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ABSTRACT 

The Defense Advanced Research Projects Agency 
(DARPA) challenged autonomous ground vehicle devel-
opers in the “2005 DARPA Grand Challenge” to build a 
vehicle that could complete a 132 mile course through the 
American desert southwest. MITRE, a not-for-profit sys-
tems engineering company, responded to this challenge by 
creating the MITRE Meteor in just 11 months. This rapid 
development relied on software employment transparency 
to get the maximum utility out of each line of code. Judi-
cious design of the software framework allowed the same 
body of code to animate the robot in the field, support la-
boratory experimentation, and analyze recorded field test-
ing data. This paper describes how software employment 
transparency was achieved and how it increased develop-
ment efficiency. 

1 INTRODUCTION 

The Defense Advanced Research Projects Agency 
(DARPA) reissued a challenge to developers of autono-
mous ground vehicles in 2005 to build machines that could 
complete a 132 mile, off-road course. Of the 195 initial en-
trants only 23 qualified to compete in the race. Selection 
was based on several down selects including 10 days of 
rigorous competition at the National Qualifying Event held 
at the California Speedway. The final race was a few days 
later on October 8th and 9th in the Mojave Desert. The 
course included gravel roads, dirt paths, switchbacks, open 
desert, dry lakebeds, mountain passes, and two tunnels. 
The vehicle needed to navigate GPS waypoints on a pre-
scribed course while staying within defined boundaries and 
avoiding obstacles including other robotic vehicles. The 
route was given to the teams only two hours before the 
race began. 

The MITRE Corporation decided to participate in the 
Grand Challenge in late September 2004 (see Figure 1). 
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MITRE, the primary sponsor for the MITRE Meteor team, 
invested discretionary funds in the event believing that 
MITRE’s work programs and sponsors would benefit from 
an investigation of the technologies that contribute to the 
DARPA Grand Challenge. 

MITRE’s team had no previous experience with the 
Grand Challenge and was operating under a very difficult 
time constraint. This led to several team philosophies. 
First, employ commercial solutions wherever possible. 
Stated another way, apply the main focus to the areas that 
need the most innovation and farm out the rest. Second, 
use an incremental model-simulate-test approach. Build a 
model that is suitable to the current task. Verify and tune 
the model using simulation and replay. Test the model and 
system in real situations and then use the results of the test-
ing to adjust the model as necessary. This approach pro-
motes increasing sophistication commensurate with the 
current capabilities of the robot while respecting the ulti-
mate goal. Third, use employment transparency to get the 
maximum utility from our software development invest-
ment. That is, craft the control software and execution en-
vironment so that it can be used for more than one purpose. 

 

 
 
Figure 1: MITRE Meteor at the Finals of the 2005 DARPA 
Grand Challenge Robot Race 
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2 SOFTWARE EMPLOYMENT PHASES 

The Meteor software development team had three jobs: 
build real-time code that would drive a 5000 pound truck 
down the road without hurting anyone, support robot con-
trol algorithm research, and construct tools to analyze op-
erational data recorded in the field. Given the tight sched-
ule, 11 months, it was clear we could not afford the time 
and coordination overhead required to manage these three 
jobs as independent efforts. Our goal was, therefore, to 
create a single body of code that could be employed in the 
operational, developmental, and analytical phases of our 
project with minimum modification. 

2.1 Operational Employment 

The Meteor control software is a group of message passing 
agents, as shown in Figure 2. The population of agents 
processes sensor input and produces vehicle control com-
mands. Each agent has its own thread of control imple-
mented as a Java thread and mapped to a supporting OS 
level thread. There are three types of agents: lookouts, 
watch officers, and executives. The type distinction is 
based on the control flow pattern of the basic loop within 
the agent. Lookouts perform I/O with physical sensors and 
send messages containing raw sensor data to the balance of 
the agent population. Watch officers receive  messages, 
perform some value-added processing (typically sensor fu-
sion), and report their results in messages to the rest of the 
agents. Executives assess the system state, perform some 
value-added computation, report their results through mes-
sages, and then wait for some amount of time to pass.  
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Figure 2: Operational Employment 
 
Another way to view the agent type distinction is by 

the event that triggers agent action. Action in lookouts is 
triggered by the reception of physical I/O. Watch officers 
take action when they receive a message, while executives 
act when some amount of time elapses (typically fixed del-
tas resulting in 10Hz to 80Hz loops). 

When installed on the robot, the agents are distributed 
across an array of 7 processors. The processors are con-
nected by a 1 gigabit Ethernet bus and run Fedora Core 3 
1295
and the Sun Java Runtime Environment. The large number 
of processors in the array was a decision taken early in the 
project as a hedge against unknown processing demand. As 
it tuned out, the final compliment of agents could run on as 
few as three processors. 

2.2 Development Employment 

Figure 3 illustrates the software configuration used for the 
algorithmic development of the Meteor agents. A simple 
vehicle motion model was constructed that transforms 
steering and propulsion commands, as they would have 
been sent to the servo controller digital inputs, into vehicle 
location, orientation, and velocity values. These values are 
supplied to three sensor models.  
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Figure 3: Quasi-Real Time Simulation Employment 
 
The laser sensor model takes the changing vehicle lo-

cation and orientation values and generates a stream of la-
ser output frame messages. These frames are identical in 
format to those produced by the actual physical laser sen-
sor. The model does this by considering the relative ge-
ometry of the moving vehicle versus a static collection of 
obstacle descriptions. The set of obstacle descriptions was 
handmade and roughly corresponds to the buildings and 
trees surrounding a parking lot near MITRE’s McLean 
Virginia office. 

The GPS models take the location, orientation, and 
speed of the vehicle, as computed by the vehicle motion 
model, adds statistical noise to the values, and then report 
them in messages. These messages are identical to those 
reported by the physical sensors and include fabricated 
values for various GPS signal quality metrics. 

The wheel rotation model takes the stream of changing 
vehicle location values from the vehicle motion model and 
transforms them into the displacement, speed, and accel-
eration values that are physically generated by an embed-
ded processor on the robot that measures drive shaft rota-
tion. 

The entire software configuration can be run on a sin-
gle workstation. This configuration was used with great 
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benefit as the soft-ware system design first evolved. The 
fact that the system only ran in real time was not a problem 
except when trying to evaluate vehicle behavior over long 
periods of time. This was particularly taxing when simulat-
ing vehicle performance for the full 10 hours allowed by 
DARPA to complete the race.  

In addition to the real time limitation, results were of-
ten not reproducible. The primary reason for this is compe-
tition for limited computing power. An assumption of the 
agent-based architecture is that all executive agents have 
enough computational power available to complete the 
processing of one cycle before it is time to begin the next 
cycle. This assumption is seldom violated when the agents 
run on the robot’s powerful, multi-processor array and is 
constantly violated when they run on a single workstation. 
When an executive agent does not finish one cycle before 
it is time to begin the next, controller frequencies become 
random and the simulation ceases to reflect the real system. 

To improve reproducibility and support both faster and 
slower than real time simulation, the Tortuga discrete event 
simulation framework (Weatherly and Page 2004) was in-
corporated, Figure 4. This required three changes. First, the 
agent framework was extended to include a mode switch. 
In one switch position (operational mode), each agent is a 
real OS thread and the population of agents operate as they 
would when installed on the vehicle processor array. In the 
other position (simulation mode), agents become interact-
ing sequential logical processes in the Tortuga framework. 
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Figure 4: Discrete Event Simulation Employment 
 
The second change required to introduce Tortuga  in-

volves delays. Attempts by an agent to delay its execution 
are intercepted. How the delay request is interpreted was 
made mode switch dependent. In operational mode, an at-
tempt to pause t milliseconds results in a call to 
Thread.sleep(t). In simulation mode, a similar at-
tempt results in the suspension of the agents logical proc-
ess and the scheduling of a resumption event t milliseconds 
of simulation time in the future. 
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The third change for Tortuga involves messages. The 
inter-agent communication system was made mode switch 
dependent. Specifically, a minor change was made to each 
agent’s input message queue. In operational mode, the in-
put queue is a Java LinkedBlockingQueue that blocks 
agent threads that attempt to read from an empty queue. In 
simulation mode, input messages are simply scheduled 
events that resume the agent’s logical process when their 
time arrives. 

2.3 Analytical Employment 

An advantage of the agent-based architecture is access to 
the evolving computational state. A good view of how the 
agents are working internally and behaving as a group can 
be obtained from recording their message exchange. Such 
recordings were made each time the robot was operated in 
the field and archived for later study. This was important 
given the limited opportunity the team had for actual 
autonomous vehicle operation before the race. There are 
few places in the suburbs of Washington DC where it is 
safe to let an autonomous pick-up truck run free. 

Figure 5 shows how recorded messages are analyzed. 
Typically, the team returned from the field wanting an an-
swer to the recurring question; “Why on earth did it do 
that?” To explore field testing events, two things were 
done. First, a small special purpose agent called the Re-
player was built that could read messages that were re-
corded in the field and then introduce them into the Tor-
tuga framework as scheduled events. Second, agents that 
manage sensors were removed from the population. With 
such an arrangement, recorded messages take the place of 
real sensors. The balance of the agents behave exactly as 
they do in the field. Using controls in Tortuga that set the 
ratio of simulation time to real time, the analyst can fast-
forward though the recorded messages until the time of the 
curious robot behavior. Then the analyst can slow the re-
play and attempt to determine what the robot was doing. 
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Figure 5: Replay of Recorded Messages 
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3 SIMULATION INFRASTRUCTURE 

The success of the Meteor depends on the ability to run its 
control software either in operational or in simulation 
mode. The key to switching easily between these modes of 
employment is the infrastructure. As mentioned above, the 
control software “sees” the same interface regardless of the 
mode. The infrastructure allows the agents to function ei-
ther as threads or as interacting-process simulation entities. 
The simulation infrastructure comes from the Tortuga 
framework. 

3.1 Process Orientation and the Tortuga Framework 

There are several views, or organizing principles, for dis-
crete-event simulations. “The simulation structure that has 
the greatest intuitive appeal is the process-interaction 
method. The notion is that the computer program should 
emulate the flow of an object through the system. The en-
tity moves as far as possible in the system until it is de-
layed, enters an activity, or exits from the system. When 
the entity's movement is halted, the clock advances to the 
time of the next movement of any entity. This flow, or 
movement, describes in sequence all the states that the ob-
ject can attain in the system.” (Banks 1998) 

The Tortuga framework is a product of MITRE-
sponsored research to facilitate the rapid construction of 
analysis and training simulations by small teams. Tortuga 
allows interacting-process simulations to be written in Java 
using current development tools and incorporating third-
party and open-source software. In addition to the Meteor 
application, Tortuga has been applied successfully to novel 
simulations in air traffic control and military analysis.  

Interacting-process simulation in Java is not new. 
There are several implementations (Jacobs et al. 2002, 
Gehlsen and Page 2001). These frameworks, owing to op-
erating system limits, support only a few thousand logical 
processes. However, Tortuga supports simulations of hun-
dreds of thousands of logical processes. Tortuga achieves 
its scalability through modifications to the Jikes Research 
Virtual Machine. These modifications enable efficient, 
lightweight coroutines. Tortuga also runs atop the Sun 
JVM with the same limitations as other frameworks on the 
number of logical processes; the Sun JVM underlies the 
work reported here. 

Tortuga adds several features useful for military simu-
lation, specifically action methods and triggers. An action 
method is a distinguished method on a simulation entity. 
When invoked by another entity, an action method has the 
side-effect of causing the simulation executive to schedule 
the invoked entity to resume execution. Thus the entity, 
which might have been waiting for simulation time to pass, 
is awakened beforehand. Action methods naturally repre-
sent the occurrence of exogenous events or interruptions, 
such as being shot at or the arrival of a message. 
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A trigger is a boolean predicate defined by the simula-
tion writer (as a Java class with a method that evaluates the 
predicate). An entity can ask the executive to let it sleep 
until one or more triggers are satisfied or some amount of 
time passes. The analogy is with database triggers. Trig-
gers allow an entity to wait for the state of the simulation 
to reach a certain condition, like other entities being with 
range of a sensor. 

3.2 What Threads and Simulation Entities Have In 
Common 

The Meteor control software is organized as agents. The 
central problem of supporting the various employment 
phases is supporting the agents in those phases. Agents 
need three things in each phase: 

 
• A thread of control, 
• A way to sleep for a set period of time, and 
• A way to await the arrival of a message. 

 
From the agent’s perspective, the infrastructure software 
provides these three things to agents the same way in each 
phase. 

3.2.1 A Thread of Control 

In operational mode, each agent is animated by a Java 
Thread, that is, the agent’s behavior, encapsulated in a 
method, is performed by a Thread. In simulation mode, the 
agent’s behavior is performed by a Tortuga Entity, which 
runs as a logical process under control of the Tortuga simu-
lation executive. 

3.2.2 Sleeping For a Set Period of Time 

Agents running in any employment mode sleep or delay 
for a set time by calling a method on a TimeManager. 
The TimeManager provided to an agent depends on the 
mode. In operational mode, the TimeManager provided 
merely performs a Thread.sleep(t). In simulation 
mode, the TimeManager performs a Tortuga wait-
ForTime(t) call, which suspends the underlying En-
tity’s execution and returns control to the Tortuga execu-
tive. 

3.2.3 Awaiting Arrival Of A Message 

Agents await the arrival of a message by invoking 
read() on an abstract class Comm. In operational mode, 
the Comm instance is actually an instance of OpComm, 
which performs network communication. In simulation 
mode the Comm instance is actually an instance of 
SimComm. This class waits for a message to be placed in 
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the agent’s receive buffer. The agent, which in simulation 
mode is a Tortuga Entity, defines a Tortuga trigger that is 
satisfied by one or more messages waiting to be read. Thus 
the agent is suspended under control of the Tortuga execu-
tive until a message arrives in its buffer. 

4 CONCLUSION 

The Meteor software team achieved its goal of employ-
ment transparency using a single body of code for robot 
operation, code development, and logged data replay 
analysis. The software benefited greatly from its agent de-
sign, which allowed cooperative decomposition of its vari-
ous reporting, analysis, and executive functions. Structur-
ing and encapsulating cooperation between agents running 
in real time as Java Threads via messages made coordina-
tion straightforward. 

The interacting-processes view of simulation affords 
another, similarly natural, way to coordinate cooperating 
agents or entities controlled by simulation time. This work 
demonstrated how the Meteor software capitalized on the 
similarities between thread-backed agents and simulation 
entities to facilitate its employment in very different 
modes. 
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