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ABSTRACT 

The dynamic, non-linear, and complex nature of a supply 
chain with numerous interactions among its entities are 
best evaluated using simulation models. The optimization 
of such system is not amenable to mathematical program-
ming approaches. The simulation-optimization method 
seems to be the most promising. In this paper, we look at a 
refinery supply chain simulation and attempt to optimize 
the refinery operating policies and capacity investments by 
employing a genetic algorithm. The refinery supply chain 
is complex with multiple, distributed, and disparate entities 
which operate their functions based on certain policies. 
Policy and investment decisions have significant impact on 
the refinery bottom line. To optimize them, we develop a 
simple simulation-optimization framework by combining 
the refinery supply chain simulator called Integrated Re-
finery In Silico (IRIS) and genetic algorithm. Results indi-
cate that the proposed framework works well for optimiza-
tion of supply chain policy and investment decisions. 

1 INTRODUCTION 

Today’s organizations face cut-throat competition and op-
erate in uncertain market situations. Complex supplier rela-
tionships and unreliable sources of material supply on one 
side, and ever-increasing customer expectations on the 
other side, greatly pile the pressure on supply chains to op-
erate most efficiently for maximum profitability. Supply 
chains are becoming more complex as companies focus on 
their core competencies and outsource other activities. This 
results in an increased number of players in a supply chain 
and a complex maze of feedback loops. Unpredictable dy-
namics, information delay, disparate entities with varying 
goals, disruptions, and tightened regulations further add to 
the complexities. Accordingly, supply chain problems con-
tinue to attract much attention. 
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This paper specifically deals with the petroleum refin-
ery supply chains. Refining is a complex process which 
transforms crude oil into valuable products such as gaso-
line, heating oil, jet fuel, lubricants and intermediates for 
further processing to produce plastics, paints, fertilizers, 
detergents, etc. The industry is highly capital-intensive, 
and mostly high-volume and low-margin. The refinery 
supply chains have distinctive features which differentiate 
them from other industries and require special attention, as 
discussed in the next paragraph.  

Crude oil is produced in both ground fields and off-
shore platforms, and is transported mostly via large ships 
called Very Large Crude Carriers (VLCCs) to various re-
fineries located around the world. Transportation times are 
relatively long; it takes 4-6 weeks for a VLCC carrying 
crude oil from the Middle East to reach refineries in Asia. 
Furthermore, the price of crude oil is very volatile even on 
a daily basis. Similarly, product demands and prices are 
highly fluctuating. Numerous products and their variants 
can be produced from a crude by suitably altering the com-
plex manufacturing process consisting of highly intercon-
nected system of reactors, separators, and blenders. The 
yields of the different products from different crudes are 
different and so are the operating costs. Other key features 
of the refinery supply chain are huge inventories, need for 
safety-first, sensitivity to socio-political uncertainties, en-
vironmental regulations, and extensive trading. All of these 
pose challenges in logistics planning, production planning, 
scheduling, and other supply chain management (SCM) ef-
forts unique to the refinery industry. 

Operating in the kind of environment discussed above, 
the refinery adopts certain policies in performing its supply 
chain functions such as crude procurement, storage, pro-
duction, and product delivery. These policies directly af-
fect the refinery’s performance and have a significant im-
pact on its long-term profitability. Classical optimization 
techniques based on mathematical programming generally 

 



Koo, Chen, Adhitya, Srinivasan, and Karimi 
 

work well for small-scale, short-term supply chain prob-
lems, about 2-4 weeks in size. However, they have not 
been successful in dealing with stochastic, large-scale, 
long-term, integrated, dynamic problems such as evaluat-
ing supply chain policies and investment decisions, which 
have long-term impact (months to years). At present, simu-
lation remains the predominant methodology for dealing 
with such problems. To exploit the advantages of optimiza-
tion while managing the complexities at the same time, the 
current trend is towards synergistic union of simulation and 
optimization (Fu 2001), which is adopted in this paper. In 
this work, we use a dynamic refinery supply chain simula-
tor, called Integrated Refinery In Silico (IRIS), developed 
by Pitty et al. (2005), to evaluate the effect of supply chain 
policies and investment decisions on the supply chain. Op-
timization is performed using genetic algorithm. 

The main objective of this paper is to affirm that opti-
mal supply chain policy and investment decisions can be 
identified using the simulation-optimization framework to 
assist in identifying the optimal decisions. The remainder 
of the paper is organized as follows. Section 2 states the 
problem description and Section 3 presents a brief litera-
ture review of related works. Section 4 describes the pro-
posed simulation-optimization method. Case study results 
will be discussed in Section 5. Finally, Section 6 discusses 
the conclusion and future work. 

2 PROBLEM DESCRIPTION 

Figure 1 shows the entities involved in a typical refinery 
supply chain and their interactions (Pitty et al. 2005). Ex-
ternal entities include suppliers, 3rd party logistics provid-
ers (3PLs), shippers, jetty, and customers. Internal entities 
are the refinery functional departments: procurement, op-
erations, sales, storage, and logistics. IRIS models all these 
entities and simulates the activities in the supply chain 
starting from demand forecasting, crude procurement, lo-
gistics arrangement, crude delivery, crude storage, opera-
tions planning and scheduling, crude processing, product 
storage, to product delivery. The solid arcs in Figure 1 rep-
resent material flows. Crude oil flows from suppliers to 
shipper, jetty, crude tanks, and finally to processing units. 
After processing, products flow from blend tanks to prod-
uct tanks, shipper, and finally to customers. The dotted arcs 
represent information flows between the various entities. 

The various departments perform their functions ac-
cording to certain supply chain policies. In this paper, we 
are concerned with the crude procurement policy of the 
procurement department, the crude storage policy of the 
storage department, and the production policy of the opera-
tions department. The crude procurement policy deter-
mines how the refinery selects crude to purchase and esti-
mates how much to buy, which supplier to buy from, and 
when the crude should be delivered to the refinery. The 
crude storage policy specifies which tank the crude should 
1432
be stored in and when to unload the crude. The production 
policy decides how much crude to process and which pro-
duction mode to run. These policies are dependent on cer-
tain parameters. In this work we seek to optimize them. 
These parameters are summarized in Table 1 and explained 
in the next paragraph. 
 

 
Figure 1: Typical Refinery Supply Chain 

 
Table 1: Parameters to be Optimized 

Department Policy Parameters 
Procurement Crude 

procure-
ment 

Planning horizon; 
Procurement cycle time 

Storage Crude 
storage 

Crude tank capacity 

Operations Produc-
tion 

Production cycle time; 
CDU throughput limit 

 
Parameters related to the crude procurement policy are 

planning horizon and procurement cycle time. Planning ho-
rizon is the time span for which procurement is planned in 
advance. Procurement cycle time is the frequency at which 
procurement is made and products are shipped. Parameters 
related to the crude storage policy are the crude tank ca-
pacities, which can be increased by investing a certain 
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capital cost. Parameters related to the production policy are 
production cycle time and CDU throughput limit debottle-
necking. Production cycle time is the frequency at which 
the throughput and the production mode can be changed, as 
a refinery generally operates in “time blocks”, during 
which the crude slate feeding the crude distillation unit 
(CDU) remains the same. In this work, we assume that the 
refinery can increase its maximum throughput limit by in-
vesting a certain capital cost for debottlenecking. 

There are tradeoffs involved in each of these parame-
ters. Long planning horizon means less accurate demand 
forecasts as it is more difficult to predict further into the 
future, but it allows more time for managing disruptions 
such as ship delay, for example by emergency procure-
ment. Long procurement cycle time implies more crude is 
purchased in each cycle and higher crude storage capacity 
is needed, but it allows more time to meet demands as 
product shipments are less often. Long production cycle 
time means less flexibility but higher cost savings due to 
less changeover cost. The opportunity for  increased pro-
duction, which comes from having additional crude tank 
capacity and higher CDU maximum throughput limit, in-
volves capital costs. 

The problem is then to find the optimal values for 
these parameters to maximize profit to the refinery. Profit 
is calculated as product revenue less sum of crude purchase 
cost, crude inventory cost, product inventory cost, operat-
ing cost, changeover cost, penalty for unfulfilled demand, 
capital cost, and demurrage cost. We group the parameters 
into two problems: policy decisions (procurement cycle 
time, planning horizon, and production cycle time) and in-
vestment decisions (crude tank capacity and CDU 
throughput limit debottlenecking). 

3 LITERATURE REVIEW 

Most works in the literature on refinery optimization deal 
with sub-sections of the refinery such as crude oil schedul-
ing, production planning, gasoline blending, crude selec-
tion, etc. The majority are based on mathematical pro-
gramming. Neiro and Pinto (2004) and Reddy et al. (2004) 
give a comprehensive review of works related to optimiza-
tion in the refinery supply chain. 

Interestingly, similar trend is observed for refinery 
supply chain simulation. Most works on refinery supply 
chain simulation reported in the literature address only a 
part of the supply chain, such as crude transportation logis-
tics using discrete event simulation and optimal control 
(Cheng and Duran, 2004), simulation-based short-term 
scheduling of crude oil from port to refinery tanks and dis-
tillation unit (Chryssolouris et al., 2005), agent-based crude 
procurement (Julka et al., 2002).  

Outside the refinery context, Banks et al. (2002) sur-
vey many SCM simulation studies at IBM and Virtual Lo-
gistics and discuss issues related to strategic and opera-
1433
tional SCM, distributed SCM simulation, and commercial 
packages for SCM simulation. Kleijnen (2005) distinguish 
four types of simulation – spreadsheet simulation, system 
dynamics, discrete-event dynamic simulation, and business 
games) – and provide a literature review of the application 
of each type in SCM. 

Jung et al. (2004) propose a simulation-based optimi-
zation computational framework for determining safety 
stock levels for planning and scheduling applications. They 
combine deterministic planning and scheduling models for 
optimization and a discrete-event simulation model. Their 
work is focused only on planning and scheduling. 

Recently, Pitty et al. (2005) developed IRIS, an inte-
grated model of all the entities in the refinery supply chain, 
so as to enable integrated and coordinated decision mak-
ing. Rather than focusing on a single sub-section, they at-
tempt to model the overall refinery supply chain. Hence, 
IRIS enables holistic evaluation of policies, disruption 
management, and supply chain analysis. Exploiting these 
capabilities of IRIS, we couple IRIS with genetic algorithm 
(GA) for our optimization purpose. 

4 PROPOSED SIMULATION-OPTIMIZATION 
METHOD 

Figure 2 illustrates the proposed simulation-optimization 
method. The user gives input such as economics data, ca-
pacity limits, demand data, yields, initial inventory, sup-
plier data, pumping rate, etc., as simulation parameters in 
IRIS. The parameters to be optimized form the chromo-
some (or string) in GA. To evaluate the fitness of a chro-
mosome, a simulation run in IRIS based on those parame-
ters is executed. After the simulation is completed, IRIS 
evaluates the objective value, in this case profit, and re-
turns it to GA. The profit is used by GA as the fitness value 
for ranking the chromosomes. The GA procedure used in 
this work is illustrated in Figure 3. 

As seen in Figure 3, a new generation is produced via 
crossover and mutation operations. Crossover is conducted 
by randomly selecting two parent strings from the popula-
tion and performing crossover functions on them. Three 
types of crossover are used: arithmetic, heuristic and sim-
ple. Arithmetic crossover takes two parents and performs 
an interpolation along the line formed by the two parents. 
Heuristic crossover performs an extrapolation along the 
line formed by the two parents outward in the direction of 
the better parent. Simple crossover chooses a random 
crossing site along the parent length and performs a cross-
over. The number of times crossover is performed in each 
population is defined by the user through the crossover rate 
parameters. 
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Figure 2: Proposed Simulation-Optimization Method 
 

 
Figure 3: Genetic Algorithm Procedure 

 
Mutation is conducted by randomly selecting one par-

ent string from the population and performing mutation 
function on it. Four types of mutations are used: boundary, 
multi-non-uniform, non-uniform and uniform. Boundary 
mutation takes one of the parameters of the parent and 
changes it randomly either to its upper or lower bound. 
Multi-non-uniform mutation changes all, while non-
uniform mutation changes one, of the parameters of the 
parent based on a non-uniform probability distribution. 
This Gaussian distribution starts wide, and narrows to a 

Optimal 
Solution 

Profit ($) 

Input 

Policy Parameters 

Optimization 
(GA) 

MATLAB Simulink

Simulation 
(IRIS) 

User 
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point distribution as the generations progress. Uniform mu-
tation changes one of the parameters of the parent based on 
a uniform probability distribution. The number of times 
mutation is performed in each population is defined by the 
user through the mutation rate parameters. 

Each string is sent to IRIS for simulation and the re-
sulting profit is sent back to GA. The best string from each 
generation is saved into the store matrix if it is better than 
the current best in the store matrix. GA will terminate after 
a user-defined number of generations has been reached and 
the best string in the store matrix will be reported. 

5 CASE STUDY 

The data for the refinery supply chain case study is shown 
in Table 2. As the base case, we assume that the refinery 
currently operates with planning horizon = 40 days, pro-
curement cycle time = 7 days, and production cycle time = 
7 days. We have used the simulation-optimization strategy 
to solve two different problems: (1) policy decisions and 
(2) investment decisions. The range of the parameters used 
in GA are listed in Table 3. 
 

Table 2: Data for the Case Study 
Parameter Value 

Jetty pumping rate (kbbl/hr) 75 
VLCC allowable wait time be-
fore demurrage (days) 

1 

Number of crudes 5 
Initial crude inventory [100 100 100 100 

100] 
Max. crude storage capacity 
limit (kbbl) 

[1250 1250 1250 
1250 1250] 

Max. throughput (kbbl/day) 250 
Min. throughput (kbbl/day) 100 
Number of products 4  
Initial product inventory [200 200 200 200] 
Product price ($/kbbl) [79 76 68 47] 
Crude price ($/kbbl) [55 56 53 50 52] 
Demurrage charge ($/day) 50000 
Operating cost ($/kbbl) 2 
Crude inventory cost ($/kbbl) 0.05 
Product inventory cost ($/kbbl) 0.05 
Product deficit penalty ($/kbbl) [5 5 5 5] 
Changeover cost ($/event) 100 

 
In Problem 1, crude prices, CDU yields, product prices 

and demands are kept consistent across different simula-
tion runs for fair comparison. In Problem 2, they are sto-
chastic and five simulation runs are performed for each 
string to get the average profit. Problem 2 is relatively 
small because the search space (extra crude capacity and 
extra throughput capacity) is discrete. However, stochastic-
ity leads to increased complexity in the search process. The 
4
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GA parameters used in the two problems are listed in Table 
4. The results from the two problems are summarized in 
Table 5. The simulation horizon used in all cases is 120 
days. 
 

Table 3: Range of the Parameters Used in GA 
Parameter Range 

Planning horizon (days) 20-50 
Procurement cycle time (days) 3-15 
Production cycle time (days) 3-15 
Possible extra crude storage ca-
pacity (kbbl) and the correspond-
ing capital cost 

0 – $0 
250 – $500,000 
500 – $600,000 
750 – $700,000 

1000 – $800,000 
1250 – $900,000 

Possible extra throughput capacity 
from debottlenecking (kbbl/day) 
and the corresponding capital cost  

0 – $0 
25 – $100,000 
50 – $110,000 
75 – $120,000 

100 – $130,000 
125 – $140,000 

 
Problem 1: After optimizing the policy parameters, the 

profit of the refinery increases tremendously to $149.2M 
from the base case of $42.8M. This is most significantly 
due to the increase in product sales. The shorter planning 
horizon leads to more accurate demand forecasts, which is 
evident from the observation that despite buying 50% more 
crude than the base case (see crude cost), the average crude 
inventory is only slightly higher. This implies that more 
crude is consumed for production, as can be seen from the 
higher average throughput and higher operating cost. The 
shorter production cycle time of four days also contributes 
to the higher throughput, as it allows the refinery to 
quickly switch to high-demand products. The efficient use 
of crude also means storage is always available whenever 
crude ships arrive, resulting in zero demurrage cost. All 
these factors contribute to the significantly higher overall 
profit. 

Problem 2: The optimal investment decisions identi-
fied are to add an extra crude storage capacity of 750 kbbl 
and debottlenecking to have an extra 25 kbbl/day of 
throughput capacity. Despite using the same policy pa-
rameters as the base case, the refinery is able to make a 
significantly higher profit of $73.4M thanks to the addi-
tional throughput capacity, which can be seen from the 
higher product revenue and average throughput than the 
base case. The higher crude storage capacity also contrib-
utes a cost saving in demurrage cost. These improvements 
are significant benefits for an investment of $0.8M in capi-
tal cost.  
1435
6 CONCLUSIONS 

In this globalized era, supply chains operate in a challeng-
ing environment characterized by increased competition, 
where supply chain policy and investment decisions have 
significant impact on profitability. However, the complex-
ity of refinery supply chains pose a great challenge for op-
timization through mathematical programming approaches.  

In this paper, we developed a simulation-optimization-
based approach to support supply chain policy and invest-
ment decisions. Optimization is performed by a genetic al-
gorithm linked to a dynamic refinery supply chain simula-
tor. The policy decisions considered are lengths of the 
planning horizon, the procurement cycle time, and the pro-
duction cycle time. The investment decisions considered 
are crude tank capacity and debottlenecking for increased 
throughput. Case study results show the capability of the 
proposed method.  

6.1 Current Work 

The simulation-optimization method requires a signifi-
cantly large computation time if run on a single processor. 
The computation time for one simulation run in IRIS is 
about 45-60 seconds. For a population of 60 strings and a 
GA run of 30 generations, the computation time is ap-
proximately 60 x 30 x 45s = 81,000s ≈ 1 day. To reduce 
the computation time, we are currently developing a paral-
lel computing framework for the simulation-optimization 
method. In this framework, one master processor execute 
the GA and multiple slave processors carry out IRIS simu-
lation in parallel. Whenever the master generates a new 
string from crossover or mutation, it will send the new 
string to a slave, which will then run IRIS based on that 
string. Instead of waiting for the slave to return the profit 
of this string, the master continues to generate another new 
string and sends it to another slave. After all the slaves 
have returned the strings and their profits to the master, the 
master re-assembles the population and proceeds to the 
next generation. 

With 30 parallel slaves, the computation time required 
for the same 60-string population and 30 generations con-
sidered above is approximately (60/30) x 30 x 45s = 2,700s 
≈ 1 hour, which is a 95% reduction from the previous re-
quirement of 1 day! 

The improved computational speed from parallelizing 
the algorithm will enable statistical studies incorporating 
stochastic variables for more realistic analysis. Optimiza-
tion of other supply chain policies will be explored. 
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Table 4: GA Parameters of Problems 1 and 2 

Metric Problem 1 
(Policy) 

 
Problem 2  

(Investment) 
 

Parameters  
to be optimized 

1) Planning horizon 
2) Production cycle 

time 
3) Procurement cy-

cle time 

1) Extra crude stor-
age capacity limit  

2) Extra throughput 
limit 

Population size 60 15 
Number of generations 20 20 
Stochastic across runs? No Yes 
Runs per chromosome 1 5 
Number of crossover operations per generation (Crossover rate) 
Arithmetic 2 1 
Heuristic 2 1 
Simple 2 1 
Number of mutation operations per generation (Mutation rate) 
Boundary 4 1 
Multi-non-uniform 6 1 
Non-uniform 4 1 
Uniform 4 1 
Table 5: Base Case and Optimal Results of Problems 1 and 2 

Metric Base Case Problem 1 
(Policy) 

Problem 2 
(Investment) 

Parameters    
Planning horizon (days) 40 33 Base 
Production CT (days) 7 4 Base 
Procurement CT (days) 7 5 Base 
Extra crude storage capacity 
(kbbl) 0 Base 750 

Extra throughput (kbbl/day) 0 Base 25 
Performance Indicators    
Average crude inv. (kbbl) 1454.0 1611.7 1936.8 
Average product inv. (kbbl) 887.8 1150.1 1260.4 
Average throughput (kbbd) 92.7 162.1 104.1 
Product revenue ($ M) 700.0 1215.0 765.8 
Crude cost ($ M) 612.4 997.0 641.6 
Crude inv. cost ($ M) 8.7 9.7 11.7 
Product inv. cost ($ M) 5.3 6.9 7.6 
Operating cost ($ M) 22.2 38.9 25.0 
Capital cost ($ M) 0 0 0.8 
Deficit penalty ($ M) 4.0 7.6 1.8 
Changeover cost ($ M) 4.2 5.7 3.9 
Demurrage cost ($ M) 0.4 0 0 
Profit ($ M) 42.8 149.2 73.4 
1436
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