

Ap
pl

ica
tio

ns

real data

Petri Net Petri Net

TESTED
SYSTEM

Figure 1: Architecture of SWORD

departure times and the packet sizes. Thus D-ITG lacks
any content modeling, has no support to insert challenges
in the generated traffic, cannot support inter or intra stream
correlations, has poor scalability (about 600 Mb/s), and
does not support run-time control and monitoring of the
generated workload.

Some others available tools are WAGON (Liu,
Niclausse, and Jalpa-Villanueva 2001), SURGE, GenSys,
NetProbe, and Mercury LoadRunner. An indepth review of
these tools revealed that the traffic generated by these tools
is not suitable for testing and benchmarking systems that
analyze data content and make intelligent decisions based
on the content. We are not aware of any available com-
mercial or academic tool that can meet all the requirements
mentioned in Sec. 2.1.

3 SCALABLE WORKLOAD GENERATOR

SWORD is built on the Agent Building and Learning Envi-
ronment (ABLE) platform, a Java IDE for the development
and runtime deployment of distributed multi-agent systems.
More precisely it extends the ABLE platform with a library
of modular components implemented partially in Java for
the ease of use and flexibility, and partially in C/C++ for
efficiency, and specialized in the generation of particular
types of data workloads. More information about ABLE is
available at http://ableinfo.userv.ibm.com.

3.1 Architecture of SWORD

As depicted in Fig. 1, the main building blocks of SWORD
are:

ABLE Platforms running on one or more machines.
Each platform provides services for the management of
multi-agent systems. SWORD leverages ABLE function-
alities for agent management and monitoring, inter-agent
communications, and optionally authentication and security.
Furthermore, ABLE provides the developer with the ability
211
to enable additional services such as service directory, and
naming services. Through ABLE’s agent lifecycle man-
agement functions, SWORD workload generation can be
distributed on multiple platforms in order to achieve the
desired level of scalability. The architecture enables the
simultaneous generation of thousands of data streams using
a mix of encoding types and transport protocols.

Data Factory Objects are the central components of
SWORD. Data factory objects provide methods for translat-
ing the meta-data obtained from a content model described
below into an actual data stream and package it into the
appropriate networking protocol. Because they are typically
CPU intensive, most of the data factories are implemented
in C or C++ and are invoked from the ABLE platform
agents through JNI. In addition to their content generation
function, their API offers common control and monitoring
capabilities such as specifying the content sources, or vary-
ing and reporting traffic volumetric. Data factories objects
are instantiated and invoked via ABLE agents which ex-
ecute in parallel, allowing the generation of simultaneous
streams. SWORD provides a class of default data factory
agents that repeatedly call the content generation function
of their member data factory objects. In addition to default
data factory agents, developers and more advanced users
have the ability to quickly design complex ABLE data fac-
tory agents that coordinate and correlate the traffic flow of
one or more data factory objects. A complex agent can for
instance consist of a finite state machine that emulates an
individual who accesse emails, browse the web, or partici-
pate in VoIP conversations. Such agents are represented as
Petri-Net agents whose transitions e.g., activate email, http
browser or VoIP data factories.

Data Factory Controller Agents are aggregators (or
containers) of data factory agents. Their main function is
to automate and hide the complexity of creating and of
managing large populations of data factory agents from the
user perspective. The Data Factory Controller API enables
the user to specify the number of data factories in the pool
managed by the controller and globally adjust the content
generation parameters of the data factory agents in that
pool. The user can configure the ABLE platform to contain
several data factory controllers. It is, for instance, possible to
organize the various data types (e.g., Audio, Video, HTTP,
and Chat), into multiple data factory controllers so that
the data factory agents of each type can be independently
controlled and monitored.

Content Model are repositories that are globally ac-
cessible to all the data factories resident on the same ABLE
platform. In addition they provide content sharing services
allowing the distribution and access to the content across
multiple platforms. The content model repository provides
the ability to formulate the semantics of the content, and its
statistical properties using a meta-data representation that
is independent of the encoding and transport protocol used
2

Anderson, Bigus, Bouillet, Dube, Halim, Liu, and Pendarakis
to generate the data. For instance the content repository
may contain an n-gram model for generating text content.
An instant messaging data factory would use this model to
generate instant messages, while a VoIP data factory would
convert the randomly generated text into actual speech using
a text-to-speech translation unit. The ability to share the
same content model among multiple data factories, of pos-
sibly different modalities, enables contextual correlations
across streams of different encoding and transport protocol
types. The content model representation is discussed in
details in Sec. 4.

3.2 Run-Time Environment of SWORD

SWORD consists of one or more distributed platforms, and
one user interface to control and monitor the platforms
remotely. The ABLE platform and SWORD user interface
are written in Java and are thus supported by any platform that
provides the Java 2 Runtime Environment, Standard Edition
1.4.2. However, SWORD components that generate the
traffic usually invoke CPU intensive functions in the C/C++
space for efficiency reasons. These functions have currently
been ported to Linux and Windows 2000/XP operating
systems.

SWORD has limited CPU and physical memory ca-
pacity requirements that for most type of generated data are
within what is currently available on the home computing
market. The throughput of SWORD is a function of the CPU
power, and its content richness a function of the physical
memory. In particular, except for pre-recorded streaming
content (video and audio), the content model is entirely
cached in memory before starting the generator, and on
hosts that have limited physical memory this design could
result in an increased number of memory page swaps and
poor performances. If necessary it is possible to distribute
the contents to multiple off-the-shelves processing units in
order to achieve the desired level of throughput and content
richness.

4 SWORD CONTENT MODELING

In SWORD the content model is formulated in terms of
decision trees. Nodes of the decision trees provide the logic
for branching, and leafs provides the methods for generating
the content meta-data which is then translated by the data
factories into actual data streams. This classification between
nodes and leafs is only a convenience for the content designer
as a way to differentiate between the two behaviors. From a
programming perspective, nodes and leafs all conform to a
common set of Application Programming Interfaces (APIs)
with various methods for getting the content and writing it
into a buffer from where it can be processed by the data
factory. Nodes transparently delegate this operation to one
of their children until a leaf is reached. The programmer
21
can easily extend the decision trees with new types of
decision logics and meta-data types by deriving the new
implementations from this common interface.

The content model is stored into an XML file, and is
loaded into SWORD where it can be accessed by the data
factories. A content model can contain multiple decision
trees, each of which is given a unique name. The bind-
ing of the data factory to a specific decision tree is done
during initialization of the data factory using the name of
a decision tree provided in a configuration file or in the
initialization method of the data factory. The binding is
dynamically reconfigurable from a console GUI, allowing
real-time scenario selections. The data factory uses iterators
to pull data from the designated decision tree.

The iterator starts from a node in the tree and it then
percolates down the tree from that node until it reaches a
leaf, according to a decision path resulting from the logics
of the traversed nodes. The iterator returns two data types
into two separate buffers:

1. Content meta-data is generated when the iterator
reaches a leaf of the tree. The returned meta-data
is used by the data factory to create the actual
payloads and protocol headers of the data streams.

2. Content Annotation is constructed while percolat-
ing down the tree. It provides the information on
the decision path and how the meta-data was ob-
tained, and can be used to package the data stream
with a ground truth if desired.

For instance, as illustrated in Fig. 2 for VoIP, the content
meta-data can be a text string and a speaker feature vector
that are used to convert the text string into an audio stream
with the speaker’s voice. In the same example, the content
annotation consists of contextual information indicating the
name of the speaker, the mood and the topic of conversation.
This annotation can be appended to the VoIP packets, or
it can be sent out-of-band on a different channel, where it
can be used as a ground truth to benchmark the analytics
of the tested application.

Several data factories can simultaneously access the
same decision tree. Because the state information used in
making decisions, including the random number generators,
are kept by the iterators, concurrent accesses are multi-thread
safe without any performance penalty.

5 SWORD DATA FACTORIES

SWORD currently provides a set of data factories for Http
traffic generation, emulated chat, GSM, MPEG-2 Transport
streams, and meta-data, among others. All data factories
conform to a common data factory java interface that pro-
vides the abstraction for modularity, and allows extension
of the data factory set with new encodings and protocols.
13

Anderson, Bigus, Bouillet, Dube, Halim, Liu, and Pendarakis

;

Figure 2: SWORD Content Model Representation and Use
Case

The Data Factory public Java interface is shown in the
following:

public interface AbleDataFactory{
public void init

(AbleDataFactoryControlAgentc,
AbleContentRepositoryr, String url)

public void init(AbleDataFactoryf);
public void process(Stringcmd);
public void process(String[] cmd);
public long getVolume();
public void resetVolume();
public long getChallengeCount();
public void resetChallengeCount();
public void finalize();

}

The interface consists of initialization, process, moni-
toring, and finalization methods. The initialization method
assigns a content model object and optionally a data fac-
tory controller to the data factory, and initializes the data
factory with default values using a provided configuration
URL. This information can also be copied from an existing
data factory, allowing arbitrary data factory duplications.
The process methods executes the data factory logic for
transforming content meta-data randomly generated from
the associated content model into a packet stream using the
desired encoding and transport protocols. The arguments
of the process method can be a string or an array of strings,
the interpretation of which is dependent on the implemen-
tation of the underlying data factory object. The arguments
includes the name of a decision tree in the content model
from which the content is generated, the address(es) of
target applications to which the content is sent, and pro-
tocol or encoding arguments that are particular to the data
factory type. The process methods typically rely on native
functions to perform CPU intensive tasks, and are thus op-
timized in order to minimize the overhead of traversing the
JNI boundary.
2114
Table 1: Scalability Results for SWORD

Data Type % CPU Rate Bottleneck
HTTP 20% 1 Gb/s NIC

GSM L-0 < 1% 1 Gb/s NIC
GSM L-1 100% 50 Mb/s CPU
GSM L-2 100% 1.5-2 Mb/s CPU
GSM L-3 100% 100 Kb/s CPU
GSM L-4 < 10% Disk
Meta-data 20-25% 1 Gb/s NIC

6 PERFORMANCE AND SCALABILITY

We have done performance studies of SWORD and the re-
sults have been very encouraging. The figures for SWORD’s
scalability tests done on IBM T-41 Thinkpad are shown in
Table 1. Note that SWORD offers the capability for dis-
tributed workload generation. The measurements in Table 1
correspond to a single CPU and is not representative of the
true potentials of SWORD for scalable workload generation.
The scalability of SWORD is linear in the amount of CPU
resources.

From the Table, we observe that HTTP and Meta-data
workload generation is only limited by the network interface
and with the same CPU, SWORD can generate about 5 Gb/s
of HTTP or Meta-data.

For VoIP the generated rate depends on the level of con-
tent richness in the workload. Thus for Level-0 which cor-
responds to GSM packets with arbitrary contents, SWORD
utilizes less than 1% of the CPU to generate 1 Gb/s of traffic.
However, as the level of content richness in the generated
workload increases (from Level-1 to Level-3) we observe
that the maximum data rate with this CPU falls from 50
Mb/s (about 3500 simultaneous GSM streams at 14 Kb/s) to
about 100 Kb/s. Note however, that at this level, SWORD is
doing real-time text-to-speech synthesis using sophisticated
tools. Further the generation rate of 1.5-2 Mb/s corresponds
to about 100-140 simultaneous GSM streams.

7 ONGOING AND FUTURE WORK

One important area we are currently working is on the
logging and benchmarking functionality of SWORD. There
are several research challenges in this effort, including de-
vising appropriate metrics for benchmarking, developing
algorithms for comparing ground truth with analytics, and
determining the level of aggregation in logging the data gen-
erated by SWORD for future validation. An additional area
of extensions is the development of Petri-Net templates for
different applications, such as chat, VoIP and web-browsing,
that are customizable with scenario-specific parameters and
can be used as building blocks for complex scenarios recre-
ating real-world dynamics. SWORD user interface presents

Anderson, Bigus, Bouillet, Dube, Halim, Liu, and Pendarakis
several unique challenges. Currently, stream contents are
modeled using XML files that provide great flexibility and
versatility to the end user. We are working on a GUI that will
facilitate the creation of these traffic content models without
sacrificing the flexibility of the XML files. The trade-off
between ease of use and versatility/increased functionality
is a critical design consideration in this effort.

In terms of future research directions for SWORD, we
are interested in both extending the coverage of data types
and protocols as well as in providing enhanced customiza-
tion, reconfiguration and robustness capabilities. Addition
of new data types and protocols utilizes the extensibility
and flexibility of the platform. However, this still requires
workload characterization of new applications, protocols,
and data types. Besides studying logs of such new work-
loads, we are interested in statistical tools that can help
automate the process of template generation. Furthermore,
we are interested in the ability to incorporate real-data
sources and mix them with synthetic data in a transparent
manner. Of critical importance is the ability of SWORD
to simulate hardware/software failures inlcuding security
failures, such as viruses, worms and DOS attacks. This
feature will add to SWORD the ability to test a system’s
robustness against such failures.

REFERENCES

D-ITG (Distributed Internet Traffic Generator). Avail-
able via <http://www.grid.unina.it/
software/ITG/index.php> [accessed July 17,
2006].

GenSyn. Available via <http://www.item.ntnu.
no/˜poulh/GenSyn/gensyn.html> [accessed
July 17, 2006]

Haines, J. W., L. M. Rossey, R. P. Lippman, and R.
K. Cunningham. 2001. Extending the DARPA
Off-Line Intrusion Detection Evaluations. In
Proceedings of DARPA Information Survivabil-
ity Conference and Exposition II. Available via
<http://http://www.ll.mit.edu/IST/
ideval/pubs/2001/discex01_paper.pdf>
[accessed July 17, 2006].

Liu, Z., Niclausse, N., and Jalpa-Villanueva, C. 2001. Traffic
Model and Performance Evaluation of Web Servers.
Performance Evaluation 46: 77–100.

Mansour, M., M. Wolf, and K. Schwan. 2004. StreamGen:
A Workload Generation Tool for Distributed Informa-
tion Flow Applications. In Proceedings of International
Conference on Parallel Processing (ICPP-04).

Mercury LoadRunner. Available via <http:
//www.mercury.com/us/products/
performance-center/loadrunner/
>[accessed July 17, 2006].
2115
Mosberger, D., and T. Jin. 1998. httperf-A Tool for
Measuring Web Server Performance. In Proceedings
of WISP 59–67. Madison, WI: ACM. Available
via <http://www.hpl.hp.com/research/
linux/httperf/wisp98/httperf.pdf>
[accessed July 17, 2006].

NetProbe. Available via <http://www.newobjects.
com/downloads/NetProbe.zip> [accessed July
17, 2006].

Rossey, L. M., R. K. Cunningham, D. J. Fried, J.
C. Rabek, R. P. Lippmann, J. W. Haines, and M.
A. Zissman. 2002. LARIAT: Lincoln Adaptable
Real-time Information Assurance Testbed. In Pro-
ceedings of IEEE Aerospace Conference. Avail-
able via <http://citeseer.ist.psu.edu/
rossey01lariat.html> [accessed July 17, 2006].

SURGE. Available via <http://www.cs.bu.edu/
˜crovella/links.html> [accessed July 17,
2006].

AUTHOR BIOGRAPHIES

JOSEPH P. BIGUS is a Senior Technical Staff Member at
the IBM T. J. Watson Research Center, where he is the project
leader on the ABLE research project. Joe was an architect
of the IBM Neural Network Utility and Intelligent Miner for
Data products. He received his M.S. and Ph.D. degrees in
computer science from Lehigh University and a B.S. degree
in computer science from Villanova University. Dr. Bigus’s
current research interests include learning algorithms and
intelligent agents, as well as multiagent teams and their
applications to simulation and modeling, data mining, and
decision support.

ERIC BOUILLET is currently at IBM T. J. Watson Re-
search Center, NY, where he works on data modeling and
test data generation. Before joining IBM, Dr. Bouillet has
worked at Tellium Inc. from 2000-2004 and as a Member
of Technical Staff in the Mathematical Sciences Research
Center in Bell Labs/Lucent Technologies from 1998-2000.
Eric holds an M.S. and a Ph.D. in electrical engineering
from Columbia University. He also holds a joint degree
from l’Ecole Nationale Suprieure des Tlcommunications
ENST Paris and EURECOM Sophia Antipolis. His cur-
rent research interests include data modeling and test data
generation, design of optical networks and optimization of
lightpath provisioning and fault restoration algorithms

PARIJAT DUBE received his M.S. in Electrical Communi-
cation Engg. from Indian Institute of Science, Bangalore in
2001 and his Ph.D. in Computer Science from University of
Nice-Sophia Antipolis in 2002 where he was affiliated to IN-
RIA, Sophia Antipolis, France. He joined IBM T. J. Watson
Research Center, Hawthorne, New York in 2002. Parijat’s

Anderson, Bigus, Bouillet, Dube, Halim, Liu, and Pendarakis
current research interests include stochastic modeling, dis-
tributed systems, computer networks, revenue management
and pricing.

NAGUI HALIM is the Department Group Manager and
the Head of Distributed Computing and Advanced Stream
Processing Systems at IBM T. J. Watson Center, Hawthorne,
New York.

ZHEN LIU received the Ph.D degree in Computer Science
from the University of Orsay (Paris XI), France. He was
with France Telecom R&D and then with INRIA (the French
national research center on information and automation).
He is now with IBM T. J. Watson Research Center and
is the manager of the Next Generation Distributed Sys-
tems Department. Zhen Liu is a member of the IFIP W.G.
7.3 and an External Member of the Evaluation Committee
of the Chinese Academy of Sciences. Zhen’s current re-
search interests are in distributed and networked systems,
stream processing systems, sensor networks, performance
modeling, distributed optimization and control.

DIMITRIOS PENDARAKIS is a Research Staff Mem-
ber in the at the IBM T.J. Watson Research Center. His
current research interests are in event-driven information
systems, distributed system resiliency and autonomic com-
puting. Dimitrios received his Diploma degree from the
National Technical University of Athens, Greece and the
M.S. and Ph.D. degrees from Columbia University, NY,
NY. From 2000 to 2003 has was with Tellium, Inc., where
he led the work on advanced control and management of
intelligent, mesh optical networks. Dimitrios has taught a
number of graduate level classes as an adjunct professor at
Columbia University and Polytechnic University.
2116

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

