
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

PACKET-LEVEL INTEGRATION OF FLUID TCP MODELS IN REAL-TIME NETWORK SIMULATION

Jason Liu

Department of Mathematical and Computer Sciences
Colorado School of Mines
Golden, CO 80401, U.S.A.
ABSTRACT

We present a hybrid network traffic model that com-
bines time-stepping fluid model with discrete-event packet-
oriented simulation. We propose an integration scheme
allowing packet flows to interact with fluid flows within
each network queue. Different from previous schemes that
require physical division of the virtual network between
the fluid model and packet-oriented simulation, our hybrid
model allows full integration of the two paradigms making
it possible to dynamically change the composition of traffic
flows to allow the simulation to keep up with real time. Ex-
periments show that our model provides a good prediction
of the network behavior. More important, as we increase
the proportion of packet flows, the simulation is capable of
capturing more detail of the network traffic behavior at the
expense of more computing time. Hence the tradeoff.

1 INTRODUCTION

Simulation has been used extensively as an effective tool for
studying, evaluating, and prototyping large-scale computer
networks despite its well-documented difficulties in render-
ing realistic global network behaviors (Floyd and Paxson
2001). The networking research community has recently
seen a healthy growth in the capability of simulating and
modeling large-scale networks (e.g., Fujimoto et al. 2003,
Nicol et al. 2003). This capability enables real-time simula-
tion. Real-time simulation allows the simulation system to
interact with the physical world in real time (Nicol, Liljen-
stam, and Liu 2005). In such systems, one must allow the
network traffic from real applications to go through the sim-
ulator and interact with any arbitrary virtual network entities
(such as hosts, routers, and links). Since real applications
operate in real time, a real-time network simulation must
meet real-time requirements. In essence, the performance
of a large-scale network simulation must be able to keep
up with the wall-clock time.
2161-4244-0501-7/06/$20.00 ©2006 IEEE
The difficulty in real-time network simulation is to en-
sure processing real-time events before their deadlines. Fail-
ure to process an event at the designated real-time deadline
indicates a timing fault. An elevated occurrence of timing
faults can cause a simulator to become “sluggish”—making
it less responsive to real-time interactions. To speed up
simulation, on the one hand, we can leverage parallel and
distributed discrete-event simulation to harness the comput-
ing resources of parallel computers to physically increase
the event-processing power (Fujimoto 2000). On the other
hand, we resort to multi-resolution modeling techniques
using models with high levels of abstraction to induce less
computational demand. In this paper, we proposes a solution
for integrating a fluid traffic model with the discrete-event
model in our packet-oriented network simulator.

Fluid network simulation capitalizes on the notion that
one can model network traffic and network transactions as
fluid flows rather than individual packets. In a discrete-event
fluid model (e.g., Nicol, Goldsby, and Johnson 1999), events
are used to indicate changes in the flow rate as they propagate
through the virtual network. One advantage of this approach
is that there exists a natural way to integrate events of the
fluid model with those of the packet-driven simulation and
therefore create a hybrid simulation (see, for example, Kiddle
et al. 2003 and Riley et al. 2002). Conceptually, this gives
rise to an important distinction between packet-oriented
foreground traffic and fluid-based background traffic. The
foreground traffic is the traffic stream we are interested in
and needs to be modeled in high fidelity. In contrast, the
background traffic that represents the bulk of the network
traffic is of secondary interest and does not require significant
accuracy. It is nonetheless important as the background
traffic interferes with the foreground traffic as both compete
for network resources (Melamed, Pan, and Wardi 2004). It
has been reported that, using proper smoothing techniques to
avoid the dramatic increase of simulation events (so-called
“ripple effect”), the event-oriented fluid models can achieve a
desirable modeling accuracy and a speedup of approximately
2

Liu
an order of magnitude over pure-packet simulations (Nicol
and Yan 2004).

Alternative to discrete-event fluid simulation are ana-
lytical models. Misra, Gong, and Towsley (2000) proposed
a fluid-based model that uses a set of ordinary differential
equations (ODE) to describe the behavior of persistent TCP
flows. These differential equations can be solved numeri-
cally with great computational efficiency. Liu et al. (2004)
later improved this model by incorporating idiosyncratic
network topology information and formulated a set of de-
layed differential equations solvable using the time-stepped
Runge-Kutta algorithm. Experimental results show that this
model is accurate compared to the packet-level simulation
and its run-time performance scales well to a large number
of TCP flows.

One potential problem of the analytical-based fluid
model is the difficulty of integrating with the discrete-event
packet-oriented simulation. The fluid model and the packet
model are based on two distinct simulation paradigms. The
fluid model describes the network and the traffic flows
within as a set of differential equations with state variables
inherently continuous in time. In contrast, packet flows
are described using discrete events. Our interest here is to
integrate fluid-based traffic flows with discrete-event packet
flows and place them under the same time management
scheme.

One effort with a goal similar to ours was reported by
Gu, Liu, and Towsley (2004). In their approach, the sim-
ulation maintains two separate networks: a fluid network
representing the core of the global network whose state
evolution is dictated by the solution of differential equa-
tions, and a packet network where network transactions are
modeled as discrete events. The interaction happens at the
boundary. Packets entering the fluid network are smoothed
and transformed into a fluid flow (as a piece-wise constant
function) and then compete with the pure fluid flows for
network resources according to the set of differential equa-
tions. The packet delay and drop probability are computed
cumulatively within the fluid network. Packets departing
from the fluid network are scheduled according to the delay
and drop probability. Another similar approach was pro-
posed by Zhou et al. (2004). In order to achieve a better
response time for the ODE solver (implemented in MAT-
LAB) when processing packet events “traversing through”
the fluid network, two instances of the same fluid model
are included in their system with simulation clocks of the
two models interleaved with each other. This effectively
doubles the speed of execution of the ODE solver.

Both approaches physically separate fluid and packet
traffic representations into two networks. This (geographi-
cal) division of the network must be done statically before
simulation and must not be changed during simulation ex-
ecution. Furthermore, in this framework, the fluid model
is only used to model the end-to-end behavior of packet
216
flows (such as delay and drop probability). The detailed
state of the fluid network (such as the dynamics of the
queue size of a router inside the fluid network) cannot be
accessed directly to interact with the packet flows. After
all, packet flows are treated only as cross-traffic in the fluid
network. This scheme places a unnecessary restriction on
where packets can be sent in the virtual network. In a
true real-time network simulation scenario, one should be
allowed to establish real network connections and therefore
conduct real packet flows to any part of the virtual network.

We propose a different integration scheme. In our
approach, the interaction of fluid and packet flows happens
at the network interface within a router at any part of
the virtual network. The pure fluid flows arriving at each
network queue are augmented with packet flows arriving at
the queue. The queuing dynamics are still governed by the
set of differential equations only modified to include both
packet flows and fluid flows. These differential equations
are still solved using the fixed time-stepped Runge-Kutta
method. Packets entering a network queue are simulated
as discrete events; they should observe the delay and drop
probability according to the state of the queue calculated
by the Runge-Kutta method. The benefit of our approach
can be summarized as follows:

1. The network is no longer divided between the fluid-
based model and the packet-oriented model. The
interaction between fluid flows and packet flows
is resolved dynamically. This allows emulated
network traffic (e.g., ICMP packets generated by a
real host) to reach any part of the virtual network
and interact seamlessly with the fluid flows.

2. The interaction between the fluid flows and packet
flows happens at a much finer granularity. In the
previous scheme, packet flows are “fluidized” as
they enter the fluid network. In our approach,
the packet flows remain in the packet format and
only at times when interacting with fluid flows in
a network queue are they “smoothed” into flow
rates. As a consequence, the packet model can
better maintain the desired packet-level precision
(e.g., with respect to delay variations).

3. Our approach allows the modeler to dynamically
make changes to the composition of network traf-
fic between fluid and packet representations. This
enables us to make the tradeoff between the ac-
curacy of the network model and the real-time
performance.

We prototyped our scheme in our PRIME SSFNet sim-
ulator developed at Colorado School of Mines specifically
designed for real-time network simulation. Many network
models in the simulator are inherited from the RINSE sim-
ulator from UIUC (Liljenstam et al. 2005). We evaluate
3

Liu
the accuracy and run-time performance of the hybrid model
through preliminary simulation experiments. We find that
our model provides accurate prediction of network behavior.
More important, as we increase the proportion of packet
flows in our hybrid model, the simulation is capable of
capturing more detailed traffic behavior at the expense of
more computing time. Hence the tradeoff.

The remainder of this paper is organized as follows.
Section 2 provides the background of the fluid model. We
discuss our extension to the fluid model to integrate with
packet flows in Section 3. We conducted two sets of ex-
periments to assess the accuracy and performance of our
approach. The results are shown in Section 4. The conclu-
sion and future work are discussed in Section 5.

2 THE FLUID MODEL

Our starting point is the fluid model developed by Gu, Liu,
and Towsley (2004), which uses a set of ordinary differential
equations to describe the mean traffic behavior of long-term
TCP sessions in a network of Active Queue Management
(AQM) routers. Here we briefly describe the model we
adopted, in most part following the notations used in the
original paper. In the next section, we extend this model to
include packet flows.

In this model the network traffic is a collection of
fluid classes. Each fluid class represents ni homogeneous
flows, having the same characteristics and following the
same path from the same source to the same destination.
The set of differential equations that control the system can
be divided into three categories: those controlling the size
of the congestion window of each fluid class, the state of
each network queue, and the propagation of delay and loss
probability inside the network.

For each TCP flow in fluid class i, the window size at
time t, denoted by Wi(t), can be described as

dWi(t)
dt

=
1

Ri(t)
− Wi(t)

2
·λi(t) (1)

where Ri(t) is the round-trip delay and λi(t) is the packet
loss rate at time t. This equation models TCP congestion
window’s additive-increase-multiplicative-decrease behav-
ior in the congestion avoidance stage. Not included in this
equation is the boundary condition that the size of the con-
gestion window must stay between 0 and a prespecified
maximum window size.

For each network link l, we denote Cl to be the band-
width of the link and al to be the propagation delay. The
size of the network queue l can be described using the
following equation:

dql(t)
dt

= Λl(t)(1− pl(t))−Cl (2)
2164
where Λl(t) is the aggregate arrival rate of all fluid classes
traversing link l and pl(t) is the packet drop probability.
Λl(t) =

∑
i∈Nl

Al
i(t), where Al

i(t) is the instantaneous arrival
rate of fluid class i, and Nl is the set of fluid classes traversing
link l. Again, not included in this equation is the boundary
condition that the queue length should be in the range
between 0 and the maximum queue size Ql .

For network queues with Random Early Detection
(RED) queuing discipline, the packet dropping probabil-
ity is based on the average queue size xl(t), which can be
calculated from the instantaneous queue size ql(t) using the
following differential equation:

dxl(t)
dt

=
ln(1−α)

δ
xl(t)−

ln(1−α)
δ

ql(t) (3)

where α is the weight used in the RED Exponential Weighted
Moving Average (EWMA) computation and δ is the step
size.

The packet dropping probability pl(t) can then be com-
puted from the average queue size xl(t). For example, we
use the following piece-wise linear function for all our
experiments described later in this paper:

p(x) =


0 0≤ x < qmin

x−qmin

qmax−qmin pmax qmin ≤ x < qmax

x−qmax

qmax (1− pmax)+ pmax qmax ≤ x ≤ 2qmax

1 otherwise
(4)

where qmin, qmax and pmax are configurable parameters of
the RED queue.

The arrival rate of fluid class i at the first queue si can
be easily calculated as

Asi
i (t) =

niWi(t)
Ri(t)

. (5)

For subsequent hops of fluid class i, the arrival rate at the
next queue gi(l) is simply the departure rate of the upstream
queue after a time lag equal to the link’s propagation delay
al :

Agi(l)
i (t +al) = Dl

i(t). (6)

The departure rate of queue l is associated with the
arrival rate of queue l after a proper queuing delay. Let
t f = t + ql(t)/Cl . If the aggregate arrival rate is less than
the service capacity, the departure rate equals the arrival
rate. Otherwise, it is proportional to the arrival rate as the
service capacity is shared among the competing flows:

Dl
i(t f) =

{
Al

i(t)(1− pl(t)) if Λl(t)(1− pl(t))≤Cl
Al

i(t)
Λl(t)

Cl otherwise.
(7)

Liu
By now, the only variables left are the round-trip time
Ri and the packet drop rate λi for each fluid class i. They
can be computed cumulatively along the path of each fluid
class. Let di

l(t) be the cumulative delay experienced by fluid
class i at queue l and bi(l) be the predecessor (upstream)
queue of queue l on the path of fluid class i.

di
l(t f) =

{
ql(t)
Cl

if l = si

di
bi(l)(t −abi(l))+abi(l) + ql(t)

Cl
otherwise.

(8)
Similarly, let ri

l(t) be the cumulative packet drop rate
experienced by fluid class i at queue l.

ri
l(t f) =

{
Al

i(t)pl(t) if l = si
ri

bi(l)(t −abi(l))+Al
i(t)pl(t) otherwise. (9)

Assuming that ack loss and queuing delays are negligible
on the reverse path and therefore considering only the traffic
on the forwarding path, we can calculate the round-trip time
and the loss rate:

Ri(t) = di
fi(t −πi)+πi (10)

λi(t) =
ri

fi
(t −πi)

ni
(11)

where πi is the (one-way) path latency of fluid class i and fi
is the last queue traversed by fluid class i on the forwarding
path.

Although this fluid model considers only TCP flows
through RED queues, it can easily be extended to model a
broader class of flows by changing the differential equation
governing the sending window size (i.e., Equation (1)).
Simple examples include fluid traffic for constant-rate UDP
flows and on-off traffic generators using Pareto-Poisson
Burst Processes (Zukerman, Neame, and Addie 2003). Note
that this scheme actually provides a natural solution to the
problem posed by Nicol and Yan (2005). In their approach,
the (background) network traffic are induced by injecting
aggregate flows as piece-wise constant rates. The authors
formulate the problem as a set of nonlinear equations and
they propose a solution using periodic fix-point computation.
The problem can be solved here straightforwardly without
imposing any change to the fluid model. Also, although
the fluid model is designed for RED queues, we note that
the model is more generic in that, if one sets pl(t) =
(Λl(t)−Cl)/Λl(t) if the queue is full and Λl(t) > Cl , and
zero otherwise, the RED queue is degenerated to a drop-tail
queue.

In the next section, we extend the fluid model described
in this section by adding packet flows.
216
3 PACKET-LEVEL INTEGRATION

In the simulation, packet flows traversing the network com-
pete for network resources with the fluid traffic. Each packet
arriving at a network queue is represented as a simulation
event. The decision whether the packet should be admitted
into the queue is based upon the state of the queue at the
time of its arrival—specifically, the instantaneous queue size
and the packet drop probability. The state of the queues is
governed by the set of differential equations presented in
the previous section. The fixed time-stepped Runge-Kutta
method is used to calculate the time evolution of the state
of the queues and the size of the congestion windows of
all fluid classes. Suppose that δ is the time step size of the
Runge-Kutta method. At each time step k, we compute the
size of the congestion window Wi(kδ), the instantaneous
queue length ql(kδ), the average queue length xl(kδ), and
the packet dropping probability pl(kδ). Also, for each fluid
class i traversing network queue l, we update the fluid arrival
rate Al

i , the departure rate Dl
i , as well as the cumulative

delay di
l and cumulative packet drop rate ri

l .
To account for the packet flows arriving at the network

queue, we keep track of the number of packets arriving at
the queue since the last Runge-Kutta time step. Let Nl

P(t)
be the total number of packets arrived at queue l since
beginning. The packet arrival rate is computed as:

Al
P(kδ) =

Nl
P(kδ)−Nl

P((k−1)δ)
δ

. (12)

The packet arrival is treated the same as fluid flows
in terms of competing for queuing space. We modify
Equation (2) to account for the packet arrival:

dql(t)
dt

= ξl(t)(1− pl(t))−Cl (13)

where ξl(t) = Λl(t)+Al
P(t) is the aggregate arrival rate of

both fluid and packet flows.
We also need to adjust the departure rate (Equation (7))

when the total arrival rate is more than the service capacity;
the departure rate should be proportional to the arrival rate
as the service capacity is shared among competing flows—
whether they are fluid or packet.

Dl
i(t f) =

{
Al

i(t)(1− pl(t)) if ξl(t)(1− pl(t))≤Cl
Al

i(t)
ξl(t)

Cl otherwise.
(14)

Between Runge-Kutta steps, the simulator is still event-
driven. That is, each packet arriving at a network queue
is handled as a simulation event. The following shows the
algorithm we use to process packet arrival events during
the kth Runge-Kutta interval:
5

Liu
1. We create three shadow variables to keep track of
the changes made to the instantaneous queue length,
the average queue length, and the packet drop
probability, and initialize them using values from
the previous Runge-Kutta step: q̃l := ql(kδ), x̃l :=
xl(kδ),and p̃l := pl(kδ).

2. Suppose E1,E2, · · · ,Em are the events representing
packets arrived at queue l . Let t1, t2, · · · , tm be the
timestamps of these events and t0 = kδ ≤ t1 ≤ t2 ≤
·· · ≤ tm ≤ (k+1)δ . Define the time between con-
secutive events as ∆ti = ti−ti−1, for i = 1,2, · · · ,m.
For each packet arrival event Ei:

(a) We first update the instantaneous queue
length at the time of the arrival: q̃l :=
min{Ql ,max{0, q̃l + ∆ti(Λl(kδ)(1 − p̃l) −
Cl)}} It is important that we include only the
fluid arrival rate since changes to the queue
length due to packet arrivals are handled in-
dividually at each event processing step.

(b) If the queue is full or the packet is selected to
be dropped according to the packet drop prob-
ability p̃l , we discard this packet and continue
to process the next packet arrival event.

(c) Otherwise, we add the size of the packet to the
instantaneous queue length q̃l , and update the
average queue length x̃l and the packet drop
probability p̃l according to the RED policy.

(d) We finish the processing of this packet arrival
event by scheduling a packet departure event
after a queuing delay equal to q̃l/Cl .

Here, the use of shadow variables is important because
the change otherwise made to the original variables con-
trolled by the fluid model will be difficult to reconcile at
the Runge-Kutta step. The value of these variables reflects
the state of the queue at the beginning of the time step and
is updated accordingly upon each packet arrival. On the
other hand, the effect of packet flows on fluid flows can
also be captured since we include the packet arrival rates
into the equations used by the fluid model (Equations (13)
and (14)).

4 EXPERIMENTS

To demonstrate the correctness of our hybrid model, we
implemented the packet-level integration scheme in SSFNet.
We start with a test network first used by Gu, Liu, and
Towsley (2004). The topology of the network is shown in
Figure 1. The network consists of 12 nodes and 11 links.
The delay and bandwidth of all links are set to be 10 ms
and 100 Mbps, respectively. There are a total of 22 network
interfaces and, correspondingly, we have 22 RED queues.
We set the maximum queue size to be 5 MB. The RED
216
queue parameters are configured with qmin = 100 KB, qmax

= 4.5 MB, and pmax = 0.1. The weight used in the EWMA
computation is 0.0004. For packet-oriented simulation, we
use TCP Reno with 128 as the maximum window size. We
fixed the step size of the fluid model to be 1 ms.

Figure 1: A Test Network Topology with Four Classes of
Flows

There are four classes of flows on this test network.
Class 0 and class 1 each consists of 10 TCP flows, while class
2 consists of 20 TCP flows. All flows in these classes start
from time 0 and are persistent throughout the simulation.
Class 3 consists of 40 TCP flows, which start at time 30 and
only last for 30 seconds. As we will see, the competition
between class 2 and class 3 traffic creates a congestion at the
link connecting node 4 and 7 between 30 and 60 seconds.

To establish the baseline, we first compare the results
from pure-fluid and pure-packet simulations. Figure 2 shows
the lengths of the network queue (both instantaneous and
average queue lengths) in node 4 connecting to node 7.
Figure 3 shows the end-to-end delays experienced by TCP
flows in both class 0 and class 2. In essence, the fluid model
does capture the expected network behavior. The result
from the packet simulation exhibits much larger variations,
whereas the fluid model can only describe the average
behavior. This is expected since information regarding
the transient behavior is lost in the fluid model in favor
of computational efficiency. We observe that the overall
queuing level projected by the fluid model is slightly higher
than that from the packet simulation. This indicates that
further tuning of the fluid model may be necessary, a strategy
that was suggested by Liu et al. (2004).

Next, we test the correctness of our hybrid model. We
choose to use the fluid model to describe the TCP flows
within classes 0, 1, and 3. And we model the TCP flows
within class 2 as a combination of fluid and packet flows.
In this experiment we purposefully varied the proportion
of packet flows in class 2 from 10% to 50% and finally
to 100%. That is, out of 20 TCP flows in class 2, we
choose to model 2, 10, and 20 flows as packet flows. The
results are shown in Figures 4, 5, and 6. The introduction of
packet flows increases the variation in both queue length and
end-to-end delay measurement. With more packet flows,
6

Liu
Figure 2: Compare Queue Length Between Pure-Fluid and
Pure-Packet Simulations

Figure 3: Compare Path Delay Between Pure-Fluid and
Pure-Packet Simulations

the simulation does a better job at capturing more detailed
traffic behavior and therefore the variation grows larger.

The next experiment shows the computational efficiency
of the hybrid model. We use the dumbbell topology (shown
in Figure 7), which is commonly used to analyze the TCP
congestion control algorithms. There are N server nodes
(acting as traffic sources) aligned at the left of the net-
work and N corresponding client nodes (acting as traffic
sinks) aligned to the right. During simulation, each pair of
client-server nodes simultaneously engage in M TCP ses-
sions. Each client/server node has a dedicated connection
of bandwidth (10 ·M) Mbps to a router and has a maximum
queue size of M MB. The link between the two routers
has a bandwidth of (10 ·M ·N) Mbps. Each router has
a maximum queue size of (M ·N) MB. The RED queue
2167
Figure 4: Hybrid Simulation with 10% Packet Flows in
Class 2

parameters are set so that qmin is 1% of the maximum queue
size and qmax is half of the maximum queue size.

We ran the simulation for 100 simulated seconds on an
AMD Athlon64 machine with a 2.2 GHz CPU and 2 GB
of memory. The SSFNet simulator was compiled using the
GNU C/C++ compiler set at optimization level 3. Figure 8
shows the results of an experiment, in which we set the
total client-server connections N to be 5, allowed each
pair of client and server nodes to carry M = {5,10,20,40}
simultaneous TCP flows, and varied the proportion of packet
flows. Here we report the measured execution time of each
simulation run. The pure-fluid model takes virtually no
time to finish the simulation, while the cost of the packet
model is roughly proportional to the number of packet TCP
flows in the system. We believe the slight increase in run-
time as one increases the proportion of packet flows is
primarily attributed to the larger context switch overhead
from process-oriented implementation of the foreground
packet flows. The fluid model (using our ODE solver at
each simulated router) can run several orders of magnitude
faster than the packet-oriented simulation. Comparing to
the cost of simulating packet TCP flows, increasing the
number of fluid flows in the system introduces negligible

Liu
Figure 5: Hybrid Simulation with 50% Packet Flows in
Class 2

overhead to the overall performance. In summary, this
example highlights the need of reducing the overall number
of packet flows and replacing them with fluid flows in order
to keep up with the wall-clock time.

5 CONCLUSIONS

In this paper we propose a hybrid simulation model that
merges continuous and discrete-event simulation paradigms
by allowing interaction of network packet flows and fluid
flows at the packet level within each simulation router.
This scheme enables the tradeoff between packet-oriented
simulation, which is accurate but comes with a high com-
putational cost, and the fluid-based model, which describes
only the average behavior of the traffic dynamics and yet
is highly scalable.

Our immediate future work includes further testing in
realistic large-scale network scenarios. We want to further
investigate the effect on the loss of accuracy introduced
by fluid flows of various proportions. Another important
direction is to parallelize the fluid model to fully integrate the
model with the discrete-event network simulator that can run
both on parallel and distributed platforms. We are currently
216
Figure 6: Hybrid Simulation with 100% Packet Flows in
Class 2

investigating approaches to dynamically change the traffic
composition in order to meet the real-time requirement.

ACKNOWLEDGMENTS

We would like to thank Yong Liu for generously sharing
the fluid model code. Also, we thank Yu Gu for sharing
the details of the experiments presented in their Infocom
2004 paper.

This research is supported in part by the National Sci-
ence Foundation grant CNS-0546712.

REFERENCES

Floyd, S., and V. Paxson. 2001, August. Difficulties in
simulating the Internet. IEEE/ACM Transactions on
Networking 9 (4): 392–403.

Fujimoto, R., K. Perumalla, A. Park, H. Wu, M. Ammar, and
G. Riley. 2003, October. Large-scale network simulation
– How big? How fast? In Proceedings of the IEEE/ACM
International Symposium on Modeling, Analysis and
Simulation of Computer Telecommunication Systems
(MASCOTS), 116–125.
8

Liu
Figure 7: A Dumbbell Network Topology

Figure 8: Execution Time for Various Traffic Compositions

Fujimoto, R. M. 2000. Parallel and distributed simulation
systems. John Wiley & Sons.

Gu, Y., Y. Liu, and D. Towsley. 2004, March. On integrating
fluid models with packet simulation. In Proceedings of
IEEE INFOCOM 2004.

Kiddle, C., R. Simmonds, C. Williamson, and B. Unger.
2003, June. Hybrid packet/fluid flow network simula-
tion. In Proceedings of the 17th Workshop on Parallel
and Distributed Simulation (PADS’03), 143–152.

Liljenstam, M., J. Liu, D. M. Nicol, Y. Yuan, G. Yan, and
C. Grier. 2005, June. RINSE: the real-time interactive
network simulation environment for network security
exercises. In Proceedings of the 19th Workshop on
Parallel and Distributed Simulation (PADS’05), 119–
128.

Liu, Y., F. L. Presti, V. Misra, D. F. Towsley, and Y. Gu.
2004, July. Scalable fluid models and simulations for
large-scale ip networks. ACM Transactions on Modeling
and Computer Simulation (TOMACS) 14 (3): 305–324.
2169
Melamed, B., S. Pan, and Y. Wardi. 2004, July.
HNS: a streamlined hybrid network simulator. ACM
Transactions on Modeling and Computer Simulation
(TOMACS) 14 (3): 251–277.

Misra, V., W.-B. Gong, and D. Towsley. 2000, August. Fluid-
based analysis of a network of AQM routers supporting
TCP flows with an application to RED. In Proceedings
of the 2000 ACM SIGCOMM Conference, 151–160.

Nicol, D. M., M. Goldsby, and M. Johnson. 1999, Octo-
ber. Fluid-based simulation of communication networks
using SSF. In Proceedings of the 1999 European Sim-
ulation Symposium.

Nicol, D. M., M. Liljenstam, and J. Liu. 2005, December.
Advanced concepts in large-scale network simulation. In
Proceedings of the 2005 Winter Simulation Conference
(WSC’05).

Nicol, D. M., J. Liu, M. Liljenstam, and G. Yan. 2003,
December. Simulation of large-scale networks using
SSF. In Proceedings of the 2003 Winter Simulation
Conference (WSC’03).

Nicol, D. M., and G. Yan. 2004, July. Discrete event fluid
modeling of background TCP traffic. ACM Transactions
on Modeling and Computer Simulation (TOMACS) 14
(3): 211–250.

Nicol, D. M., and G. Yan. 2005, June. Simulation of net-
work traffic at coarse time-scales. In Proceedings of the
19th Workshop on Parallel and Distributed Simulation
(PADS’05), 141–150.

Riley, G. F., T. M. Jaafar, and R. Fujimoto. 2002, October.
Integrated fluid and packet network simulations. In
Proceedings of the IEEE/ACM International Symposium
on Modeling, Analysis and Simulation of Computer
Telecommunication Systems (MASCOTS), 511–518.

Zhou, J., Z. Ji, M. Takai, and R. Bagrodia. 2004, April.
MAYA: integrating hybrid network modeling to the
physical world. ACM Transactions on Modeling and
Computer Simulation (TOMACS) 14 (2): 149–169.

Zukerman, M., T. D. Neame, and R. G. Addie. 2003,
April. Internet traffic modeling and future technology
implications. In Proceedings of IEEE INFOCOM 2003.

AUTHOR BIOGRAPHY

JASON LIU is an Assistant Professor of Computer Science
at the Colorado School of Mines. His research focuses on
parallel discrete-event simulation, performance modeling
and simulation of computer systems and communication
networks. He received a B.A. in Computer Science from
Beijing Polytechnic University in China in 1993, an M.S.
in Computer Science from College of William and Mary
in 2000, and a Ph.D. in Computer Science from Dartmouth
College in 2003. He currently serves as a WSC proceedings
editor. His e-mail address is <xliu@mines.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

