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ABSTRACT 

Transportation planners and public transport operators 
alike have become increasingly aware of the need to dif-
fuse the concentration of the peak period travel. Differenti-
ated pricing is one possible method to even out the demand 
and reduce peak load requirement. An evaluation of the po-
tential effectiveness of strategies directed to flatten the de-
mand distribution requires an understanding of the under-
lying factors that drive travel behavior (e.g., time-shifting, 
route change, mode change) with regard to price and ser-
vice. In this paper, we present a Passenger Railway Net-
work Simulation model with the intention of linking supply 
and demand. The objective is to evaluate the differentiated 
pricing impact on the passenger travel behavior, and con-
sequently on the overall network performance, both finan-
cially and operationally. This paper focuses on the design 
and modeling approach of the Travel Behavior Model. 

1 INTRODUCTION 

The past decade has witnessed an increased application of 
dynamic pricing in transportation industry, where firms use 
various forms of dynamic pricing to respond to market 
fluctuations and uncertainty in demand. Transportation 
planners and public transport operators alike have become 
increasingly aware of the need to diffuse the concentration 
of the peak period travel. Notably, dynamic pricing is one 
of the most preferred revenue management methods 
(Talluri and Van Ryzin 2004) to reduce the peak travel re-
quirement and increase the capacity utilization. It has long 
been the tradition of transportation companies, especially 
airlines, to use the flexible pricing strategies to manage 
their perishable inventory efficiently. Argued by Boyer 
(1997), transportation companies are in an especially good 
position to engage in price discrimination. This is mainly 
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because it is generally possible for the transportation com-
panies to satisfy the characteristics that are common to the 
applications of the dynamic pricing (Li, van Heck, and 
Vervest 2006).  

From a public transport operators’ perspective, the chal-
lenge lies in evaluating the effectiveness of the dynamic 
pricing strategy on 1) demand (over time and space) and 
furthermore 2) on capacity utilization and revenue. This 
difficulty is caused by the lack of prompt and adequate 
customer response as a result of dynamic pricing imple-
mentation. This challenge requires an adequate model of 
demand as well as its dynamic interactions with the supply.  

Computer simulation is an often-used methodology to 
study travel behavior as a cost effective alternative to field 
studies. For example, in the study of efficiency improve-
ment of discriminatory toll of the San Francisco Bridge 
(Shmanske 1993), simulations are applied for two reasons. 
First, a simulation is necessary because solving consumer 
optimization problems analytically for this realistic case 
involves large problems that are beyond computational 
ability. Second, there are benefits concerning the magni-
tude of the price differences.  

In our approach, we make two distinct steps to achieve 
the end. First, model the demand i.e. travel behavior. We 
define a parametric class of policies i.e. price, and build a 
simulation using a collection of micro-level behavior mod-
els. And second, simulate the interactions. We link demand 
simulation with the supply simulation, simulate the interac-
tions and effects and use sensitivity information to opti-
mize the policy parameters or performance metrics.  

There are great challenges and questions posed by the 
design of passenger railway network (micro-)simulation. 
From a supply perspective, these include 1) the ability to 
create a large network that may encompass infrastructures 
(stations, tracks); 2) and the ability to lay time tables / train 
schedules over the railway networks. From a demand per-
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spective, the simulation requires 3) the ability to model an 
individual passenger with his/her characteristics and activi-
ties; 4) the ability to model the passenger behavioral 
choices before and/or while traveling, such as, mode 
choice, route choice, departure time choice; 5) the ability 
to track individual passenger’s behavior changes under 
pricing policy influences; 6) and the ability to calculate the 
passenger delays as a result of the train delay.  

The contribution of this paper lies in its ability to model 
the travel behavior of the passenger, as well as integrate 
passenger railway supply and demand. This provides the 
potential to incorporate advanced performance measures 
(e.g., network capacity utilization, passenger delay vs. train 
punctuality) into the organizational strategy as well as day-
to-day operation. 

This paper presents the design and modeling of these 
two phases of simulation, with the emphasis on the travel 
behavior model. In collaboration with Incontrol Enterprise 
Dynamics, we are currently developing and prototyping the 
simulation, partially fulfilling the research entrusted to 
RSM Erasmus University by Netherlands Railways.  

2 MOTIVATION AND MODELING APPROACH 

The objective of the passenger railway networks simula-
tion we propose is to evaluate the effectiveness of strate-
gies i.e. dynamic pricing on the railway network perform-
ance (financially and operationally). We distinguish two 
phases of this modeling effort. First, a model of the travel 
behavior -- activity-based travel behavior. This is to model 
the choice decision of a traveler on time-shifting, mode 
choice, departure time choice and route choice. Second, 
model interaction between supply and demand -- passenger 
railway networks simulation -- where we learn the behav-
ioral impacts on the operational supply and vice versa. Be-
fore looking in more detail at the Travel Behavior Model, 
we first describe our motivation for the Passenger Railway 
Networks Simulation. 

2.1 Motivation for the Passenger Railway Networks 
Simulation 

Large infrastructure systems are often modeled using dis-
crete event simulation models to enable evaluation of the 
future performance. Some examples of large infrastructure 
systems that have been modeled using discrete event simu-
lation are railways for New York Freight Tunnel (Kulick, 
2004), London Underground (Mayo, Dalton, and Cal-
laghan, 2003), maritime infrastructure (Valentin, Steijaert, 
Bijlsma, and Silva 2005), railway infrastructure 
(Middelkoop and Bouwman 2001), North Sea channel 
(Hendrickx, Taeymans, and Bouwman 1998) and airplane 
runways (Holden and Wieland 2003). 
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Railway networks are complex systems that involve 
several thousands of passenger trains and millions of pas-
senger journeys. These assets move quickly over networks 
composed of large sets of stations and tracks. Being one of 
the most utilized railway networks in the world, each day, 
Netherlands Railways (in Dutch Nederlandse Spoorwegen 
or NS) operates about 5,000 passenger trains on a network 
of 2,700 km for close to 325,000 train kilometres. There 
are about 1,000,000 passenger journeys each day, with an 
average length of 44 km. The crisscross network of 100 
different train lines along nearly 400 stations makes sure 
that almost 80% of the passenger trips are made without 
transfer (Vromans 2005).  

Considering the complexity of this system: the behavior 
of train operations and passenger movements involves a 
large number of input variables. The components of the 
system are coupled and the performance metrics are 
nonlinear. In addition, the operations are also constrained 
by governmental regulations and company specific poli-
cies. As a result, it is difficult to be confident in the results 
of an aggregate model, for example, where passengers are 
only segmented on their travel purposes (business, com-
muter and leisure). Therefore, there is a need to build a 
simulation model to capture and understand the complex 
and dynamics of passenger involved railway networks, and 
test the impact of various strategic and tactical decisions on 
the performance of the system both financially and opera-
tionally.  

For a commercially operating railway company, provid-
ing a high level of service for the passengers is of utmost 
importance. This requires an adequate rolling stock capac-
ity and high punctuality of the trains as well as of the pas-
senger delays. These requirements could be better under-
stood through simulating the supply (of complex railway 
network) and demand (of diversified passengers) interde-
pendency and interaction for the following reasons:  

 
 Dynamic pricing strategy’s impact on the train yield. 

An effective pricing strategy, as a marketing instru-
ment, could influence passengers’ travel behavior, for 
example, making time-shift and/or route-shift during 
the travel. As a result, it consequently impacts the load 
factor of the specific trains passengers are taking. 
Train loading is, just as revenue, an important per-
formance indicator of the railway operations. How-
ever, it is usually the concern of another department 
other than where the pricing policies are decided. 

 Customer-centric timetable. At this moment, one of 
the key performance indicator for testing stability and 
robustness of the timetables is the train punctuality i.e. 
the percentage of trains that arrive within a certain de-
lay. Focusing on the train punctuality, a very “good” 
timetable for the railway operators could, however, 
mean a very “bad” timetable for the travelers. Simply 
1
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because some passengers would have to wait longer at 
the interchange. Copenhagen Urban Rail company 
(DSB) (Nielsen and Frederiksen, 2005) has defined 
passenger delays as the delays passengers experience 
when arriving at the destination compared to the arri-
val time in the planned timetable. According to Niel-
sen and Frederiksen (2005), train delay measurements 
tend to underestimate the delays passenger experience. 
If passengers transfer between lines, the situation be-
comes more complicated. Therefore, it is desired to 
design a customer-centric timetable, where passenger 
delays (or passenger punctuality) should be measured. 

 Efficient resource allocation. Service personnel i.e. 
drivers and conductors play an important role in pro-
viding a high level service to the passengers. Efficient 
allocation of these staff resources requires knowledge 
of any possible changes on supply (capacity, delay, 
load factor) and demand (shifting behavior, passenger 
delay). 

2.2 Modeling approach of travel behavior 

We choose the activity-based microsimulation approach 
(Miller, 1996) to model the travel behavior of railway pas-
sengers. Here we briefly motivate our choice of this model-
ing approach. 

Model of demand. As advances in revenue management 
continue, according to van Ryzin (2005), we are gradually 
seeing a shift in which models of demand are moving from 
product oriented to models of customer behavior. Instead 
of products, customers become the unit of demand. As a 
step in this direction, in this paper, we seek a solution to 
model behavioral choice of travelers under various dy-
namic pricing strategies. It is important to understand what 
influences their decision making, which is the key to build-
ing a better model of demand. As van Ryzin (2005) states 
that rather than asking “how much demand should we ac-
cept/reject for each product” as airlines used to do, it is 
now natural to ask “which alternatives should we make 
available to our customers in order to profitably influence 
their choices”. These alternatives can be changes of price 
and/or schedule. Activity-based model. Activity-based 
models focus on the description of the organization of hu-
man activities in time and space. It is assumed the demand 
for travel is derived from the demand for performing ac-
tivities at specific locations.  

Microsimulation. According to Miller (1996), mi-
crosimulation has been accepted as a preferred approach to 
activity-based forecasting. Microsimulation model is for-
mulated at the disaggregate or micro level of individual 
decision-making units, such as individual persons, house-
holds and vehicles. The strength of the disaggregate mod-
eling approach as summarized by Miller (1996) are its 
power in representing: 1) the characteristics of the actors 
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involved; 2) the characteristics of the choice context (in 
terms of the options involved, the constrains faced by the 
actors, etc.); and 3) any context-specific rules of behavior 
which may apply.  

Travel agent. The unit of our simulation model is the in-
dividual passenger, who, similar to an agent, has the fol-
lowing properties (Wooldridge and Jennings 1995).  

 
 Autonomous (operate without human intervention); 
 Goal-oriented (act according to specific rules to ac-

complish a pre-determined goal); 
 Asynchronous (operate independently); 
 Reactivity (perceive the environment and respond to 

changes occur; 
 Pro-activeness (have individual internal states and 

goals, acts through rules to meet its goals). 
 

Validity and complexity. Using a microsimulation that 
models every passenger will inevitably increase the com-
plexity of the simulation, comparing to the aggregated 
model that only simulates passenger flows. However, the 
simplicity comes with a price of low validity, that the 
models are not valid anymore for the questions we ask. 
Certain pricing strategies cannot be evaluated with the ag-
gregated model. For example, “service-based” pricing, 
where people taking intercity trains are charged more than 
the ones taking stop trains. Passenger might react differ-
ently to this policy depending on his travel purpose and 
travel distance. Therefore, we would have to model pas-
sengers in groups: leisure travelers who travel long dis-
tance between A and B with intercity trains are modeled in 
one group. When the group size goes to very small, we get 
the model of single traveler case. 

3 SIMULATION FRAMEWORK 

An overview of the passenger railway network simulation 
is illustrated in Figure 1. Supply simulation module and 
demand simulation module form the core of the Passenger 
Railway Network (Micro-) Simulation. 
 

Passenger Railway Network (micro-)Simulation

Supply SimulationDemand Simulation

Passenger
Characteristic

Passenger
Decision

Passenger
Choice Set

Infrastructure
Network

Capacity

Train
Scheduling

Dynamic Pricing
Strategy

Performance
Metrics

 

Figure 1: Passenger Railway Networks (Micro-) Simulation 
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3.1 Supply simulation 

The supply simulation module consists of infrastructure 
networks (e.g., stations, tracks), train scheduling (time ta-
ble and delays), and train capacity. Designed and imple-
mented by Incontrol Enterprise Dynamics, a simulation 
tool called SIMONE (Simulation MOdel of NEtworks) is 
currently  being  used by  ProRail, the Dutch railway infra- 
structure capacity planner, and NS. Detailed description of 
this model can be found at (Middelkoop and Bouwman 
2001).   

3.2 Demand simulation 

Demand simulation module simulates the travel deci-
sion-making process of the railway passengers, who re-
spond to transport operator policy changes (e.g., dynamic 
pricing strategies) and could make decisions before/while 
traveling. Through literature study and discussion with the 
field experts, we outline the requirements for a successful 
implementation of our travel behavior simulation as fol-
lows:  

 
 Traveler is modeled as an individual agent, who has 

certain characteristics and travels according to his ac-
tivity schedule. 

 Traveler plans his journey based on a set of available 
options. These options include both public and private 
mode of travel. Traveler rationality is considered. 

 Traveler can respond to policy changes (e.g., price in-
crease at a particular hour) based on pre-defined deci-
sion rules. 

 Travel demand between origin-destination should in-
corporate the variability elements like seasonality and 
variations in the level of demand over different time-
of-day and day-of-week. 

 Traveler makes decisions based on a utility maximiza-
tion choice. Utility is the combination of passenger 
fare, maximum willingness-to-pay, replaning dis-
utility, etc., which will be discussed in the next sec-
tion. 

3.3 Dynamic pricing strategy  

There are many forms of dynamic pricing used by dif-
ferent industries (Talluri and Van Ryzin 2004). Consider-
ing the characteristics of domestic railways, however, only 
a number of dynamic pricing strategies are considered as 
relevant choices (Li et al. 2006). These policies are sum-
marized as follows and will be used in the scenario ex-
periments: 

 

13
 Time-based pricing (time-of-day): price varies accord-
ing to different time-of-day (e.g., lower price before 
7:00; higher price between 7:00-9:00). 

 Time-based pricing (day-of-week): Weekday vs. 
weekend; Different day-of-week price. 

 Spatial-based pricing (regional-based): Randstad (a 
high density area on the west of the Netherlands) and 
non-Randstad. 

 Spatial-based pricing (route-based): price varies ac-
cording to the utilization of the specific route. 

 Service-based pricing (class-based): 1st and 2nd class. 
 Service-based pricing (different train types): price var-

ies for international train, intercity and stop train. 
 Profile-based pricing (travel in group): for example, 

travel in group is cheaper. 
 Or the combination of different pricing policies. 

3.4 Performance metrics 

As a general measure, we develop the following metrics 
to evaluate the performance of supply and demand of the 
railway network. More detailed metrics in regard to each 
type of dynamic pricing will be developed in the later phase.  

Table 1: Performance Metrics 
Metric 

 category Metrics 

Supply  
(train  
operation)  
 

 Network capacity utilization (load 
factor) 

 Spread in train loading (passenger 
distribution) 

 Peak and average load  
 Train trips per day  
 Cost (or distance) per day per train 
 Repositioning distance per day per 

train 
Demand  
(passenger 
travel) 

 Revenue (distance) per day per train 
 Passenger km per train 

4 PASSENGER TRAVEL BEHAVIOR MODEL 

The travel choice process (e.g., activity scheduling, im-
plementation and rescheduling) is one of the key compo-
nents within the activity and travel decision framework as 
depicted by Bowman and Ben-Akiva (1996). They argue 
that this process could be better modeled with understand-
ing of general theory on how people make choices. Choice 
theory suggests that decisions can be viewed as a two stage 
process of choice set generation and choice. Individuals 
use coping mechanisms (Bowman and Ben-Akiva 1996) in 
order to make decisions with limited resources when the 
alternative set is as large and complex as that of the activ-
ity and travel scheduling decision.  
83
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Simulations are systems of sequential decision rules 
predicting decision process outcomes. There are a number 
of simulations focusing on choice set generation (Bowman 
and Ben-Akiva 1996), while others emphasize on the 
choice (Carrier 2003). Among others, the Passenger 
Choice Model developed by MIT and seven leading air-
lines (Carrier 2003) appears to be serving a similar objec-
tive as the one we have. This model is developed to repro-
duce how hypothetical air travelers choose among different 
airlines, flight schedule and fare class products. 

Based on this model and extended with our context spe-
cific requirements, we have designed our Travel Behavior 
Model as illustrated in Figure 2. It consists of three main 
components, namely, passenger disposition, passenger 
choice set and passenger decision.  

Passenger Disposition
- Characteristics
- Activity Schedule
- Decision Window
- Maximum Willingness-to-pay
- Passenger Disutility

Passenger Choice Set
- Possible Schedule
- Previous Experience
- Product and Ticket Type

Passenger
Choice

Decision
Rule

 
Figure 2: Elements of Travel Behavior ModelPassenger 

disposition 

The model starts with assigning each passenger a set of 
characteristics, which will have major influences on the 
travel choices, to present his preferences. These could in-
clude age, income, education, car ownership / availability, 
etc. Because travel demand is derived from activity de-
mand, a passenger is then given a series of activities to 
conduct, which we call activity schedule. The activity 
schedule consists of activity location, timing, duration, and 
purpose, from which we can infer travel frequency, travel 
distance, travel purpose and origin-destination. The activity 
schedule is then used for journey planning, which is elabo-
rated in more detail in the next section.  

Some passenger characteristics could have significant 
influence on the travel choice. For example, travelers could 
be divided into three segments based on their travel pur-
poses between each origin-destination pair: commuters, 
leisure travelers and business travelers. Thus, travelers in 
different segments will have different behavioral assump-
tions when facing different alternatives. For example, lei-
sure travelers would be more flexible in time-shifting than 
commuters who are expected to be at work at a specific 
time.  

In addition to the characteristics and activity schedule, 
each traveler also gets assigned a decision window, a 
maximum willingness to pay, and a set of passenger dis-
utility. 

Decision window. Because part of the interest of this re-
search is on the effect of the price strategy on the passen-
ger behavioral change, it is important to understand how 
138
people would react to, for example, time-based price dif-
ferentiation. For time-based price policies, for example, in-
troducing an “afternoon-peak price”, meaning passengers 
who travel between 16:00-18:00 pay more for the journey. 
In this case, there are four options passengers would 
choose: 

 
1. Time-shifting: shift their departure time to before 

16:00 or after 18:00 in order to avoid the “after-
noon-peak price”;  

2. Mode-change: leave railway and change to private 
transport (e.g., car); 

3. No change, accept the price increase; 
4. Stop travel: it is more likely to happen for leisure 

travelers). 
 

There are three factors that have strong influences on the 
time shifting nature of the passenger behavior: price differ-
ences, departure time (time-of-day), and schedule toler-
ance. Schedule tolerance indicates how much time shifting 
a passenger could afford. The value of schedule tolerance 
is given randomly to each single traveler but depends on 
travel purpose and travel time. A similar analysis is also 
made for route shifting when spatial-based pricing strategy 
is introduced.  

Maximum willingness-to-pay. Each passenger is also as-
signed a maximum willingness-to-pay, which represents 
the maximum amount this passenger is willing to pay for 
his journey. And it depends heavily on the travel purpose 
of the passenger. Business travelers tend to have higher 
maximum willingness-to-pay than the leisure travelers. 
Certain passenger characteristics also play an important 
role in determining the maximum willingness-to-pay. For 
example, travelers with higher income would have higher 
willingness-to-pay than the people that have low income.  

Passenger disutility. Disutility is associated with price 
restrictions and other disutilities, such as replanning dis-
utility and path quality. Usually a certain price is given 
with some restrictions. For example, a group price requires 
a group of more than 4 people traveling together. Replan-
ning disutility occurs when passengers have to make be-
havioral changes, such as time-shifting, route change or 
even mode change, in order to benefit from lower prices. 
This disutility is different from commuters to leisure trav-
elers to business travelers. The quality of the path depends 
on the factors such as number of transfers, transfer waiting 
time, in-vehicle time and total travel time. 

4.2 Passenger choice set 

Once the passenger disposition model has assigned the 
characteristics, the activity schedule, the decision window, 
the maximum willingness-to-pay and the passenger dis-
4



Li, van Heck, Vervest, Voskuilen, Hofker, and Jansma 

 
utility, the model will define the passenger choice set.  

Possible schedule. A number of journey options are 
generated for each single passenger based on required de-
parture time, arrival time, and origin-destination. The op-
tion contains transport modes, routes and vehicle types 
(e.g., intercity train, stop train).  

Previous experience. A key advantage of our model is 
including passengers’ previous experience (or “soft com-
ponent”) into the choice process. In reality, passengers de-
cision-making is influenced by the crowdness of the train, 
comfort i.e. seat availability, punctuality of service, and 
safety.  

Product and ticket type. It is important to note that, con-
sidering the current fare structure, the passengers’ product 
choice and the ticket type choice influence their decision 
for traveling and travel behavior. It is important to distin-
guish these two concepts. We use product to describe 
something that provides a discount on future journeys. For 
example, reduction card that provides discounts on a range 
of journeys over a period of year; all forms of season tick-
ets that provide a “free travel” on a specific journey for a 
given period of validity. Ticket type is mainly referring to 
the single and return ticket. The decision making of pur-
chasing a product or a ticket varies. The decision of buying 
a specific product type takes into account the likely use of 
the railway network over a future period of time, while 
purchasing a certain ticket type usually happens right be-
fore the traveling, and is determined by what type of prod-
uct a person has. 

4.3 Passenger decision  

Given the passenger disposition and the passenger choice 
sets, each single passenger follows his decision rule to 
make choices on departure time, route, mode and fare. The 
decision rule is to minimize generalized cost of travel.  
Generalized cost is calculated based on various assigned 
factors: characteristics, activity schedule, price, maximum 
willingness-to-pay, disutility, etc. 

4.4 Passenger travel tasks 

As part of the modeling effort, we model a series of tasks a 
passenger needs to conduct before/while traveling: 
 
 Construct activity schedule: produce a daily activity 

schedule (a series of activities with time, location, du-
ration, etc.) for a passenger to execute.  

 Execute activity schedule: pick up one activity from 
the activity schedule and start planning a journey if 
traveling is required (e.g., the next activity is not at the 
same location as the last activity). 
138
 Plan a journey: search for a set of alternative journey 
options. 

 Select a journey: choose a journey (among possible 
options) based on a set of decision rules. 

 Execute a journey: execute a journey on a trip-by-trip 
base (a journey consists of one or more trips). 

 
Figure 3 is an illustration how a passenger “plans a jour-

ney” (using the activity diagram). Journey planning is the 
search for a set of alternative journeys from which one is 
chosen. This happens during the execution of the activity 
schedule when a journey is encountered. We distinguish 
two types of search through the alternative journeys. One is 
the rational search, where decisions are made by going 
through all the possible alternatives. For example, using a 
route planning tool (e.g., website) to find a set of options. 
And the other one is bounded-rational search, or what we 
call heuristic search. This search is fundamentally based 
on the prior journeys made by the decision maker. As an 
illustration, we describe “plan a journey” in an activity dia-
gram in Figure 3. 

Retrieve
experiences

Consult 9292ov.nl
and/or a

routeplanner

Remove experiences where
travel time larger than

budgetted time

Classify
experiences

Adapt skeleton
journeys
to current

requirements

Select a journey

 [previous travel experience(s) for the same origin and
destination exist]

 
Figure 3: Activity diagram—Journey Planning 

5 DISCUSSION 

In this paper, we propose a Passenger Railway Network 
Simulation that is suitable for policy evaluation (e.g., dy-
namic pricing strategies) on the system performance (fi-
nancial and operational). The focus is on the design and 
modeling approach of the Travel Behavior Model. Using 
an activity-based approach, this model represents the 
choice process of passengers on time-shifting, route 
choice, departure time choice and mode choice, under dif-
ferent pricing strategies. 

Simulation input data. Considering the number of fac-
tors we model, undoubtedly, the proposed simulation re-
quires large and accurate data as input to make it sound 
and realistic. Therefore, we will use a number of NS sur-
veys that describe the characteristics of railway passengers 
as inputs for the Travel Behavior Model. In addition, the 
parameters concerning trade-offs between for example 
price and time will be calibrated with data on behavioral 
5
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change under different pricing policies that obtained with 
additional marketing research.  

Data accuracy. With the availability of the smart card 
data in the near future, updating and synthesizing the simu-
lation with the real-time passenger information would be-
come a reality. 

Validation. Our simulation will be executed using actual 
parameters of the current state of the railway network. The 
validity of the simulation will be evaluated by comparing the 
performance metrics from the simulation and the ones from 
the actual state of the network. However, a detailed discus-
sion on the validation is out of the scope of this paper. 

Currently we are developing and prototyping the simula-
tion and we believe that we will be able to share some pre-
liminary results during the conference presentation of this 
paper.  
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