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ABSTRACT

In this paper we propose a state-dependent importance sam-

pling heuristic to estimate the probability of population

overflow in networks of parallel queues. This heuristic ap-

proximates the “optimal” state-dependent change of mea-

sure without the need for difficult mathematical analysis

or costly optimization involved in adaptive methodologies.

Comprehensive simulations of networks with an arbitrary

number of parallel queues and different traffic intensities

yield asymptotically efficient estimates (with relative er-

ror increasing sub-linearly in the overflow level) where no

other state-independent importance sampling techniques are

known to be efficient. The efficiency of the proposed heuris-

tic surpasses those based on adaptive importance sampling

algorithms, yet it is easier to determine and implement and

scales better for large networks.

1 INTRODUCTION

Efficient simulation of queueing networks has long been

the focus of much research, owing to its applicability in the

modeling, analysis and dimensioning of logistic, production

and communication networks. Among the most effective

methodologies researched and applied so far are those based

on importance sampling (see, e.g., Parekh and Walrand 1989,

Asmussen and Rubinstein 1995, Heidelberger 1995, Juneja

and Nicola 2005).

Until recently, only state-independent importance sam-

pling heuristics were developed and considered for analysis.

In these heuristics, the change of measure is “static” and

independent of the network state (e.g., the number of cus-

tomers at each node in a Jackson network). A relatively

simple (and well known) heuristic change of measure for

simulations of population overflow in queueing networks

is that proposed in Parekh and Walrand (1989) and further

investigated in Frater et al. (1991). However, even for the

simplest Jackson queueing network (e.g., 2-nodes in series

or in parallel), the effectiveness of this heuristic is limited
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to only some region of the (arrival and service) parameters

space (see Glasserman and Kou 1995, de Boer 2004). (We

use the term “effectiveness” interchangeably with “asymp-

totic efficiency;” see, e.g., Nicola and Zaburnenko 2005b

for a precise definition.)

Based on Markov additive process formulation of a two-

node tandem network and large deviations arguments, work

in Kroese and Nicola (2002) reveals that a state-dependent

change of measure is effective where no effective state-

independent change of measure exists. Since then, there has

been increasingly more research on methodologies to obtain

efficient state-dependent importance sampling heuristics,

with very encouraging results. In de Boer and Nicola (2002)

an adaptive optimization technique based on the method of

cross-entropy (Rubinstein 2002) is used to approximate the

“optimal” state-dependent change of measure. A drawback

of this approach, however, is the excessive computational

and storage demands for large state-space models associated

with large networks.

In Nicola and Zaburnenko (2005a, 2005b) and Zabur-

nenko and Nicola (2005), heuristics are proposed to ap-

proximate the “optimal” state-dependent change of measure

without the need for costly optimizations. The key obser-

vation is that the “optimal” change of measure depends

on the network state only along and close to the bound-

aries (when one or more nodes are empty), and tends to

become state-independent in the interior of the state-space.

Therefore, if we can determine the change of measure

along the boundaries and at the interior of the state-space,

then we may be able to combine them appropriately to

construct a state-dependent change of measure that approx-

imates the “optimal” one in the entire state-space. The

proposed methodology is dubbed “state-dependent heuris-

tic” or SDH in short. Experimental results with the so

obtained heuristic change of measure for tandem networks

with multiple nodes yield estimates with a bounded relative

error (see Zaburnenko and Nicola 2005, Nicola and Zabur-

nenko 2005a). In Nicola and Zaburnenko (2005b), changes

of measure for feed-forward and feedback networks are pro-
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posed following the same heuristic approach. Experimental

results reported there are encouraging but not sufficiently

robust. This is primarily because an efficient heuristic to

simulate parallel networks (which is a key to more complex

topologies) was not available then.

In this paper we follow the same heuristic approach

to develop a state-dependent change of measure for the

efficient simulation of parallel queues with probabilistic

routing. Experimental results to estimate the probability of

population overflow in networks of up to 4 nodes in paral-

lel produce asymptotically efficient estimates, with relative

error increasing (sub-)linearly in the overflow level. The

proposed heuristic is effective, robust, easy-to-implement

and is shown to be more efficient than those based on

adaptive methodologies (e.g., de Boer and Nicola 2002),

particularly for large networks. Moreover, the findings pro-

vide crucial insights and pave the way to develop more

effective and robust heuristic changes of measure (com-

pared to those presented in Nicola and Zaburnenko 2005b)

for feed-forward and other complex network topologies.

In Section 2 we introduce the basic model and define

the probability of interest. The importance sampling tech-

nique is briefly reviewed. In Section 3 we introduce our

heuristic approach, then we give a formal representation of

the proposed SDH change of measure for parallel networks

with probabilistic routing. The heuristic is also motivated

using a time-reversal argument. In Section 4 we present

experimental results and comparisons with other known

methods to estimate the probability of population overflow

in some examples of parallel networks. We conclude in

Section 5.

2 PRELIMINARIES

The queueing network model and associated notation are

introduced in Section 2.1. A brief review of importance

sampling and some properties of simulation estimators are

provided in Section 2.2.

2.1 Model and Notation

Consider a queueing network consisting of n nodes in par-

allel, each having its own (infinite) buffer. Customers arrive

according to a Poisson process with rate λ . Upon arrival a

customer is routed to one of the n parallel node according to

some routing (scheduling) policy. An example of a “static”

policy is probabilistic routing (considered in this paper), by

which an arrival is assigned to node i with a fixed prob-

ability pi. For this policy, the arrival process at node i is

also Poisson with rate λi = λ pi (i = 1, . . . ,n). An example

of a “dynamic” scheduling policy is the JSQ (Join Shortest

Queue) which, if applicable, may be preferred because of

its load balancing feature and some optimality properties

(see, e.g., Ephremides et al. 1980, Winston 1997). The ser-
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vice time at node i is exponentially distributed with rate µi

(i = 1, . . . ,n), after which the customer leaves the network.

Let Xi,t (i = 1, . . . ,n) denote the number of customers at

node i at time t > 0 (including those in service). Then the

vector Xt = (X1,t , . . . ,Xn,t) is a Markov process representing

the state of the network at time t. Denote by St the total

number of customers in the network (network population)

at time t, i.e., St =
∑n

i=1
Xi,t .

Assuming that the initial network state is X0 (usually,

X0 = (0, . . . ,0) corresponding to an empty network), we

are interested in the probability that the network population

reaches some high level L ∈ N before becoming empty.

We denote this probability by γ(L) and refer to it as the

population overflow probability, starting from the initial state

X0. Since the associated event is typically rare, importance

sampling may be used to efficiently estimate this probability.

2.2 Importance Sampling

Importance sampling involves simulating the system un-

der different underlying probability distributions so as to

increase the frequency of typical sample paths leading to

the rare event (for a more comprehensive review see, e.g.,

Heidelberger 1995). Formally, let w be a sample path over

the interval [0, t]. Then, the likelihood ratio associated with

w is given by Wt(w) = P(w)/P̃(w), where P(w) and P̃(w)
are the probabilities (or likelihoods) of sample path w under

the original and the new measure, respectively. Obviously,

P̃(w) > 0 whenever P(w) > 0. Starting from X0, define τ
as the first time St hits level L or level 0, then

γ(L) = E I{Sτ=L} = ẼWτ I{Sτ=L} , (1)

where I· is the indicator function taking the value 1 if the

event · is true and 0 otherwise, and Wτ is the likelihood ratio

over the interval [0,τ]. E and Ẽ are the expectations under

the original and the new changes of measure, respectively.

The variance of the estimator ẼWτ I{Sτ=L} is given by

ẼWτ
2 I{Sτ=L} − (γ(L))2 . (2)

The relative error is the ratio of the standard deviation

of the estimator over its expectation, i.e.,

√

ẼWτ
2 I{Sτ=L}

(γ(L))2
− 1 . (3)

The estimator ẼWτ I{Sτ=L} is said to be asymptotically

efficient if its relative error grows at sub-exponential (e.g.,

polynomial) rate as L →∞ (i.e., as γ(L) → 0). Formally,

let limL→∞
1

L
log γ(L) = θ . That is, θ is the asymptotic

decay rate of the overflow probability γ(L) as L→∞. Then,

from Equation 3, asymptotic efficiency is obtained if the
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asymptotic decay rate of ẼWτ
2 I{Sτ=L} is equal to that of

(γ(L))2, i.e.,

lim
L→∞

1

L
log ẼWτ

2 I{Sτ=L} = 2θ . (4)

The estimator is said to have bounded relative error if its

relative error is bounded in L as γ(L) → 0. This implies

asymptotic efficiency, however, it is a stronger and more

desirable property for any importance sampling estimator.

It is important to note that a change of measure may,

in general, depend on the state of the system, even if

the original underlying distributions do not depend on the

system state. For instance, the arrival and service rates

in a Markovian queueing network are typically fixed and

independent of the network state (i.e., the buffer content

at each node). However, a change of measure to be used

in importance sampling simulation may involve new arrival

and service rates that depend on the state of the network.

State-dependent changes of measure are generally more

effective in simulations of rare events in queueing networks

(see, e.g., Kroese and Nicola 2002, de Boer and Nicola

2002). Therefore, in this paper (as in Zaburnenko and

Nicola 2005 and Nicola and Zaburnenko 2005a, 2005b) we

aim at developing heuristics to approximate the “optimal”

state-dependent change of measure.

3 A STATE-DEPENDENT HEURISTIC

Recent theoretical and empirical studies in Kroese and Nicola

(2002) and de Boer and Nicola (2002) indicate that the

“optimal” (or asymptotically efficient) change of measure

depends on the network state, i.e., the number of customers at

the network nodes. Furthermore, this crucial dependence is

strong along the boundaries of the state-space (i.e., when one

or more buffers are empty) and diminishes in the interior

of the state-space (i.e., when contents of all buffers are

sufficiently large).

The above observation suggests that if we know the

“optimal” change of measure along the boundaries and in

the interior of the state-space, then we might be able to con-

struct a change of measure that approximates the “optimal”

one over the entire state-space. In Nicola and Zaburnenko

(2005a), heuristics based on combining known large de-

viations results and time-reversal arguments are used to

construct such a change of measure for tandem networks.

Empirical results show that it produces asymptotically ef-

ficient estimates for all feasible network parameters (the

relative error is bounded for tandem networks having a

single bottleneck). In the following we propose a heuristic

state-dependent change of measure to efficiently simulate

networks of parallel queues with probabilistic routing.
400
3.1 SDH for Parallel Networks with Probabilistic

Routing

Let λi and µi be, respectively, the arrival rate and the service

rate at node i, and denote its traffic intensity by ρi =
λi
µi

< 1

(i = 1, . . . ,n). Without loss of generality we assume that
∑n

i=1
(λi + µi) = 1.

Let xi, i = 1, . . . ,n, be the number of customers at node

i at time t. Then the state of the network, Xt, is given by the

vector x = (x1,x2, ...,xn). The new rates may depend on the

network state and, therefore, they are functions of the vector

x. Denote by λ̃i(x) and µ̃i(x) (i = 1, . . . ,n) the arrival and

service rates at node i under the new change of measure, and

by SDHi(x) (i = 1, . . . ,n) the 2×2 linear operator (matrix)

transforming the original rates into the new rates at node

i (i = 1, . . . ,n). (For convenience, we occasionally abuse

notation by dropping the vector x). Define [a]+ = max(a,0)
and [a]1 = min(a,1), then the change of measure at node

i (i = 1, . . . ,n) is given by:

[

λ̃i(x)
µ̃i(x)

]

= SDHi(x)

[

λi

µi

]

, (5)

SDHi(x) =

[

bi − xi

bi

]+ [

1 0
0 1

]

+

[

xi

bi

]1 [

0 1
1 0

]

,

(6)

for some integer bi ≥ 1, and i = 1, . . . ,n. The first matrix is

the identity matrix, corresponding to no change of measure.

The second matrix is the identity matrix with the first

and the second rows interchanged, which corresponds to

interchanging the arrival and service rates at node i. Note

that the change of measure at node i depends on the network

state only through xi. In a scalar form, the new rates are

given by:

λ̃i(xi) =

[

bi − xi

bi

]+

λi +

[

xi

bi

]1

µi

and

µ̃i(xi) =

[

bi − xi

bi

]+

µi +

[

xi

bi

]1

λi .

Note also that the equality
∑n

i=1
(λ̃i(x)+ µ̃i(x)) = 1 holds

under the above change of measure.

Remark 1 Note that bi is the number of boundary

levels for which the change of measure at node i depends

on its content xi (we also refer to it as the dependence

range at node i). Proper selection of the bi’s is crucial for
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achieving asymptotic efficiency. In general, the “optimal”

bi’s (yielding estimates with lowest variance) depend on the

set of network parameters as well as the overflow level L.

Empirical results suggest dependence (in a yet formally non-

apparent way) on the traffic intensities ρi’s at all network

nodes as well as the overflow level L.

According to the above change of measure, all nodes

may be “pushed” (overloaded) simultaneously, however, to

different extents depending on their respective ratios of

content xi relative to bi. This is a state-dependent change

of measure, by which empty nodes (at which xi = 0) are

not “pushed” at all, and busy nodes (at which xi > 1) are

“pushed” harder for higher xi/bi. The well-known heuristic

in Parekh and Walrand (1989) suggests interchanging the

arrival and service rates at the bottleneck node (with the

highest ρi). This is a state-independent change of measure,

which is shown to work well only in a limited region of the

network parameters space (namely, when the utilization at

the bottleneck node is sufficiently higher than those at all

other nodes). For a single node, say, node i, our change

of measure, with bi = 1, is identical to that in Parekh and

Walrand (1989); both are asymptotically efficient.

3.2 Time Reversal Argument

The effectiveness of the change of measure in Section 3.1 for

the simulation of parallel networks may be explained using

time-reversal argument (see Kelly 1979 and Anantharam et

al. 1990). The reverse time process is also an n-node parallel

network. At node i (i = 1, . . . ,n), the arrival and service

rates are λi and µi, respectively (i.e., same as in the forward

time process). However, the reverse time process starts from

the hitting state into the rare set, say, (L1,L2, . . . ,Ln) with
∑n

i=1
Li = L. In the reverse time, the number of customers

at node i (i = 1, . . . ,n) is initially Li and it empties at rate

(δi = µi−λi). The (reverse) time needed to clear the backlog

at node i is therefore given by
Li

δi
. Clearly, the order in

which the backlogs at different nodes disappear depends on

the initial (hitting) state as well as the arrival and service

rates at each node. Intuitively, the bottleneck node (with

the highest ρi) is likely to have the largest backlog upon

hitting the rare set, and because it empties at a slower rate,

its backlog is likely to be the last to disappear. (In forward

time, this implies that the bottleneck node is likely to start

its build up sooner than other nodes.) Note that it may

take some time for the network to empty after all backlogs

disappear; this also depends on the traffic intensities and

the overflow level L.

Note that departures (respectively, arrivals) in reverse

time correspond to arrivals (respectively, departures) in for-

ward time. It follows that along the most likely path from

an empty network to population overflow, each node starts

building up a backlog after some (own) initial period. The

build up at node i continues at rate δi = µi −λi until the
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population overflow level L is reached. Highly loaded nodes

are likely to start their backlog build up sooner than lightly

loaded nodes. If the traffic intensity at the bottleneck node is

sufficiently higher than at other nodes, then the most likely

path to overflow involves a build up only at the bottleneck

node. This is consistent with the heuristic in Parekh and

Walrand (1989) which exchanges the arrival and service

rates only at the bottleneck node, and therefore clarifies its

effectiveness in this case.

By appropriately setting bi, for i = 1, . . . ,n, the state-

dependent heuristic in Section 3.1 can (roughly) capture

the most likely path to overflow in a network of n parallel

nodes. The above time reversal argument along with some

experimentation may provide helpful insights into how to

properly set the bis at the different nodes. Empirical results

in Section 4.1 show that the heuristic is very effective and

robust over the entire feasible parameter range.

4 EXPERIMENTAL RESULTS

Importance sampling to estimate the probability of popu-

lation overflow (γ(L)) involves generating, say, N, inde-

pendent and identically distributed (i.i.d.) busy cycles (i.e.,

starting with an empty network). Starting a cycle at time

0, define τL as the instant when the network population

reaches level L for the first time. Similarly, define τ0 as

the instant when the network population returns to 0 for

the first time. The indicator function Ii(τL < τ0) takes the

value 1 if the population overflow (level L) is reached in

cycle i, otherwise it takes the value 0.

In each cycle, the change of measure is applied until

either the population overflow event is reached or the network

population returns to 0. Let Wi be the likelihood ratio

associated with cycle i (as defined in Section 2.2), then an

unbiased estimator γ̃ of γ(L) is given by

γ̃ =
1

N

i=N
∑

i=1

Ii Wi . (7)

The second moment of I W is estimated by

γ̃2 =
1

N

i=N
∑

i=1

Ii Wi
2 . (8)

The variance and the relative error of the impor-

tance sampling estimator γ̃ are given by VAR(γ̃) =

(γ̃2− (γ̃)2) / (N −1) and RE(γ̃) =
√

VAR(γ̃) / γ̃ , respec-

tively. Another useful measure for comparing the efficiency

of different estimators is the “relative time variance” (RTV)
product, which is defined as the simulation time (in seconds)

multiplied by the squared relative error of the estimator. As

the estimate becomes more stable, its RTV tends to a con-
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stant value, which is smaller for a more efficient estimator.

For example, if RTV2 (for Estimator 2) is larger than RTV1

(for Estimator 1), then it will take Estimator 2 a longer sim-

ulation time to reach the same accuracy. For comparisons

we use the variance reduction ratio, VRR = RTV2 /RTV1,

which represents the efficiency gain of Estimator 1 relative

to that of Estimator 2.

The experiments in this section are designed to demon-

strate that the state-dependent change of measure proposed in

Section 3.1 always yields asymptotically efficient estimates

(mostly with bounded relative error), also for parameter

settings where the state-independent change of measure

in Parekh and Walrand (1989) is shown to be ineffective.

Comparisons with the more recent and effective adaptive

importance sampling methodology in de Boer and Nicola

(2002) are also of interest and will be included. Similar to

SDH, this adaptive methodology (here referred to as SDA)

assumes state-dependence only over a (small) number of

boundary layers (say, bi at node i) which must be properly

determined to ensure the effectiveness and efficiency of

these methods. Too small bi may not capture crucial depen-

dencies close to the boundaries. Too large bi may render

SDH ineffective, but it will only reduce the efficiency of

SDA. In either SDH or SDA, the “optimal” bi’s maximizing

the efficiency (minimizing the RTV) may be determined by

repeating the simulation for some “reasonable” (e.g., from

experience) combinations of bi’s. Experimental results with

SDH and SDA presented in this section are obtained using

the corresponding “best” setting of bi’s.

In all simulation experiments, the same number of

replications, namely, 106, is used to obtain estimates of the

population overflow probability γ(L). For each estimate in

these tables, we include the relative error RE% (in percent-

age). To compare the heuristic in this paper (termed SDH)

with the adaptive methodology (termed SDA) in de Boer

and Nicola (2002), we also include VRR (relative to SDA).

Hence, VRR > 1 implies efficiency gain of SDH over SDA.

Estimates obtained using the heuristic in Parekh and Wal-

rand (1989) (termed PW) are also presented, however, these

are not necessarily accurate or stable. Whenever feasible,

numerical results (e.g., using the algorithm outlined in de

Boer 2000) are included to verify the correctness of the

simulation estimates. Otherwise (e.g., for larger networks

and/or higher overflow levels), the corresponding table entry

is marked with a “∗”. In these cases, agreement of the SDH

and SDA estimates may be an indication of correctness.

4.1 Simulation of Parallel Networks with Probabilistic

Routing

In this section we experiment with symmetric and asym-

metric parallel networks of 2, 3, and 4 nodes. Network

parameters are chosen in regions where the heuristic in

Parekh and Walrand (1989) is not effective. This is typi-
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cally the case in symmetric parallel networks (i.e., all nodes

have the same utilization) or when the higher utilizations

are sufficiently close.

For the symmetric 2-node parallel network: λ1 = λ2 =
0.15 and µ1 = µ2 = 0.35 (i.e., ρ1 = ρ2 = 0.43). For the

asymmetric 2-node parallel network: λ1 = 0.12,λ2 = 0.08
and µ1 = µ2 = 0.4 (i.e., ρ1 = 0.3,ρ2 = 0.2). Experimen-

tal results in Tables 1 and 2 show that unlike PW, SDH

(as described in Section 3.1) yields correct (compare with

numerical results), stable, and asymptotically efficient es-

timates with relative error increasing (sub-)linearly in the

overflow level L. Note that the “best” b1 and b2 are equal

only in the symmetric case. In the asymmetric case, b1 = 2
and b2(> b1) increases with the overflow level L. Also SDA

produces correct and stable estimates; however, it appears

to be less efficient than SDH (as indicated by VRR ratios

significantly higher than one).

For the symmetric 3-node parallel network: λi = 0.1
and µi = 0.2, for i = 1,2,3 (i.e., ρi = 0.5, for i = 1,2,3).

For the asymmetric 3-node parallel network: λ1 = 0.1,λ2 =
0.075,λ3 = 0.025 and µi = 0.25, for i = 1,2,3 (i.e., ρ1 =
0.4,ρ2 = 0.3,ρ3 = 0.1). Experimental results in Tables 3

and 4 show that unlike PW, SDH (as described in Section 3.1)

yields correct (numerical results are not feasible for higher

overflow levels, but agreement with SDA estimates suggest

correctness), stable, and asymptotically efficient estimates

with relative error increasing (sub-)linearly in the overflow

level L. Note that the “best” bi(i = 1,2,3) are equal only

in the symmetric case. In the asymmetric case, b1 = 2
and b2 = b3 > b1; bi(i = 2,3) increases with the overflow

level L. Also SDA produces correct and stable estimates;

however, it appears to be much less efficient than SDH (as

indicated by VRR ratios much higher than one).

For the symmetric 4-node parallel network: λi = 0.05
and µi = 0.2, for i = 1,2,3,4 (i.e., ρi = 0.25, for i = 1,2,3,4).

For the asymmetric 4-node parallel network: λ1 = 0.06,λ2 =
0.04,λ3 = 0.04,λ4 = 0.02 and µi = 0.2, for i = 1,2,3,4 (i.e.,

ρ1 = 0.3,ρ2 = ρ3 = 0.2,ρ4 = 0.1). Experimental results in

Tables 5 and 6 show that unlike PW, SDH (as described

in Section 3.1) yields correct (numerical results are not

feasible, but agreement with SDA estimates suggest cor-

rectness), stable, and asymptotically efficient estimates with

relative error increasing (sub-)linearly in the overflow level

L. Note that the “best” bi(i = 1,2,3,4) are equal only in

the symmetric case. In the asymmetric case, b1 = 2 and

b2 = b3 = b4 > b1; bi(i = 2,3,4) increases with the overflow

level L. Also SDA produces correct and stable estimates;

however, it appears to be much less efficient than SDH (as

indicated by VRR ratios much higher than one).

To converge properly, our basic (non-optimized) imple-

mentation of SDA may require many iterations, each with

a large number of cycles (i.e., long simulation time). On

the other hand, if and when it converges, it gives very small

relative error. (For more on SDA and its implementation
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details see de Boer and Nicola 2002.) For the examples

presented here, SDH typically requires only a few minutes

to achieve relative errors less than 1% and is evidently more

efficient than SDA (VRR > 1) even though its relative error

(shown in the tables) may be higher.

5 CONCLUSIONS AND FURTHER WORK

In this paper we have proposed and experimented with

a heuristic approach to approximate the “optimal” state-

dependent change of measure to estimate (using importance

sampling) the probability of population overflow in networks

of parallel queues with probabilistic routing. Experimental

results suggest asymptotically efficient estimates, mostly

with bounded relative error. The efficiency of the obtained

change of measure compares well with those determined

using adaptive methodologies. However, our approach does

not require costly pre-computation and is easy to implement.

Moreover, its effectiveness is not diminished for larger

networks, i.e., it is scalable.

Simple and robust guidelines for selecting the number of

boundary layers (dependence range) need to be developed.

Application of our approach to parallel networks with other

(e.g., dynamic) routing policies would be of interest. The

findings and supporting empirical results reported in this

paper provide better insight and will help develop more

effective and robust heuristics for other and more complex

topologies.
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Table 1: 2-Node Parallel Network – Symmetric (λi = 0.15,µi = 0.35) (ρ1 = ρ2 = 0.43)

L Numerical PW SDA SDH

γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b1,b2 γ̃(L) ± RE% VRR

25 1.9796e-08 1.1928e-08 ± 11.7 4 1.9800e-08 ± 0.06 4,4 1.9814e-08 ± 0.14 1.58

50 2.5813e-17 8.5168e-18 ± 12.7 5 2.5834e-17 ± 0.06 6,6 2.5904e-17 ± 0.17 0.98

100 2.0926e-35 2.3032e-35 ± 86.2 6 2.0923e-35 ± 0.07 7,7 2.0895e-35 ± 0.26 0.66
Table 2: 2-Node Parallel Network – Asymmetric (λ1 = 0.12,µ1 = 0.4,λ2 = 0.08,µ2 = 0.4) (ρ1 = 0.3,ρ2 = 0.2)

L Numerical PW SDA SDH

γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b1,b2 γ̃(L) ± RE% VRR

25 5.6704e-13 7.2661e-13 ± 22.1 3 5.6480e-13 ± 0.12 2,5 5.6600e-13 ± 0.15 5.87

50 4.8047e-26 4.7674e-26 ± 3.88 3 4.7993e-26 ± 0.16 2,7 4.8188e-26 ± 0.20 3.30

100 3.4493e-52 3.3333e-52 ± 3.01 3 3.4434e-52 ± 0.21 2,10 3.4563e-52 ± 0.28 3.23
Table 3: 3-Node Parallel Network – Symmetric (λi = 0.1, µi = 0.2) (ρi = 0.5)

L Numerical PW SDA SDH

γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b1,bi γ̃(L) ± RE% VRR

25 8.3550e-06 4.9906e-06 ± 20.8 5 8.3574e-06 ± 0.07 7,7 8.3550e-06 ± 0.19 7.26

50 * 2.7409e-13 ± 17.0 4 1.0608e-12 ± 0.38 8,8 1.0566e-12 ± 0.22 64.0

100 * 1.5623e-28 ± 8.69 5 3.7658e-27 ± 0.93 9,9 3.8483e-27 ± 0.32 114.
Table 4: 3-Node Parallel Network – Asymmetric (λ1 = 0.1,λ2 = 0.075,λ3 = 0.025;µi = 0.25)
(ρ1 = 0.4,ρ2 = 0.3,ρ3 = 0.1)

L Numerical PW SDA SDH

γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b1,bi γ̃(L) ± RE% VRR

25 8.2980e-10 7.8038e-10 ± 2.17 3 8.2976e-10 ± 0.16 2,6 8.3082e-10 ± 0.19 27.4

50 * 9.1128e-20 ± 2.64 3 9.3142e-20 ± 0.16 2,10 9.3459e-20 ± 0.25 7.39

100 * 1.1746e-39 ± 2.97 3 1.1589e-39 ± 0.39 2,14 1.1798e-39 ± 0.38 7.11
Table 5: 4-Node Parallel Network – Symmetric (λi = 0.05, µi = 0.2) (ρi = 0.25)

L Numerical PW SDA SDH

γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b1,bi γ̃(L) ± RE% VRR

25 * 8.5099e-13 ± 12.0 4 7.3197e-12 ± 0.08 4,4 7.3465e-12 ± 0.30 33.8

50 * 1.8289e-27 ± 48.1 4 5.0880e-26 ± 0.14 5,5 5.1083e-26 ± 0.41 43.0

100 * 4.6236e-58 ± 7.58 5 3.1658e-55 ± 0.14 5,5 3.1384e-55 ± 0.78 19.2
Table 6: 4-Node Parallel Network – Asymmetric (λ1 = 0.06,λ2 = 0.04,λ3 = 0.04,λ4 = 0.02;µi = 0.2)
(ρ1 = 0.3,ρ2 = ρ3 = 0.2,ρ4 = 0.1)

L Numerical PW SDA SDH

γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b1,bi γ̃(L) ± RE% VRR

25 * 2.8583e-12 ± 18.9 4 2.4917e-12 ± 0.15 2,6 2.5012e-12 ± 0.35 135.

50 * 1.8266e-25 ± 2.59 4 2.1002e-25 ± 0.22 2,8 2.1268e-25 ± 0.64 56.7

100 * 1.4262e-51 ± 7.11 4 1.3031e-51 ± 0.37 2,10 1.5248e-51 ± 1.37 22.0
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