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ABSTRACT

Bayesian methods are useful in the simulation context for

several reasons. They provide a convenient and useful way

to represent uncertainty about alternatives (like manufactur-

ing system designs, service operations, or other simulation

applications) in a way that quantifies uncertainty about the

performance of systems, or about inputs parameters of those

systems. They also can be used to improve the efficiency

of discrete optimization with simulation and response sur-

face methods. Bayesian methods work well with other

decision theoretic tools, and can therefore provide a link

from traditional operations-level experiments to higher-level

managerial decision-making needs, in addition to improving

the efficiency of computer experiments.

1 INTRODUCTION

If simulation is only defined to be a numerical analysis tool

that can estimate expectations and distributions of random

variables, given a set of simulation inputs, then one might

argue that there is no role for Bayesian analysis in stochastic,

discrete event simulation. Indeed, most of the foundations

of discrete event simulation emerged from the classical, or

frequentist, statistical viewpoint. That viewpoint appeals

to statistical properties of repeated sampling, assuming that

the inputs to the system are known, fixed quantities. That is

a natural viewpoint to adopt, given that simulation analysts

can fully control the inputs to a simulation.

If simulation is recognized to be a tool that also models

existing or proposed systems, however, then things are dif-

ferent. Statistical input parameters are typically unknown,

and are estimated from expert judgment and statistical data.

Understanding how uncertainty about input parameters influ-

ences outputs is an example of uncertainty analysis. Glynn

(1986) explored Bayesian methods for uncertainty analysis

in simulation experiments, by expanding the traditional role

of estimating

α = h(E[Y ])
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to a broader role of estimating the mean and distribution of

the random variable α(θ) = h(E[Y | θ ]). The distribution of

α(θ) depends upon unknown parameters, θ . The unknown

parameters, in turn, have a distribution p(θ) that can be

assessed with data from the modeled system.

Chick (1997) reviewed few works to the time of that

work that applied Bayesian ideas to simulation, then sug-

gested a broader range of application areas than uncertainty

analysis, including ranking and selection, response surface

modeling, and experimental design. A central theme of the

Bayesian approach is to use probability distributions to de-

scribe all uncertainty, not just randomness from stochastic

behavior of simulated systems. That includes uncertainty

about input parameters or output performance measures.

Decision theory methods are often added to inform a mod-

eler about decisions that a manager (which simulated system

should be implemented?) or analyst (which simulation in-

puts to choose for the next run?) must make.

This tutorial discusses some basic building blocks for

Bayesian reasoning, and identifies several applications to

simulation experiments. Issues that arise in the Bayesian

framework include: the need to specify initial uncertainty

about unknown parameters by specifying prior distributions

for unknown quantities (such as unknown outputs, unknown

input parameters or unknown metamodel parameters); the

specification of likelihood models to relate unknown param-

eters to observable data, if applicable; and numerical tools

to update beliefs about unknown quantities as data becomes

available using Bayes’ rule to obtain posterior distributions

for unknown quantities. But quantifying uncertainty is not

enough–one needs to understand how uncertainty affects

the potential outcomes of decisions. Decisions under un-

certainty are guided by the principle of minimizing the

expected loss associated with a choice of design parame-

ters for a simulated system. Loss functions can also lead

to experimental design criteria for structuring simulation

experiments.

This tutorial updates a similar WSC Advanced Tutorial

(Chick 2004) that was later extended significantly (Chick
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2006). For reasons of space, the citations to the litera-

ture in this paper are woefully incomplete (apologies to the

many articles that deserve mention). Please consult Chick

(2006) for a fuller literature review on the development of

theoretical techniques for Bayesian methods in simulation

experiments; for applications of those tools (to scheduling,

insurance, finance, traffic modeling, public health, water-

way safety, supply chain and other areas), the relationship

of Bayesian methods to deterministic simulations; and to

subjective probability and Bayesian statistics in general.

2 MAIN CONCEPTS

We represent a stochastic simulation as a deterministic func-

tion of several types of inputs, with

Yr = g(θ p,θ e,θ c;U r), (1)

so that Yr is the output of the rth replication, θ p is a vector

of statistical input parameters that can be inferred with

data from the real system a model is intended to represent;

θ e is a potentially unknown parameter that describes a

system’s operating environment, but that is not inferrable

from a stream of potentially available data; θ c are control

parameters (or design variables) for the modeled system;

and U r are jointly independent uniform random variables

(e.g., samples from different portions of a uniform random

number generator to provide randomness in the output).

A subjective probabilist represents all uncertain quanti-

ties with probability distributions, including θ p and θ e, not

only uniform variates U and nonuniform random variates X .

We add subscripts if additional specificity is needed, e.g.,

to refer to the j-th variate for the i-th source of randomness

during the r-th replication, we write Xri j. See Figure 1. The

r may be dropped to describe data collected from the actual

system being simulated. That data would be used to infer

the parameters of the statistical distributions to describe the

system.

One reason a simulation experiment may be run is to

estimate the function g because it’s exact form is not known.

Because of this, it is often useful to study metamodels of

simulation models to predict the outputs of a simulation

model (or the simulated system) when a full simulation

takes a long time to run. Examples of metamodels are

linear regression models and Gaussian random fields (GRFs).

Section 3.4 describes some Bayesian methods to describe

uncertainty about metamodel parameters ψ .

The specification of prior distributions and Bayesian

inference with data are discussed in Sections 2.1 and 2.2.

Asymptotic theorems are presented in Section 2.3, followed

by a discussion of loss functions that can be used to design

sampling allocations for simulation experiments.
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2.1 Exchangeability and Input Parameters

An important simulation design issue is the selection of

appropriate input distributions to characterize the stochastic

behavior of the modeled system. This section reviews basic

ideas and important theorems for inferring input parameters

with the Bayesian formalism. The presentation is in the

context of selecting a parameter θ for a specific candi-

date distribution (e.g., one of the Bernoulli, exponential, or

gamma distributions) for input into a computer simulation.

Section 3.2 explores input selection if multiple candidate

models for a given source of randomness is proposed.

For a Bayesian, the idea of exchangeability is preferred

to the idea of independent and identically distributed (i.i.d.)

random variables. Let X = (X1,X2, . . . ,XN) be a generic

vector of random variables on an outcome space Ω. A

probability p on Ω is said to be exchangeable if it is

invariant with respect to permutations of the coordinates

(e.g., p(x1,x2, . . . ,xn) = p(xs1 ,xs2 , . . . ,xsn) for permutations

s on {1,2, . . . ,n} for arbitrary n. Exchangeability is a weaker

assumption than independence, but is important because

it motivates conditionally independent sequences that are

useful in simulation experiments for parameter inference.

Simulation is very often concerned with conceptually

infinite (limN → ∞) exchangeable sequences of random

variables (e.g., replications r = 1,2, . . . or service times Xri j

for j = 1,2, . . .). A key theorem (de Finetti 1990 or Bernardo

and Smith 1994) for conceptually infinite exchangeable se-

quences of Bernoulli random variables says that outcomes

are conditionally independent, given the limiting fraction

of heads, Θ = limN→∞

∑N
i=1

Xi/N, with some mixture dis-

tribution π(θ),

lim
N→∞

p(xn) =

∫

{

n
∏

i=1

f (xi | θ)

}

dπ(θ), (2)

where p(xi | θ) = f (xi | θ) = θ xi(1− θ)1−xi is a condi-

tional probability when considered as a function of xi and

a likelihood when written as a function of θ . A mixture

of conceptually infinite sequences of exchangeable random

variables written in the form Equation (2) for an arbitrary

parameter θ , distribution π(θ) and likelihood model f is

called a de Finetti-type representation, although judgments

stronger than exchangeability, such as invariance to sums,

may be required to justify them (Barlow and Mendel 1992).

That notation anticipates the convention of writing a

prior distribution as π(·), representing the a priori belief that

the parameter takes on a given value. That representation

allows for the inference of θ from data xn = (x1, . . . ,xn) via

Bayes rule,

p(θ | xn) =
π(θ)p(xn | θ)

p(xn)
. (3)
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Figure 1: Simulation Takes Multiple Types of Inputs and Meta-

models Predict Outputs for Unsimulated Input Values
The posterior probability p(θ | xn) of θ , given xn, summa-

rizes uncertainty about θ via the likelihood model and prior

distribution.

2.2 Prior Probability Distributions

Bayesian methods require probability distributions to quan-

tify initial uncertainty before data is observed. The selec-

tion of a prior distribution is controversial. Bruno de Finetti

(1990) argues that a prior distribution is a subjective expres-

sion of uncertainty, and that You (yes, You) may justifiably

specify a different distribution than I, since we may have dif-

ferent beliefs about the likelihood of a given event. Savage

(1972) suggests a process for eliciting a prior distribution

from a modeler through the evaluation of “fair bets”. Kahne-

man et al. (1982) illustrate potential pitfalls with eliciting

probability judgments and present techniques to counter

them. While this may seem “too subjective” and open to

biases (Edwards 1984), the ability to include prior infor-

mation provides necessary flexibility and can be considered

an advantage of the approach. Frequentist methods apply

only with data, and problems remain (e.g., Section 3.2).

To avoid the impression of subjectivity, several “auto-

mated” mechanisms have nonetheless been proposed to sup-

port the selection of a prior distribution. When a lot of data

are available, the likelihood function will be the dominant

term in Bayes’ rule, rather than the prior distribution, so these

methods may be helpful. The first approach is to obtain a

prior distribution for a parameter of an infinite exchangeable

sequence as a limiting case of an indifference judgment for a

finite exchangeable sequences. For the finite exchangeable

sequence of {0,1} outcomes, if each of the finite set of alter-

natives θN ∈ {0/N,1/N, . . . ,(N−1)/N,1} is judged equally

likely for each N, then limN→∞ p(θN)
D
→ uniform[0,1],

the prior probability model used by Laplace (1812) to assess

his prior probability that the sun would come up tomorrow.

That approach is coordinate dependent (indifference judg-

ments for θ and logθ give different results). Jeffreys (1946)

suggested π(θ) ∝ |H(θ)|
1/2

dθ , where H is the expected
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information in one observation,

H(θ) = EX

[

−
∂ 2log p(X | θ)

∂θ2

∣

∣

∣

∣

θ

]

, (4)

because it has the attractive property of being invariant

with respect to coordinate changes in θ . Jeffreys’ prior for

Bernoulli sampling is a beta(1/2,1/2) distribution. For

some models, Jeffreys’ prior is improper (does not integrate

to one), but may be useful if the data results in a proper

posterior after Bayes’ rule is formally applied.

A third approach that is mathematically convenient

is to assume a conjugate prior distribution, meaning that

the posterior distribution has the same functional form

as the prior distribution. For Bernoulli(θ ) sampling, the

beta(α,β ) distribution with probability density function

(pdf) f (θ)∝ θ α−1(1−θ)β−1 is a conjugate prior. If data xn

is observed, with sn =
∑n

i=1
xi, then the posterior pdf is f (θ |

xn)∝ θ α+sn−1(1−θ)β+n−sn−1, a beta(α +sn,β +n−sn)
distribution. Conjugate prior distributions exist for all mem-

bers of the regular exponential family (Bernardo and Smith

1994), including the exponential, normal, gamma, lognor-

mal, Wishart, Bernoulli, geometric, and Poisson distribu-

tions, as well as linear regression models with normally

distributed error. The uniform[0,1] distribution is in the

conjugate family for Bernoulli sampling—it is a beta(1,1)
distribution.

Conjugate prior distributions are often selected to

be as noninformative as possible, meaning that prob-

ability is spread “evenly” over the parameter space.

Although evenly is subjectively defined, heuristics

are available for members of the regular exponen-

tial family, whose likelihood function can be writ-

ten p(x | θ) = a(x)h0(θ)exp[
∑d

j=1
c jφ j(θ)h j(x)]for some

a(·),h0(·),c j,φ j(·),h j(·). The conjugate prior distribu-

tion is p(θ) = [K(t)]−1[h0(θ)]n0 exp[
∑d

j=1
c jφ j(θ)t j].The

posterior distribution given n conditionally independent

data points then has parameters n0 + n and the sum of

t = (t1, t2, . . . , td) and the sufficient statistics (Bernardo and
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Smith 1994). The parameter n0 is therefore interpreted by

some to be the “strength” of the prior, measured in terms

of the number of samples. In that case, evenly spreading

probability can be taken to be selecting n0 close to 0, while

insuring that the prior is still proper. Jaynes (1983) suggests

a fourth approach that is common in image and signal pro-

cessing: maximum entropy methods define “diffuse” prior

with respect to a background measure, subject to moment

constraints on the parameters. Berger (1994) and Kass and

Wasserman (1996) discuss on default prior distributions and

sensitivity analysis with respect to them.

Probability modeling is inherently subjective—even so-

called “objective” methods require the subjective specifica-

tion of a likelihood model. One standard Bayesian practice

is to use a slightly informative conjugate distribution for

the unknown mean, by choosing it to be proper but diffuse

(Gilks et al. 1996). For example, the conjugate prior for

an unknown mean of a normal distribution is also a normal

distribution. A diffuse prior would be Normal(0,σ2
big) for

some large σ2
big. Conjugate prior distributions are math-

ematically convenient, but care is still required with their

use, as with any statistical analysis, Bayesian or otherwise.

2.3 Asymptotic Theorems

Classical asymptotic theorems (laws of large numbers, LLN;

central limit theorem, CLT; e.g., Billingsley 1986) have

Bayesian interpretations when considered to be conditional

on the mean and standard deviation of an infinite exchange-

able sequence.

A Bayesian extension of the LLN allows for sample

averages to converge to random variables rather than to

“true” means.

Theorem 1 (Bayesian LLN) If X̄n and Ȳm are re-

spectively the averages of n and m exchangeable random

quantities Xi (the two averages may or may not have some

terms in common), the probability that

|X̄n − Ȳm| > ε

may be made arbitrarily small by taking n and m sufficiently

large (de Finetti 1990, p. 216 assumes a finite variance).

Even though the modes of Bayesian posterior distribu-

tions may not be the true mean, an asymptotic normality

property holds for posterior distributions of parameters.

Theorem 2 (Posterior Normality) For each n, let

pn(·) be the posterior pdf of the d-dimensional parameter

θn given xn = (x1, . . . ,xn), let θ̃n be its mode, and define

the d ×d Bayesian observed information matrix Σ−1
n by

Σ−1
n = −

∂ 2log pn(θ | xn)

∂θ2

∣

∣

∣

∣

θ̃n

. (5)
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Then φn = Σ
−1/2
n (θn − θ̃n) converges in distribution to a

standard (multivariate) normal random variable (Bernardo

and Smith 1994, Prop 5.14 needs regularity conditions).

Theorem 2 asserts that uncertainty about the value of

the unknown parameter value can be approximated asymp-

totically with a normal distribution. The Bayesian observed

information Σ−1
n is a measure of precision of the poste-

rior distribution of θ , and behaves asymptotically like the

frequentist observed information (which ignores the prior

distribution) under rather general conditions, but the interpre-

tation differs somewhat. The classical analog of Theorem 2

asserts that the MLE is asymptotically normally distributed

about a “true” parameter θ0 (Law and Kelton 2000), rather

than describing uncertainty about θ . The mode θ̃n is often

called a MAP (maximum a posteriori probability) estimator.

2.4 Expected Value of Information

The fact that input uncertainty is described by probability

distributions allows the modeler to assess the expected value

of information of additional data. The expected value of

information is useful in experimental design. It measures

the value of resolving uncertainty with respect to a loss

function L(d,ω) that describes the loss when a decision

d is chosen when the state of nature is ω . The expected

improvement in the loss given by the information in an

experiment is a Bayesian experimental design criterion.

The value of information idea directly leads to the

selection procedures in Section 3.3. A simplified version

of that problem adapted from de Groot (1970) illustrates

the key concepts. Suppose we must decide whether or

not the unknown mean W of a normal distribution (known

sampling variance σ2) is smaller (decision d = 1) or larger

(d = 2) than w0. Conditionally independent samples Xn =
(X1,X2, . . . ,Xn), with p(Xi)∼ Normal

(

w,σ2
)

given W = w,

can be used to infer the value of the mean. The decision

maker designs an experiment (chooses n) to balance the

cost of sampling, cn, and the expected penalty if the wrong

answer is chosen. Here the penalty for incorrect selection

is the opportunity cost L(1,w), the difference between the

actual value of w and w0 when the wrong answer is selected,

and 0 if the right answer is selected.

L(1,w) =

{

0 if w ≤ w0

w−w0 if w > w0,

L(2,w) =

{

w0−w if w ≤ w0

0 if w > w0.

Since the mean is not known exactly, there is a potential

penalty for incorrectly specifying whether W is smaller or

larger than w0. We model uncertainty about W with a

Normal(µ ,1/τ) prior distribution, which is conjugate for

normal sampling with an unknown mean and known variance

(Bernardo and Smith 1994). Here, τ is the precision in our
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uncertainty about W . Observing Xn = xn would reduce the

uncertainty and result in the posterior distribution

p(w | xn) ∼ Normal

(

z,τ−1
n

)

,

where

z = posterior mean of W = E[W | xn] =
τµ + n

σ2 x̄n

τ + n
σ2

,

and τn = posterior precision of W = τ +n/σ2.
The variance τ−1

n equals the posterior variance approx-

imation Σn in Equation (5) because Σn is based on a normal

distribution approximation.

The posterior mean z influences the decision, but it de-

pends upon n, which must be selected before Xn is observed.

We need the predictive distribution p(z) of the posterior

mean Z = E[W | Xn] = (τµ +nX̄n)/τn to see how n samples

influences the decision d. The conditional distribution of

X̄n given w is Normal

(

w,σ2/n
)

. Mixing over the prior

distribution of W implies that the predictive distribution for

Z is Normal

(

µ ,τ−1
z

)

, where

τz = τ(τ +n/σ2)/(n/σ2). (6)

The variance τ−1
z of Z is 0 when n→ 0 (no new information).

If n→∞ (perfect information about w), then Var[Z]→ τ−1,

the prior variance for W .

The experimental design that minimizes risk (the cost of

sampling plus expected losses due to a potentially incorrect

decision) is the n that minimizes a nested expectation, an

inner expectation corresponds to the expected loss after Xn

is observed, an outer expectation averages over Xn,

ρ(n) = cn+EX n
[EW [L(d(Xn),W ) | Xn]]. (7)

One technique to analyze EW [L(d(Xn),W ) | Xn] is to obtain

an auxiliary loss function L∗ that has the same optimal

decision, but simplifies the loss function by making the loss

of one of the decisions equal to 0. Adding a function of

w does not change the optimal decision (de Groot 1970).

Set L∗(d,w) = L(d,w)−L(1,w), which is 0 if d = 1 and

is w0−w if d = 2. Then

EW [L∗(d(Xn),W ) | Xn] =

{

0 if d = 1
w0−Z if d = 2.

(8)

The decision that minimizes the loss in Equation (8) is to

assert d(Xn) = 2 (“bigger”) if the posterior mean exceeds

the threshold, Z > w0, and to assert d(Xn) = 1 (“smaller”)

if Z ≤ w0.

The expectation over the outcomes Xn can be determined

with well-known tables because the decision depends upon

Xn only through Z, and Z has a normal distribution. The
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expected loss can be determined by the standard normal loss

Ψ[s] =
∫

∞

s
(t − s)φ(t)dt = φ(s)− s(1−Φ(s)) for expected

lost sales in the newsvendor problem if demand is normally

distributed (e.g., Porteus 2002).

E[L∗(d(Xn),W )] = EX n
[EW [L∗(d(Xn),W ) | Xn]]

= −

∫

∞

w0

(z−w0)p(z | Xn)dz

= −τ
−1

2
z Ψ[τ

1

2
z (w0−µ)].

The expected loss of the original loss function is recovered

by adding back E[L(1,W )], using the prior distribution of

W for the expectation.

E[L(d(Xn),W )] = τ
−1

2 Ψ[τ
1

2 (w0−µ)] (9)

−τ
−1

2
z Ψ[τ

1

2
z (w0−µ)].

The expected value of information for m samples is the

difference between Equation (9) when n = 0 and when n = m

(τz depends on n). Combine Equation (9) with Equations (6)-

(7), note that dΨ/ds = Φ(s)−1 and dτz/dn = −τ2σ2/n2,

and take the derivative with respect to n (relaxing the integer

assumption) to obtain an optimality condition for the sample

size.

∂ρ

∂n
=

1

2
τ
−

3

2
z φ [τ

1

2
z (w0−µ)] ·

−τ2σ2

n2
+ c = 0.

For diminishing costs c → 0, the sample size is large. Since

τz → τ as n →∞, the optimal sample size n is (asymptot-

ically) approximately

n∗ =

(

τ
1

2 σ2φ [τ
1

2 (w0−µ)]

2c

)1/2

.

(10)

This argument illustrates the basic ideas of loss functions,

and the use of predictive distributions for future samples

to infer the expected value of information of sampling.

The technique of adding functions of the unknowns can be

useful to simplify the derivation of the optimal solution.

Asymptotic approximations are a further tool to identify

criteria-based sampling plans. Extensions of this basic

argument justify the expected value of information based

selection procedures that are summarized in Section 3.3.

An alternate mechanism to approximate the effect of

information on parameter uncertainty is based on a thought

experiment for the posterior probabilities of parameters. For

members of the regular exponential family, the asymptotic

variance approximation Σn in Equation (5) simplifies to the

form H−1(θ)/(n0+n), where H is the expected information

from one observation (Equation (4)), when a canonical

conjugate prior distribution is used (Bernardo and Smith
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1994). To approximate the effect of collecting m additional

samples on the parameter uncertainty, given that n samples

have already been collected, one could presume that the

posterior distribution changes from Normal(θ̃n,Σn) to

Normal

(

θ̃n,Σn

n0 +n

n0 +n+m

)

. (11)

This transformation reflects an appropriate scaling of the

posterior precision, and the idea is used in a frequentist

context for estimating how many replications are required

to achieve a confidence interval of a given size (Law and

Kelton 2000). Chen (1996) uses this type of approximation

for the Bayesian posterior distribution of the unknown means

of several simulated systems in order to motivate a class of

ranking and selection procedures called the OCBA. Ng and

Chick (2006) use the idea to plan experiments to reduce

input uncertainty in a way that reduces output uncertainty.

2.5 Entropy and Kullback-Leibler Discrepancy

Kullback-Leibler discrepancy is a useful measure of the

difference between two distributions. For discrete distribu-

tions p̃ and p, the discrepancy is δ (p || p̃) =
∑

p̃i log(p̃i/qi).
Two continuous distributions for a random variable X with

densities f̃ and fθ = f (x | θ) have discrepancy

δ ( fθ || f̃ ) =

∫

f̃ (x) log
f̃ (x)

f (x | θ)
dx. (12)

One application for discrepancy is as a loss function for

a decision maker that must specify a probability distribution.

If the decision-maker believes that the distribution is f̃ , and

loses δ ( f || f̃ ) if he/she provides a distribution f , then the

decision-maker should honestly report f̃ to minimize the

expected loss (Bernardo and Smith 1994).

A second application of discrepancy is as a design

criterion for experiments designed to assist with parameter

estimation (Bernardo 1979, Smith and Verdinelli 1980). In

the simulation context, this could mean selecting a design

matrix dΘ of r vectors of inputs (θ pi,θ ei,θ ci) for i =
1,2, . . . ,r with output Y in order to best differentiate the

posterior distribution of the response parameters ψ from the

prior distribution for ψ . In other words, the goal is to select

the dΘ from a set of possible design matrices to maximize

the expected divergence of posterior and prior distributions

for ψ , the expectation over the predictive distribution of the

output Y.

∫

p(Y | dΘ)

(
∫

p(ψ | Y) log
p(ψ | Y)

p(ψ)
dψ

)

dY (13)

The predictive distribution p(Y | dΘ) of future outputs de-

pends upon the current uncertainty about ψ and the design
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matrix dΘ. This approach is essentially an expected value

of information design criterion, as in Section 2.4, except

now the loss function is the Kullback-Leibler discrepancy

rather than the opportunity cost.

Other applications of discrepancy include the maximum

entropy prior distribution mentioned above (Jaynes 1983),

and for input distribution selection, as in Section 3.2 below.

3 APPLICATIONS

3.1 Uncertainty Analysis

A sensitivity analysis tests how the mean simulation output

depends upon one or more input parameters as that parameter

is varied (estimating E[g(θ) | E ] as a function of θ , given

all information E). Uncertainty analysis entails propagating

input parameter uncertainty about Θ through to uncertainty

about outputs Y . Even if a simulation has no random number

stream, a distribution on unknown inputs means that the

output is random.

An unbiased estimator of the mean output E[Y | E ] with

both stochastic (from u) and systemic (or parameter) uncer-

tainty accounted for is obtained from the Bayesian model

average (BMA) in Figure 2, which averages over random in-

puts sampling according to the distribution p(θ | E) (Draper

1995, Chick 2001). Zouaoui and Wilson (2003) explore the

relative magnitude of stochastic and systemic uncertainty

with variations on the BMA, and discuss how to update the

estimate should new data become available (so the algorithm

need not be rerun from scratch). Importance sampling tech-

niques can reweigh estimates accordingly (with likelihood

ratio determined as the ratio of the “new” posterior divided

by the “old” distribution). Andradóttir and Glynn (2004)

examine the estimation of E[Y (Θ) | E ] when there may be

bias in the estimates of Y given θ , when quasi-random se-

quences are used in place of the pseudo-random sequences

assumed by Figure 2, or when numerical techniques like

Simpson’s rule are employed to select values of θ .

Other issues for sensitivity analysis include estimation

of the distribution of the conditional expectation E[Y |Θ,E ].
When Y is a deterministic function of Θ, then naive Monte

Carlo simulation can be used with traditional kernel estima-

tion techniques to assess the distribution of Y (Θ). When

for r = 1, . . . ,R replications

sample parameter θr from p(θ | E)
for i = 1,2, . . . ,n

generate simulation output yri given input θr

end loop

end loop

Estimate E[Y | E ] with ȳ =
∑R

r=1

1

R

∑n
i=1

yri/n.

Figure 2: Bayesian Model Average (BMA)
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the simulation is stochastic (depends on the random number

stream u), then E[Y | θ ,E ] is imperfectly estimated for any

given θ . Given several technical conditions (e.g., univariate

continuous-valued θ , monotonic mean response), Steckley

and Henderson (2003) derive asymptotically optimal ways

of selecting by cleverly selecting r and m in Figure 2 to

produce a kernel density estimator based on the output.

Their work builds upon earlier work by Lee and Glynn

(1999) to estimate the distribution function of E[Y | Θ,E ]
for the case of discrete-valued θ .

3.2 Selecting from Multiple Candidate Distributions

Input selection in simulation practice may consider q > 1
candidate distributions for potential input to a model. The

usual approach (Law and Kelton 2000) is to find the MLE

for each candidate distribution, assess the goodness of fit

for each model, then select a model that “fits well”. While

this is practically appealing, there are known problems with

the approach (Lindley 1957, Berger and Pericchi 1996). In

the simulation context, input uncertainty can make standard

confidence intervals for the mean output almost meaningless

if the classical approach is used (Barton and Schruben

2001; Chick 2001, 2006), because an excellent simulation

estimate based on point estimates for inputs misses the boat

if there is uncertainty about input values, which is typical

for simulations of real systems.

A Bayesian approach with model uncertainty is basically

the same as for parameter uncertainty alone, as in Section 2.1

above, except now that a prior probability distribution needs

to be placed on the model/parameter combination, π(m,θm),
a mixed discrete-continuous model, where m ∈ {1,2, . . . ,q}
indexes the set of candidate distributions, and θm is the

parameter for the m-th candidate distribution. As data xn

becomes available, the BMA then requires sampling from

the joint posterior p(m,θm | xn). This can be accomplished

by composition, sampling the input model then the parameter

with p(m | xn)p(θm | m,xn).
Chick (2001) first illustrated Bayesian input modeling

in a stochastic simulation context, and suggested a method-

of-moments approach for assessing prior distributions for

the unknown parameters of each candidate model. Zouaoui

and Wilson (2004) noted a decoupling of stochastic uncer-

tainty from two types of structural uncertainty (that due

to uncertainty about the candidate model, plus that due to

uncertainty about the parameters of the candidate models)

under special conditions, provided a variance reduction for

the BMA and numerical analysis.

Selecting models according to p(m,θm | E) is consistent

in that if one of the entertained models is the true model,

then the true model is selected if enough data is observed and

some regularity conditions hold. When the true model is not

among those being considered, Bayesian model selection
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chooses the model that is closest to the true model in terms

of Kullback-Leibler divergence (Berk 1966).

3.3 Ranking and Selection

Procedures to select the best of a finite set of simulated

systems using Bayesian approaches have been derived from

three very different angles.

Chick and Inoue (2001a) used expected value of in-

formation ideas that extend Equations (9)-(10) to obtain

two-stage value of information procedures (VIPs) with in-

dependent replications that identify the best of a finite set

of simulated systems. Equation (9) was generalized to

allow for unknown and potentially different variances for

multiple simulated systems. The loss for k > 2 systems

was approximated by the sum of losses for k−1 pairwise

comparisons between the system selected in the absence

of additional replications and each of the other systems.

Additional replications for the second stage are allocated

so minimize that loss function using an asymptotic (in the

number of replications) approximation like that used for

Equation (10). A variation improves the (Bayesian poste-

rior) probability of correct selection with the 0-1 loss function

(loss of 1 if the wrong system is selected, 0 if the best is

selected), and sequential variations exist (Chick and Inoue

2001a, Chick and Inoue 2002). The procedures, named

LL(B),LL(S),0-1(B),0-1(S) depending upon whether an

opportunity cost (aka linear loss) or 0-1 loss function is

used, and whether a budget constraint or sequential sam-

pling apply, are empirically quite effective for identifying

the best system with respect to several figures of merit.

The idea has also been extended to handle common random

numbers with screening to improve efficiency. The analysis

to justify them also requires missing data techniques (Chick

and Inoue 2001b).

Chen (1996) and Chen et al. (2005) use a different

tack—the thought experiment in Equation (11) that supposes

that additional replications won’t change the estimate of the

means of each system, but can reduce the variance associ-

ated with the estimate. They provide empirically effective

procedures (called OCBA) with only a few parameters to

tune for identifying the best system with high probability.

Although OCBA is typically derived by assuming that sam-

ples are normally distributed, the results of (Bernardo and

Smith 1994) can be used to asymptotically justify the idea

of the OCBA when both n and the number of samples per

stage are large. He et al. (2006) provide an OCBA varia-

tion that reduces the expected opportunity cost of potentially

incorrect selections.

See Branke et al. (2005) for a thorough review of the

VIP and OCBA approaches, with: a comparison of how they

compare with the (frequentist) indifference zone approach;

a derivation of new procedures; and the identification of

highly effective procedures as determined by battery of
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numerical tests (innovations for some specific VIP and

OCBA procedures).

A third, very new Bayesian approach to selection pro-

cedures was proposed by Chick and Gans (2005). That

approach takes an economic viewpoint to simulation selec-

tion that accounts for both the costs of replications and the

discounting costs that occurs due to delays from a simulation

analysis. This reframes the simulation selection problem

from one of statistic significance to one of expected net

present values (the language of managers that make high-

level decisions that may be informed by simulation). They

show that, given certain conditions (including independent

samples from system to system that represent the economic

value of implementing a simulated system), the problem of

sequentially selecting which system to simulate or imple-

ment resembles a variation of a Bayesian bandit problem.

The optimal procedure for deciding which system to further

simulate or to implement uses a Gittins index and a special

continuation region. They show that the Gittins index turns

out to be proportional to the value of what might be called

an American option on a regular (not geometric) Brownian

motion whose drift is unknown but is inferred with Bayes

rule and observations from that Brownian motion. That pa-

per also shows how to approximate the Gittins index when

samples are normally distributed with a known variance.

3.4 Metamodels

Metamodels are a model of how simulated responses are

believed to behave as a function of input parameters, even

for values of parameters not yet input to the simulation.

This is particularly useful when the simulation model re-

quires extensive computation. In addition to describing the

response, metamodels can be used to predict how reduc-

tions in input parameter uncertainty can reduce uncertainty

about the mean system performance. Since the metamodel

is unknown, uncertainty about it can be modeled from a

Bayesian perspective. Here we discuss the normal linear

model. For information about a very interesting alternative,

called Gaussian random function (GRF) metamodels, see

also Kennedy and O’Hagan (2001), Santner et al. (2003)

and van Beers and Kleijnen (2003, 2004).

The normal linear model is

Y =

p
∑

`=1

g`(θ)β` +Z(θ ;U) = gT (θ)β +Z(θ ;U), (14)

for known regression functions g1, . . . ,gp, potentially un-

known regression coefficients β , and a zero-mean random

noise Z(·). The conjugate prior is an inverted gamma dis-

tribution for the unknown variance σ2 and a conditionally

normal distribution for β given σ2, if all factors are active

(Bernardo and Smith 1994). The metamodel parameters are

then ψ = (β ,σ2). Raftery, Madigan, and Hoeting (1997)
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describe a relatively uninformative prior distribution for

ψ for this normal linear model. A vector of simulation

output Y = y obtained with design matrix dΘ with inputs

(θ pi,θ ei,θ ci) for runs i = 1, . . . ,r can be used to update

the posterior distribution of unknown response parameters,

p(ψ | y,dΘ), using Bayes’ rule.

Identifying important factors (factors with nonzero βi)

can be formulated as a Bayesian model selection prob-

lem, selecting from 2p different response models that are

distinguished by the presence or absence of each factor.

George and McCulloch (1996) and Cheng (1999) discuss

techniques for estimating which factors are active with what

probability. Ng and Chick (2004) describe an entropy-based

experimental design criterion (cf. Section 2.5) to identify

both which factors are active and reduce parameter uncer-

tainty simultaneously.

When the gi represent the individual dimensions of

the unknown parameters (θ p,θ e), the β` are gradients with

respect to the inputs. If the model has only statistical

input parameters θ p for which data can be collected (but

not parameters θ e for which no data is available), Ng and

Chick (2001) and Zouaoui and Wilson (2003) indicate that

output uncertainty can be decoupled asymptotically or under

special conditions.

Var[Ȳ | E ] ≈ stochastic+parameter uncertainty

≈
σ̂2

0

m
+

β Ĥ−1

θ p
β

n
,

where σ̂2
0 is the estimate of the variance from m replications,

the MLE θ̂ p and estimate Ĥ−1

θ p
of the information in one

observation are based on n data points, and some technical

conditions hold. This adapts a frequentist result of Cheng

and Holland (1997).

Ng and Chick (2001) use that decoupling, applied to

uncertainty due to multiple input parameters,

np
∑

i=1

β iĤ
−1

θ pi
β i/ni,

to provide sampling plans to collect further data to reduce

input parameter uncertainty to optimally reduce output un-

certainty in some sense, assuming that different numbers

of data points can be collected to infer the parameters of

different sources of randomness (e.g., arrival rates versus

service time distributions). Ng and Chick (2006) extend that

analysis by accounting for uncertainty about β ; suggest al-

locations of resources for either running more replications or

collecting more data points to reduce the asymptotic output

variance approximation; and give a numerical analysis.

To date, much simulation research seeks analytical re-

sults for stochastic models, or mechanisms to reduce the

variance of estimators due to stochastic noise. Those re-
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sults need to be complemented with an understanding of

how performance depends on input uncertainty, and meth-

ods to reduce input uncertainty to effectively reduce output

uncertainty. The Bayesian approach is a tool that can help.

4 IMPLEMENTATION

Three basic computational issues for implementing a

Bayesian analysis are maximization (e.g., find the MLE

θ̂ or MAP θ̃ estimator for a posterior distribution); integra-

tion, either to find a marginal distribution (find p(θ1 | xn)
from p(θ1,θ2 | xn)) or constant of proportionality for a pos-

terior distribution (find c−1 =
∫

f (xn | θ)dπ(θ), or p(m | xn)
for Section 3.2); and simulation (sample from p(θ | xn) in

order to estimate E[g(θ) | xn]). These techniques are de-

scribed in a variety of sources (Evans and Swartz 1995,

Tanner 1996, Gilks et al. 1996, Devroye 2006).

For maximization, a number of methods are available

including gradient-based methods (e.g., Newton-Raphson),

gradient-free methods (e.g., Nelder-Mead), and simulation-

based methods. The expectation-maximization (EM) algo-

rithm is a technique for finding the MAP or MLE when there

is missing data or nuisance parameters are to be integrated

out (e.g., the MAP of p(θ1 | xn) when it is “messy” but

p(θ1,θ2 | xn) is easier to manipulate).

For integration, five general techniques apply when

analytical results are not available: asymptotic methods,

Markov chain methods, importance sampling, adaptive im-

portance sampling, and multiple quadrature. Quadrature is

useful when the number of dimensions is not too large. The

Laplace method is an interesting approximation for inte-

grals
∫

g(θ) f (θ | xn)dπ(θ) based on asymptotic normality

results (like Equation (5)), and it applies even if f (θ | xn)
is only proportional to the posterior distribution. It also

applies for integrating out nuisance parameters if regularity

conditions hold. Another effective technique for approxi-

mating p(θ1 | xn) (not just the MLE or MAP) when it is

“messy” but p(θ1 | θ2,xn) and p(θ2 | θ1,xn) are easy to ma-

nipulate is data augmentation, often called the IP algorithm

(for imputation, posterior algorithm). Importance sampling

(IS) remains a powerful methods for efficient integration.

For simulation of variates, classical methods for gener-

ating independent variates from posterior distributions may

apply. Posterior distributions are often known only up to a

constant of proportionality (the denominator in Bayes rule

may be hard to compute). It is therefore important to have

a method to simulate variates for arbitrary functions pro-

portional to posterior distributions. Markov Chain Monte

Carlo (MCMC) is the most important of those methods at

present. MCMC constructs a Markov chain whose station-

ary distribution is the desired posterior distribution p(θ | E)
(Gilks et al. 1996). The state θt of the Markov chain can

then be sampled to obtain (somewhat correlated) samples

from p(θ | E).
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A number of tools implement Bayesian inference. The

BUGS and WinBUGS packages implement MCMC tools,

and are available on the WWW (Spiegelhalter et al. 1996).

BOA, for Bayesian output analysis (Smith 2004), is a set of

MCMC diagnostic tools for convergence and data analysis

that functions with the R or S-PLUS statistical packages.

Gauss and Matlab are also used to implement MCMC

methods.

At present, it is possible to input randomized input

parameters to some commercial discrete-event simulation

packages to implement the BMA algorithm of Figure 2, but

interfaces are not yet fully user friendly. A user-friendly

tool to implement the BMA and other uncertainty analysis

needs in commercial discrete-event simulation packages

would be helpful. Uncertainty analysis for other Monte

Carlo applications have been available as a spreadsheet tool

for some time (e.g., Winston 2000).

5 CONCLUSIONS

A variety of applications of Bayesian methods apply to sim-

ulation experiments, including uncertainty analysis, ranking

and selection, input distribution modeling, response surface

modeling, and experimental designs. One main theme is to

represent all uncertainty with probability distributions, to

update probability using Bayes’ rule, and to use the expected

value of information as a technique to make sampling deci-

sions (e.g., the opportunity cost and 0-1 loss functions for

selection procedures, or the Kullback-Leibler divergence for

parameter estimation for linear response models). Another

theme is to use simulation to efficiently estimate quantities

of interest for a Bayesian analysis. Asymptotic approxi-

mations are often helpful when exact optimal solutions are

difficult to obtain.

An advantage of the Bayesian and decision theoretic

tools is that they can easily model the economics of manage-

rial decision-making. Exploiting the economics of decision

making is an interesting area for future work, and can

help simulation, as a tool, become more useful in broader

managerial contexts.

Other research opportunities include further work in:

input modeling and uncertainty analysis (kernel estimation of

outputs as a result of input uncertainty; the effect of different

candidate distributions on uncertainty; tools to help elicit

prior distributions for simulation inputs); response modeling

(further extending the Gaussian random field work in the

world of stochastic simulation; sampling plans for input

parameter inference to optimally reduce output uncertainty,

including nonasymptotic results, to help understand what

data is most important to collect to infer the value of

inputs for simulations; theory and improved implementation

for the calibration/inverse problem, i.e., how to “invert”

probability distributions for output results backwards to

obtain a reasonable probability distribution on unknown
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“inputs”, a problem that arises regularly in public policy

and health contexts); Bayesian methods for experimental

designs (estimating quantiles or other non-expected value

goals; CRN for unknown input parameters for ranking and

selection; non-Gaussian output for ranking and selection

and GRFs); improved computational tools (in MCMC and

other sampling methods for posterior distributions).
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