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ABSTRACT

This tutorial provides an overview on recent advances made
in ranking and selection (R&S) for selecting the best simu-
lated system and discusses challenges that still exist in the
field. We focus on indifference-zone R&S procedures that
provide a guaranteed probability of correct selection when
the best system is at least a user-specified amount better
than the other systems.

1 INTRODUCTION

Ranking-and-selection (R&S) procedures are to compare a
finite number of simulated alternatives. R&S procedures
were first developed in the 1950’s by the statistics com-
munity. In the early 1980’s, R&S drew the attention of
the simulation community due to its potential usefulness in
stochastic simulation output analysis. There exist a num-
ber of simulation issues that make simulation R&S more
difficult than classical R&S. There are also opportunities
available in simulation experiments that are not present in
physical experiments. Fortunately, a number of researchers
in that arena have been successful in developing new R&S
procedures that are useful for simulation environments.

Our goal is to review these simulation issues, how they
have been overcome, and what challenges still lie in the
field. We present three R&S procedures: one to illustrate
simulation issues of classical R&S procedures and the other
two as example procedures useful for simulation outputs.
See Goldsman and Nelson (1998) and Law and Kelton (2000)
for detailed “how to” guides, Bechhofer et al. (1995) for
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a comprehensive survey of R&S procedures; and Kim and
Nelson (2006b) for how to construct R&S procedures.

There exist at least four classes of comparison prob-
lems that arise in simulation studies: selecting the system
with the largest or smallest expected performance measure
(selection of the best), comparing all alternatives against a
standard (comparison with a standard), selecting the sys-
tem with the largest probability of actually being the best
performer (multinomial selection), and selecting the system
with the largest probability of success (Bernoulli selection).
For all of these problems, a requirement is imposed ei-
ther on the probability of correct selection (PCS) or on
the simulation budget. Some procedures find a desirable
system with a guarantee on the PCS, while other proce-
dures maximize the PCS under the budget constraint. Our
focus is on selection-of-the-best problems with a PCS con-
straint. A good procedure is one that delivers the desired
PCS efficiently (with minimal simulated data) and is ro-
bust to modest violations of its underlying assumptions.
In this tutorial “best” means maximum expected value of
performance, such as expected throughput or profit.

The paper is organized as follows: In Section 2 we define
notation, present definitions and provide one classical R&S
procedure to illustrate problems in classical R&S. Section 3
reviews issues and opportunities encountered in simulation
problems, along with how they have been overcome. Two
specific procedures that are useful in simulation environ-
ments are presented in Section 4, followed by a numerical
illustration in Section 5. Section 6 discusses challenges that
still lie in the field and directions to approach them. Finally,
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Section 7 closes the paper by describing other approaches
of the R&S problem and giving appropriate references.

2 BACKGROUND

In this section, we define notation, provide definitions and
give a classical R&S procedure due to Rinott (1978).

Rinott’s procedure guarantees, with confidence level
at least 1−α , that the system ultimately selected has the
largest true mean when the true mean of the best system is at
least δ better than the second best. When there are inferior
systems whose means are within δ of the true best, then the
procedure guarantees to find one of these “close enough”
systems with the same probability. The parameter δ , which
defines the indifference zone, is set by the experimenter to the
smallest absolute difference in expected performance that is
considered important to detect. Differences of less than δ

are considered practically insignificant. Procedures of this
type are known as indifference-zone(IZ) R&S procedures.
Comprehensive reviews of R&S can be found in Bechhofer et
al. (1995) and Goldsman and Nelson (1998). The procedure
below from Rinott (1978) is sequential, by which we mean
it typically requires more than one stage of simulation.

Suppose that there are k ≥ 2 systems, and let Xi j de-
note the jth independent observation from system i. Both
procedures assume that the Xi j ∼N(µi,σ

2
i ), with µi and σ2

i
unknown, and that the data across systems are independent.
Also let X̄i(r) = r−1

∑
r
j=1 Xi j denote the sample mean of the

first r observations from system i.
Procedure R due to Rinott (1978) requires at most two

stages of simulation; it is one of the simplest and most
well-known R&S procedures.

Procedure R

1. Setup: Select confidence level 1−α , IZ parameter
δ > 0 and first-stage sample size n0 ≥ 2.

2. Initialization: Obtain Rinott’s constant h =
h(n0,k,1−α) from the tables in Wilcox (1984)
or Bechoffer et al. (1995). See also Table 8.3 in
Goldsman and Nelson (1998).
Obtain n0 observations Xi j, j = 1,2, . . . ,n0, from
each system i = 1,2, . . . ,k.
For i = 1,2, . . . ,k compute

S2
i =

1
n0−1

n0

∑
j=1

(Xi j − X̄i(n0))
2
,

the sample variance of the data from system i. Let

Ni = max
{

n0,

⌈
h2S2

i
δ 2

⌉}
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where d·e indicates rounding up any fractional part
to the next larger integer. Here Ni is the number
of observations that will be taken from system i.

3. Stopping Rule: If n0 ≥maxi Ni then stop and select
the system with the largest X̄i(n0) as the best.
Otherwise, take Ni − n0 additional observations
Xi,n0+1,Xi,n0+2, . . . ,Xi,Ni from each system i for
which Ni > n0.
Select the system with the largest X̄i(Ni) as the
best.

This procedure is a good example of classical R&S
procedures that work—in the sense that it satisfies the PCS
requirement—under assumptions such as independence and
normality. Specifically, the procedure guarantees

Pr{select k|µk −µk−1 ≥ δ} ≥ 1−α (1)

where 1/k < 1−α < 1.
To give a brief proof sketch of the statistical validity of

the procedure, assume that variances are known and equal
across all systems. Then the procedure does not need two
stages, becomes a one-stage procedure, and Ni becomes n
such that

n =
⌈

2c2σ2

δ 2 ,

⌉
(2)

where c is a constant. We also need to define a configuration
called least-favorable configuration (LFC), the configuration
of system means under which it is most difficult to correctly
select the best. The Slippage Configuration (SC), µi = µk−δ

for i = 1,2, . . . ,k− 1, is known to be the LFC for many
procedures and thus minimizes the PCS. In this paper we
break from the statistics literature in that we will not be
concerned with identifying the LFC; our only interest is
insuring that (1) is met.

Then the proof for known and equal variances goes as
follows: assuming µk −µk−1 ≥ δ ,

Pr{select k}
= Pr{X̄k(n) > X̄i(n),∀i 6= k}

= Pr
{

X̄i(n)−X̄k(n)−(µi−µk)
σ
√

2/n
<− (µi−µk)

σ
√

2/n
,∀i6=k

}
≥ Pr

{
X̄i(n)−X̄k(n)−(µi−µk)

σ
√

2/n
< δ

σ
√

2/n
,∀i6=k

}
≥ PrLFC

{
X̄i(n)−X̄k(n)−(µi−µk)

σ
√

2/n
<c,∀i 6=k

}
= Pr{Zi < c, i = 1,2, . . . ,k−1}= 1−α,

where (Z1,Z2, . . . ,Zk−1) has a multivariate normal distri-
bution with means 0, variances 1, and common pairwise
correlations 1/2, implying c needs to be the 1−α quan-
tile of the maximum of such a multivariate normal random
vector.
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For the R procedure, additional attention is required
for unknown and unequal variances. The Rinott’s constant
h is similar to c in the sense that it is also the 1−α quantile
of a distribution, but the distribution is more complicated
than a multivariate normal distribution. Kim and Nelson
(2006b) give theorems useful to handle unknown and unequal
variances. Notice that the proof is closely related to the
collection of random variables

X̄i(n)− X̄k(n)− (µi−µk), i = 1,2, . . . ,k−1, (3)

and this is true for many other IZ R&S procedures.

3 SIMULATION ISSUES

Indifference-zone R&S procedures first try to satisfy the PCS
requirement but this is difficult in general unless observations
satisfy some assumptions. For example, the R procedure
needs independent and identically distributed (i.i.d.) basic
observations from a normal distribution, which may not
hold in simulation. We review such issues and review how
those issues have been overcome.

3.1 Non-normality and Dependence of Output Data

Raw output data from industrial and service simulations are
rarely normally distributed nor independent. Surprisingly,
non-normality and dependence are usually not concerns
in simulation experiments that (a) are designed to make
multiple independent replications, and (b) use a within-
replication average of a large number of raw simulation
outputs as the basic summary measure. This is frequently
the situation for so-called “terminating simulations” in which
the initial conditions and stopping time for each replication
are an inherent part of the definition of the system. A
standard example is a store that opens empty at 6 AM,
then closes when the last customer to arrive before 9 PM
leaves the store. If the output of interest is the average
customer delay in the checkout line over the course of the
day, and comparisons will be based on the expected value
of this average, and the average is over many individual
customer delays, then the Central Limit Theorem suggests
that the replication averages will be approximately normally
distributed. Moreover, if each replication is independent,
the replication averages will be independent, too. Whether
or not each replication is independent relies on the capability
of a pseudo-random number generator to generate a long
sequence of numbers that look like i.i.d. uniform(0,1). See
L’Ecuyer (2006) for a number of reliable generators with
good statistical properties.

Difficulties arise in so-called “steady-state simulations”
where the parameter of interest is defined by a limit as
the time index of a stochastic process approaches infinity
(and therefore forgets its initial conditions). Some steady-
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state simulations are amenable to multiple replications of
each alternative and within-replication averages as summary
statistics, in which case the preceding discussion applies.
Unfortunately, severe estimator bias due to residual effects of
the initial conditions sometimes force an experiment design
consisting of a single, long replication from each alternative.
The raw outputs within each replication are typically neither
normally distributed nor independent. For example, waiting
times of individual customers in a queueing system are
usually dependent because a long delay for one customer
tends to increase the delays of the customers who follow.
The best we can hope for is an approximately stationary
output process from each system, but not normality or
independence.

The most common approach for dealing with this prob-
lem is to transform the raw data into batch means, which
are averages of large number of raw outputs. The batch
means are often far less dependent and non-normal than
the raw output data. Many algorithms are available that
determine a batch size to achieve approximate i.i.d. normal
batch means. For example, see Schmeiser (1982). There
are problems with the batching approach for R&S, however.
They are discussed in Section 3.5.

3.2 Common Random Numbers

The R procedure assumes that data across the k alternative
systems are independent. In simulation experiments this
assumption can be made valid by using different sequences
of random numbers to drive the simulation of each system.
However, since we are making comparisons, there is a po-
tential advantage to using common random numbers (CRN)
to drive the simulation of each system because

Var[Xi j −X` j] = Var[Xi j]+Var[X` j]−2Cov[Xi j,X` j].

If implemented correctly (see, for instance, Banks, et al.
2001), CRN tends to make Cov[Xi j,X` j]> 0 thereby reducing
the variance of the difference.

As pointed out in Section 2, R&S procedures often
need to make probability statements about the collection of
random variables

X̄i(n)− X̄k(n)− (µi−µk), i = 1,2, . . . ,k−1. (4)

The appearance of the common term X̄k(n) causes depen-
dence among these random variables, but it is often easy to
model or tightly bound. The introduction of CRN induces
dependence between X̄i(n) and X̄k(n) as well. Even though
the sign of the induced covariance is believed known, its
value is not, making it difficult to say anything about the
dependence among the differences (4).

Two approaches are frequently used. The first is to
replace the basic data {Xi j; i = 1,2, . . . ,k; j = 1,2, . . . ,n}
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with pairwise differences {Xi j −X` j; i 6= `; j = 1,2, . . . ,n}
because the variance of the sample mean of the difference
includes the effect of the CRN-induced covariance. The
second is to apply the Bonferroni inequality to break up
joint statements about (4) into statements about the individual
terms. Recall that for events E1,E2, . . . ,Ek−1, the Bonferroni
inequality states that

Pr

{
k−1⋂
i=1

Ei

}
≥ 1−

k−1

∑
i=1

Pr{E c
i } . (5)

Approaches based on the Bonferroni inequality make
no assumption about the induced dependence, and therefore
are very conservative. A more aggressive approach is to
assume some structure for the dependence induced by CRN.
One standard assumption is that all pairwise correlations
ρ = Corr[Xi j,X` j] are positive, but identical, and all variances
are equal; this is known as compound symmetry. Nelson and
Matejcik (1995) extended the R procedure in conjunction
with CRN under a more general structure called sphericity.
The specific assumption is

Cov[Xi j,X` j] =
{

2βi + τ2, i = `
βi +β`, i 6= `

(6)

with τ2 > 0, which is equivalent to assuming that Var[Xi j−
X` j] = 2τ2 for all i 6= `, a type of variance balance. This
particular structure is useful because there exists an estimator
τ̂2 of τ2 that is independent of the sample means and has
a χ2 distribution. Nelson and Matejcik (1995) showed that
procedures based on this assumption are robust to departures
from sphericity when the number of systems k is no more
than 20, at least in part because assuming sphericity is like
assuming that all pairwise correlations equal the average
pairwise correlation.

3.3 The Sequential Nature of Simulation

The R procedure is sequential in that the procedure requires
two stages of simulation. There are procedures that take only
a single basic output from each alternative still in contention
at each stage. Such procedures are fully sequential.

Suppose an IZ ranking procedure is applied in the
study of k new blood pressure medications. Then “repli-
cations” correspond to patients, and the idea of using a
fully-sequential procedure (assign one patient at a time to
each drug, then wait for the results before recruiting the next
patient) seems absurd. In simulation experiments, however,
data are naturally generated sequentially, at least within
each simulated alternative, making multi-stage procedures
much more attractive. However, there are some issues:

• In multiple-replication designs, sequential sam-
pling is particularly attractive. All that needs to be
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retained to start the next stage of sampling is the
ending random number seeds from the previous
stage. In single-replication designs it can be more
difficult to resume sampling from a previous stage,
since the entire state of the system must be retained
and restored.

• A hidden cost of using multi-stage procedures is
the computational overhead in switching among
the simulations of the k alternatives. On a single-
processor computer, switching can involve saving
output, state and seed information from the cur-
rent system; swapping the program for the current
system out of, and for the next system into, ac-
tive memory; and restoring previous state and seed
information for the next system. Thus, the over-
all computation effort includes both the cost of
generating simulated data and the cost of switch-
ing. Hong and Nelson (2005b) look at sequential
IZ procedures that attempt to minimize the total
computational cost. Their procedures require only
k−1 number of switches.

• If k processors are available, then an attractive op-
tion is to assign each system to a processor and
simulate in parallel. This is highly effective in con-
junction with R&S procedures that require little or
no coordination between the simulations of each
system, such as subset-selection procedures—that
divide systems into the maybe-the-best group and
the clearly-not-the-best group—or IZ-ranking pro-
cedures that use only variance information (and
not differences among the sample means). Unfor-
tunately, a fully-sequential procedure with elimi-
nation would defeat much of the benefit of paral-
lel processing because communication among the
processors is required after generating each output.

Many fully-sequential procedures are based on results
for Brownian motion processes. Let B(t;∆) be a standard
Brownian motion process with drift ∆. Consider the par-
tial sum of the pairwise difference Di(r) = ∑

r
j=1(Xk j−Xi j),

r = 1,2, . . . . If the Xi j are i.i.d. normal and µk−µi = δ , then

{Di(r),r = 1,2, . . .} D= {σB(t;δ/σ), t = 1,2, . . .}, where
σ2 = Var[Xk j−Xi j] (with or without CRN). In other words,
Di(r) is a Brownian motion process with drift observed only
at discrete (integer) points in time. A great deal is known
about the probability of Brownian motion processes cross-
ing boundaries in various ways (see, for instance, Siegmund
1985 or Jennison and Turnbull 2000). Thus, it seems nat-
ural to design R&S procedures for σB(t;δ/σ) and apply
them to Di(r) after taking care of unknown and unequal
variances.

Here we provide one specific result. Let c(t) be a
symmetric (about 0) continuation region for σB(t;δ/σ),
and let an incorrect selection correspond to the process
5
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exiting the region in the wrong direction (down, when the
drift is positive). If T = inf{t ≥ 0 : |σB(t;δ/σ)| > c(t)},
then

Pr{ICSi}= Pr{σB(T ;δ/σ) < 0}.

Of course σB(t;δ/σ) is only an approximation for Di(r).
However, Jennison et al. (1980) show that under very gen-
eral conditions, Pr{ICSi} is no greater if the Brownian
motion process is observed at discrete times; thus, proce-
dures designed for σB(t;δ/σ) provide an upper bound on
the probability of incorrect selection for Di(r). In conjunc-
tion with a decomposition into pairwise comparisons, this
result can be used to derive R&S procedures for k ≥ 2.

Fabian (1974) tightened the triangular continuation
region used by Paulson (1964), and this was exploited by
Hartmann (1988, 1991), Kim and Nelson (2001, 2006a)
and Hong and Nelson (2005b).

Theorem 1 (Fabian 1974) Let {B(t,∆), t ≥ 0} be
a standard Brownian motion with drift ∆ > 0. Let

l(t) = −a+λ t

u(t) = a−λ t

for some a > 0 and λ = ∆/(2b) for some positive integer
b. Let c(t) denote the continuation region (l(t),u(t)) and
let T be the first time that B(t,∆) /∈ c(t). Then

Pr{B(T,∆) < 0} ≤
b

∑
j=1

(−1) j+1
(

1− 1
2
I ( j = b)

)
×exp{−2aλ (2b− j) j}.

Batur and Kim (2006) develop R&S procedures with
parabolic boundaries. Their procedures are based on Ferebee
(1982) which studies behaviors of σB(t;δ/σ) crossing a
parabolic boundary.

3.4 Large Number of Alternatives

The number of alternatives of interest in simulation problems
can be quite large, with up to 100 being relatively common.
However, classical IZ procedures such as the R procedure
were developed for relatively small numbers of alternatives,
say no more than 20. They can be inefficient when the
number of alternatives is large because they were developed
to protect against the LFC—to free the procedure from
dependence on the true differences among the means.

When the number of systems is large we rarely en-
counter anything remotely like the SC configuration, because
large numbers of alternatives typically result from taking all
feasible combinations of some controllable decision vari-
ables. Thus, the performance measures of the systems are
likely to be spread out, rather than all clustered near the
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best. Fully-sequential procedures with elimination might
seem to be a cure for this ill because they eliminate clearly
inferior systems immediately if there is any evidence that
they are. But the inequalities used to decompose the prob-
lem of k systems into paired comparisons with system k
are typically quite conservative and become much more so
with increasing k although Kim and Nelson’s (2001) fully-
sequential procedure KN, described in the next section, has
been shown to work well for up to k = 500 systems (see
Section 6).

To overcome the inefficiency of IZ approaches for
large numbers of alternatives, one idea is to try to gain the
benefits of screening, as in fully-sequential procedures, but
avoid the conservatism required to compensate for so many
looks at the data. Nelson, et al. (2001) proposed spending
some of the α for incorrect selection on an initial screening
stage (using a subset-selection procedure), and spending the
remainder on a second ranking stage (using a Rinott-type
IZ procedure). Additive and multiplicative α spending is
possible, depending on the situation (see Nelson, et al. 2001
and Wilson 2001). The resulting procedure, named NSGS,
is presented in the next section.

This so-called “α-spending” approach—spreading the
probability of incorrect selection across multiple stages—is
a general-purpose tool, and there is no inherent reason to
use only a single split. See Jennison and Turnbull (2000)
for a thorough discussion.

3.5 Steady-State Simulation

As we discussed in Section 3.1, procedures for i.i.d. normal
data are applicable to steady-state simulation experiments
if we make multiple replications of each alternative or
use batch means of many raw outputs from a single long
replication as basic observations.

Unfortunately, both of these solutions for dependent
data have disadvantages. If we make multiple replications,
then we have to discard raw outputs collected during the
so-called warm-up period from each replication. This will
be inefficient if the warm-up period is long and a large
number of observations need to be discarded. Batching
within a replication may also be inefficient. If a “stage”
is defined by batch means rather than raw output, then
the simulation effort consumed by a stage is a multiple
of the batch size. When a large batch size is required
to achieve approximate independence—and batch sizes of
several thousand are common—then the selection procedure
is forced to make decisions at long intervals, wasting outputs
and time. This inefficiency becomes serious when fully-
sequential procedures are employed because the elimination
decisions for clearly inferior systems must wait for an entire
batch to be formed. Therefore, for steady-state simulations,
selection procedures that use individual raw outputs as basic
observations are desirable.
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The difficulty is proving that R&S procedures provide
a correct-selection guarantee for a finite sample. Neverthe-
less, well designed procedures have shown good empirical
performance. Asymptotic analysis can provide theoretical
support for this observation. Asymptotic analysis typically
means analysis as the simulation effort (run length, number
of replications, or perhaps both) increases (conceptually)
without bound. The power of asymptotic analysis is that
many of the problem-specific details that thwart mathemat-
ical analysis in the finite-sample case wash out in the limit.
Asymptotic analysis, done appropriately, can establish con-
ditions under which we can expect procedures to work,
rather than just relying on limited empirical evidence that
they do; it can also establish the asymptotic superiority of
one procedure over another.

Goldsman et al. (2001) extended the R procedure for
use in steady-state simulation. Nakayama (1997) pre-
sented single-stage multiple-comparison procedures, and
Damerdji and Nakayama (1999) developed two-stage
multiple-comparison procedures, to provide inference on
the best system for steady-state simulation. The extended
R procedure is heuristic but the procedures in the latter
two papers were shown to be asymptotically valid. The
procedures in all three papers keep the number of sampling
stages small (1 or 2), do not eliminate any alternatives until
the final stage of sampling is completed, and thus are not
appropriate when the number of systems is large.

Goldsman et al. (2001) and Kim and Nelson (2006a)
proposed fully-sequential procedures—called KN+ and
KN++—by extending the KN procedure to steady-state
simulation. Their procedures are effective in eliminating
inferior systems and thus more efficient than the procedures
mentioned in the three papers above.

The key to extend procedures for i.i.d. normal data for
use in steady-state simulation is to replace the usual sample
variance S2

i with a variance estimator that works for sta-
tionary but dependent non-normal data. Basic observations
Xi j are now raw observations from a single replication, the
steady-state means are estimated by X̄i(r) for some suitably
large r, and we need a good estimator for the sample mean’s
variance. Rather than directly estimating the Var[X̄i(r)], we
can instead seek a good estimator of the variance parameter
(or asymptotic variance constant), v2

i ≡ limr→∞ rVar[X̄i(r)].
Kim and Nelson (2006a) give requirements that variance
estimators should satisfy for use in their procedures. Golds-
man and Nelson (2006) give extensive review of variance
estimators and their statistical properties.

4 EXAMPLE PROCEDURES

In this section we present two specific procedures to illus-
trate the concepts described in earlier sections. The NSGS
procedure, due to Nelson, et al. (2001), and the KN pro-
cedure, due to Kim and Nelson (2001), are appropriate for
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terminating simulations or for steady-state simulations when
multiple replications are employed.

The NSGS procedure requires that the output data
from each system are i.i.d. normal, and that outputs across
systems are independent, which leaves out CRN. The
NSGS procedure is the combination of a subset-selection
procedure, to reduce the number of alternatives still in play
after the first stage of sampling, and a ranking procedure
applied to the systems in the subset. The procedure uses
α-spending between the subset selection and ranking to
control the overall PCS.

Procedure NSGS

1. Specify the overall desired probability of correct
selection 1−α , the IZ parameter δ , a common
initial sample size from each system n0 ≥ 2, and
the initial number of competing systems k.
Further, set

t = t
n0−1,1−(1−α/2)

1
k−1

and obtain Rinott’s constant h = h(n0,k,1−α/2)
from the tables in Wilcox (1984) or Bechoffer et
al. (1995). See also Table 8.3 in Goldsman and
Nelson (1998).

2. Take n0 outputs from each system. Calculate the
first-stage sample means X̄i(n0) and marginal sam-
ple variances

S2
i =

1
n0−1

n0

∑
j=1

(Xi j − X̄i(n0))
2
,

for i = 1,2, . . . ,k.
3. Subset Selection. Calculate the quantity

Wi` = t
(

S2
i +S2

`

n0

)1/2

for all i 6= `. Form the screening subset I, containing
every alternative i such that 1 ≤ i ≤ k and

X̄i(n0)≥ X̄`(n0)− (Wi`−δ )+ for all ` 6= i.

4. If |I| = 1, then stop and return the system in I
as the best. Otherwise, for all i ∈ I, compute the
second-stage sample sizes

Ni = max
{

n0,d(hSi/δ )2e
}

,

where d·e is the ceiling function.
5. Take Ni − n0 additional outputs from all systems

i ∈ I.
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6. Compute the overall sample means X̄i(Ni) for all
i ∈ I. Select the system with the largest X̄i(Ni) as
best.

Nelson et al. (2001) showed that any subset-selection
procedure and any two-stage IZ ranking procedure that
satisfy certain mild conditions can be combined in this
way while guaranteeing the overall probability of correct
selection. The NGSG procedure can handle a relatively large
number of systems because the first-stage screening is pretty
tight. Nelson et al. (2001) provide a revised version of the
NGSG procedure, the Group-Screening procedure, in which
one can avoid simulating all the systems simultaneously.
Boesel et al. (2003) extended the Group-Screening procedure
for “clean up” after optimization via simulation.

The KN procedure is fully sequential. Also, if there
exists clear evidence that a system is inferior, then it will
be eliminated from consideration immediately—unlike the
NSGS procedure, where elimination occurs only after the
first stage. The KN procedure also requires i.i.d. normal
data, but does allow CRN. The KN procedure exploits
the ideas of using paired differences, and controlling the
Pr{ICS} on pairs to control it overall. Fabian’s result is
used to bound the error of a Brownian motion process that
approximates each pair.

Procedure KN

1. Setup. Select confidence level 1−α , IZ parameter
δ and first stage sample size n0 ≥ 2. Set

η =
1
2

[(
2α

k−1

)−2/(n0−1)

−1

]
.

2. Initialization. Let I = {1,2, . . . ,k} be the set of
systems still in contention, and let h2 = 2η(n0−1).
Obtain n0 outputs Xi j ( j = 1,2, . . . ,n0) from
each system i (i = 1,2, . . . ,k) and let X̄i(n0) =
n−1

0 ∑
n0
j=1 Xi j denote the sample mean of the first

n0 outputs from system i.
For all i 6= ` compute

S2
i` =

1
n0−1

n0

∑
j=1

(
Xi j −X` j − [X̄i(n0)− X̄`(n0)]

)2
,

the sample variance of the difference between sys-
tems i and `. Set r = n0.

3. Screening. Set Iold = I. Let

I =
{

i : i ∈ Iold and

X̄i(r)≥ X̄`(r)−Wi`(r),∀` ∈ Iold, ` 6= i
}

,
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where

Wi`(r) = max
{

0,
δ

2r

(
h2S2

i`
δ 2 − r

)}
.

4. Stopping Rule. If |I|= 1, then stop and select the
system whose index is in I as the best.
Otherwise, take one additional output Xi,r+1 from
each system i∈ I, set r = r+1 and go to Screening.

The KN procedure requires simulation of all systems
simultaneously and a lot of switching among them. As
discussed in Section 3.3, the switching cost can overwhelm
the sampling cost, but this has become less of an issue in
modern computing environments.

5 APPLICATION

This section illustrates the R, NSGS, and KN procedures
using an (s,S) inventory system with the five inventory
policies as described in Koenig and Law (1985). The goal
of this study is to compare the five polices given in Table 1
and find the one with the smallest expected average cost
per month for the first 30 months of operation. Table 1
also contains the expected cost (in thousands of dollars)
of each policy, which can be analytically computed in this
case. We set δ = $1 thousand, n0 = 10 initial replications,
and 1−α = 0.95.

Table 2 shows the total number of outputs taken for
each procedure. Procedure R needed 1556 observations. In
the NSGS procedure, policies 3, 4, and 5 were eliminated
after the first stage of sampling, so only policies 1 and 2
received second-stage samples. In the KN procedure, only
policies 4 and 5 were eliminated after the first stage, but the
elimination of policies 3 and 1 occurred after they received
16 and 98 observations, respectively. This illustrates the
value of the tighter initial screen in the NSGS procedure,
which takes only one look at the data, and the potential
savings from taking many looks, as the KN procedure does.
All three procedures chose policy 2 as the best (which is in
fact correct). Since δ is smaller than the true difference, the
R, NSGS, and KN procedures will choose the true best with
95% confidence. However, in general we do not have any
information about the true differences; therefore, the best
we can conclude without prior knowledge is that policy 2 is
either the true best, or has expected cost per month within
$1 thousand of the true best policy, with 95% confidence.

6 EXISTING CHALLENGES

Although these recent developments have brought a num-
ber of new R&S procedures that are useful in simulation
environments, there still exist some challenges in the field.
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Table 1: The Five Alternative Inventory Policies

Policy i s S Expected Cost
1 20 40 114.176
2 20 80 112.742
3 40 60 130.550
4 40 100 130.699
5 60 100 147.382

Table 2: The Number of Outputs Taken from Each System
of the (s,S) Inventory Policy Example

Policy i R NSGS KN
1 209 209 98
2 349 349 98
3 492 10 16
4 378 10 10
5 129 10 10

Total 1556 588 232

In this section, we discuss the challenges with directions to
approach them.

6.1 Improving Efficiency Further

Although new R&S procedures such as the NSGS and KN
procedures have shown an impressive improvement on the
number of observations used until termination, their perfor-
mances in terms of actual PCS are still a bit conservative.
Especially, when the number of system is larger than 20,
actual PCS are often significantly larger than the nominal
PCS. There are a number of reasons for this. We discuss
two major reasons for inefficiency whose remedies are not
known yet and then give three methods helpful in increasing
efficiency.

The biggest factor that contributes to conservatism of
IZ R&S procedures is the fact that many procedures are de-
veloped to protect PCS against worst-case scenarios known
as the LFC. As the number of systems increases, this conser-
vatism becomes more serious as the true mean configurations
deviate from the LFC. Elimination by subset selection as in
the NSGS procedure or fully-sequential approach as in the
KN procedure helps reduce this conservatism, but higher
actual PCS than the nominal value clearly implies that there
is more room for efficiency improvement. Ideally, this prob-
lem would go away if we can replace δ in the design of
procedures with max{δ ,µk − µi} for each system i. Un-
fortunately, this is impossible because mean performance
measures are what we want to estimate by simulation. In-
stead, Chen and Kelton (2005) suggest that system i uses
max{δ , X̄[k](n0)− X̄i(n0)} where X̄[k](n0) denotes the largest
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first-stage sample mean among k systems. The performance
is better in terms of observations compared to corresponding
procedures with constant δ , but the procedures are heuristic
and highly dependent on the quality of first-stage sample
means.

Another factor that contributes to conservatism of R&S
procedures is the use of the Bonferroni inequality. This is
inherent to many R&S procedures, especially when the pro-
cedures need to account for dependence across systems due
to the use of CRN. The Bonferroni inequality is an easy
way to handle dependence across systems but provides a
loose bound for PCS. Nelson and Matejcik (1995) avoided
the Bonferroni inequality by employing the sphericity as-
sumption, but the procedure is not recommended for use
when k is large as the sphericity assumption tends to be
violated for large k. Finding a way to avoid the Bonferroni
inequality when k is large is currently an open research
problem.

Now we discuss three methods that can possibly bring
meaningful improvement in efficiency. Variance reduction
techniques have been shown to be effective in simulation
estimation problems and CRN is successfully exploited in
simulation comparisons. Recently there have been efforts
to introduce the control-variate (CV) technique to R&S
procedures and use CV in combination with CRN. See
Tsai and Nelson (2006). This technique has been adapted
to subset selection and two-stage procedures so far.

Like other statistical procedures, the quality of variance
estimators often affects the performance of R&S procedures
and it is more so in steady-state simulation where a single
replication is made and raw observations are taken as basic
observations. We discussed in Section 3.5, such procedures
are desirable but require estimators for the asymptotic vari-
ance constant v2

i . Estimating v2
i is a difficult problem. A

number of estimators have been proposed and there are
still efforts to develop new variance estimators with better
statistical properties such as smaller variance and smaller
bias. Experimental results in Healey et al. (2007) show that
variance estimators with smaller variance and smaller bias
can result in meaningful (sometimes huge) savings in the
number of observations for the KN+ and KN++ procedures.

Lastly, updating variance estimators helps make pro-
cedures more effective. Goldsman et al. (2001), Kim and
Nelson (2006a), and Malone et al. (2005) showed that vari-
ance updating leads to huge savings in observations for
procedures both for i.i.d. normal data and for steady-state
simulation.

6.2 Optimization via Simulation

Most R&S procedures require the number of alternatives
to be small enough to simulate all the alternative systems
(a couple of hundred is considered small enough). When
the search space is too large to simulate all the alternatives,
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the problem requires different solution techniques such as
heuristic algorithms or algorithms for optimization via sim-
ulation (OvS). Heuristic algorithms include tabu search,
scatter search, integer programming, and neural networks;
and algorithms for OvS with discrete decision variables
include random search, stochastic ruler (Andradóttir 2006),
nested partitions methods (Shi and Ólafsson 2000), and
COMPASS (Hong and Nelson 2005a). Heuristic algorithms
give no statistically meaningful estimates and provide no
information about how close the chosen solution is to the
true best solution. On the other hand, some algorithms
such as random search algorithms for discrete OvS possess
the global convergence property, but the convergence rate
is often very slow. New developments in R&S open the
possibility of improving discrete OvS.

R&S procedures can be used for neighborhood search
in OvS to provide faster convergence to either local or global
optimal and a probability of correct selection guarantee at al-
gorithm termination. For example, Pichitlamken et al. (2006)
developed an efficient selection procedure called Sequen-
tial Selection with Memory (SSM) for use in neighborhood
search of OvS, and Pichitlamken and Nelson (2003) develop
a global guidance system with the nested partitions method
that provides an irreducible Markov chain over subsets of
the feasible space. Then, they embed aggressive local-
improvement schemes and enhance the local-improvement
schemes with SSM.

Embedding R&S procedures to OvS raises a number
of issues that need to be addressed before combining R&S
with OvS. Boesel et al. (2003) and Pichitlamken et al.
(2006) discuss why R&S procedures can not be directly
used in the neighborhood search of OvS algorithms and
that the extension of R&S procedures for use within an
OvS algorithm is not straightforward. During the search
step in OvS, solutions previous visited are likely to be visited
again. When simulation is costly and partial or complete past
information on alternatives previously visited is maintained,
it is desirable to use the available past information. Most
R&S procedures assume that none of the alternatives have
already been sampled, and that they have all been sampled
equally. Such R&S procedures are not applicable when
alternatives retain past information (e.g., observations or
sample means) because it results in different initial samples
available across alternatives.

6.3 Multiple Performance Measures

R&S and OvS have focused on optimization problems with
a single performance measure and deterministic constraints
only. For example, consider an agile-worker allocation
problem that is to find the optimal allocation policy of M
flexible workers among m stations to maximize throughput.
Then, the condition that the sum of the workers assigned
at each station should be equal to M acts as a deterministic
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constraint on decision variables, and it constrains the search
space for the allocation problem. However, if a requirement
on the expected number of waiting jobs at each station
is imposed, then the problem becomes optimization with
constraints on secondary performance measures as well as
with respect to deterministic constraints. We call R&S
with stochastic constraints constrained R&S and discrete
optimization problem with stochastic constraints stochastic
constrained OvS. Very little work has been done in handling
stochastic constraints—although we often meet stochastic
constrained optimization problems in practice.

Simply adding another requirement on a second per-
formance measure changes the nature of the comparison
problem a great deal. Butler et al. (2001) and Santner and
Tamhane (1984) proposed two-stage selection procedures
in consideration of two more more performance measures.
But their two-stage procedures are either difficult to apply
in practice or handle only a special case. Another problem
with these procedures is that they become inefficient for 20
or more systems. Recently, Andradóttir et al. (2005) and
Andradóttir and Kim (2007) have developed R&S proce-
dures for a constrained R&S problem where a constraint
on a secondary performance is considered. Batur and Kim
(2005, 2007) present R&S procedures that identify a set of
feasible systems for multiple constraints, but they do not
solve the problem of finding the best feasible system in the
presence of multiple stochastic constraints.

Therefore, for comparison problems with stochastic
constraints, we need statistical procedures that provide an
overall correct selection guarantee for both the primary and
multiple secondary measures, yet are efficient and easy to
implement so that they can eventually be embedded into
OvS where the space of discrete decision variables is large.

7 CONCLUSION

Throughout this paper we have focused on the problem of
finding the best when the best is defined as the system with
the largest expected performance measure. As discussed in
Section 1, there exist other types of comparison problems.
For other types of R&S problems, see Kim and Nelson
(2006b).

Instead of providing a PCS guarantee, Bayesian ap-
proaches attempt to allocate a finite data budget to maximize
the posterior PCS of the selected system. Chick (2006) is
a good reference.
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Andradóttir, S., and S.-H. Kim. 2007. Fully sequential pro-
cedures for comparing constrained systems via simula-
tion. Technical Report, The H. Milton Stewart School
of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, Georgia.

Banks, J., J. S. Carson, B. L. Nelson, and D. Nicol. 2001.
Discrete-Event System Simulation. Upper Saddle River,
NJ: Prentice Hall.

Batur, D. and S.-H. Kim. 2005. Procedures for feasibility
detection in the presence of multiple constraints. In
Proceedings of the 2005 Winter Simulation Conference,
ed. M.E. Kuhl, N.M. Steiger, F.B. Armstrong, and
J.A. Joines, 692–698. IEEE, Piscataway, NJ.

Batur, D., and S.-H. Kim. 2006. Fully sequential selection
procedures with parabolic boundary. IIE Transactions
38:749–764.

Batur, D. and S.-H. Kim. 2007. Finding feasible systems
in the presence of constraints on multiple performance
measures. Technical Report, The H. Milton Stewart
School of Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta, Georgia.

Bechhofer, R. E., T. J. Santner, and D. Goldsman. 1995.
Design and Analysis of Experiments for Statistical Se-
lection, Screening and Multiple Comparisons. New
York: John Wiley & Sons.

Boesel, J., B. L. Nelson, and S.-H. Kim. 2003. Using
ranking and selection to “clean up” after simulation
optimization. Operations Research 51:814–825.

Butler, J., D. J. Morrice, and P. W. Mullarkey. 2001. A
multiple attribute utility theory approach to ranking and
selection. Management Science 47:800–816.

Chen, E.J., and W.D. Kelton. 2005. Sequential selection
procedures: using sample means to improve efficiency.
European Journal of Operational Research 166:133–
153.

Chick, S. 2006. Subjective probability and Bayesian
methodology. In Handbooks in Operations Research
and Management Science: Simulation, ed. S. G. Hen-
derson and B. L. Nelson, Chapter 9, 225–257. Oxford,
UK: Elsevier Science.
171
Damerdji, H., and M. K. Nakayama. 1999. Two-stage
multiple-comparison procedures for steady-state simu-
lation. ACM TOMACS 9:1–30.

Fabian, V. 1974. Note on Anderson’s sequential procedures
with triangular boundary. Annals of Statistics 2:170–
176.

Ferebee, B. 1982. Tests with parabolic boundary for the drift
of a Wiener process. Annals of Statistics 10:882-894.

Glynn, P. W., and D. L. Iglehart. 1990. Simulation output
analysis using standardized time series. Mathematics
of Operations Research 15:1–16.

Goldsman, D., S.-H. Kim, W. Marshall, and B. L. Nelson.
2001. Ranking and selection procedures for steady-state
simulation: Perspectives and procedures. INFORMS
Journals on Computing 14:2–19.

Goldsman, D., and B. L. Nelson. 1998. Comparing systems
via simulation. In Handbook of Simulation, ed. J. Banks,
273–306. New York: John Wiley.

Goldsman, D., and B. L. Nelson. 2006. Correlation-based
methods for output analysis. In Handbooks in Opera-
tions Research and Management Science: Simulation,
ed. S. G. Henderson and B. L. Nelson, Chapter 15, 455
– 475. Oxford, UK: Elsevier Science.

Hartmann, M. 1988. An improvement on Paulson’s sequen-
tial ranking procedure. Sequential Analysis 7:363–372.

Hartmann, M. 1991. An improvement on Paulson’s proce-
dure for selecting the population with the largest mean
from k normal populations with a common unknown
variance. Sequential Analysis 10:1–16.

Healey, C., D. Goldsman, and S.-H. Kim. 2007. Rank-
ing and selection techniques with overlapping variance
estimators. In Proceedings of the 2006 Winter Sim-
ulation Conference, ed. S. G. Henderson, B. Biller,
M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton,
forthcoming. Pscataway, New Jersey:IEEE.

Hong, L. J., and B. L. Nelson. 2005a. Discrete optimization
via simulation using COMPASS. Operations Research
54:115–129.

Hong, L. J., and B. L. Nelson. 2005b. The tradeoff between
sampling and switching: New sequential procedures for
indifference-zone selection. IIE Transactions 37:623–
634.

Jennison, C., I. M. Johnstone, and B. W. Turnbull. 1980. As-
ymptotically optimal procedures for sequential adaptive
selection of the best of several normal means. Technical
Report, Dept. of ORIE, Cornell Univ., Ithaca, NY.

Jennison, C., and B. W. Turnbull. 2000. Group Sequential
Methods with Applications to Clinical Trials. New
York: Chapman & Hall.

Kim, S.-H., and B. L. Nelson. 2001. A fully sequential
procedure for indifference-zone selection in simulation.
ACM TOMACS 11:251–273.

Kim, S.-H., and B. L. Nelson. 2006a. On the asymptotic
validity of fully sequential selection procedures for



Kim and Nelson
steady-state simulation. Operations Research, 54:475–
488.

Kim, S.-H., and B. L. Nelson. 2006b. Selecting the best
system. In Handbooks in Operations Research and
Management Science: Simulation, ed. S. G. Henderson
and B. L. Nelson, Chapter 17, 501 – 534. Oxford, UK:
Elsevier Science.

Koenig, L. W., and A. M. Law. 1985. A procedure for
selecting a subset of size m containing the ` best of k
independent normal populations, with applications to
simulation. Communications in Statistics—Simulation
and Computation B14:719–734.

Law, A. M., and W. D. Kelton. 2000. Simulation modeling
and analysis, 3d ed. New York: McGraw-Hill.

L’Ecuyer, P. 2006. Uniform random number generation.
In Handbooks in Operations Research and Manage-
ment Science: Simulation, ed. S. G. Henderson and B.
L. Nelson, Chapter 3, 55–81. Oxford, UK: Elsevier
Science.

Malone, G. J., S.-H. Kim, D. Goldsman, and D. Batur.
2005. Performance of variance updating ranking and
selection procedures. In Proceedings of the 2005 Winter
Simulation Conference, ed. M. E. Kuhl, N. M. Steiger,
F. B. Armstrong, and J. A. Joines, 732–738. Piscataway,
New Jersey: IEEE.

Nakayama, M. K. 1997. Multiple-comparison procedures
for steady-state simulations. The Annals of Statistics
25:2433–2450.

Nelson, B. L., and F. J. Matejcik. 1995. Using com-
mon random numbers for indifference-zone selection
and multiple comparisons in simulation. Management
Science 41:1935–1945

Nelson, B. L., J. Swann, D. Goldsman, and W.-M. T. Song.
2001. Simple procedures for selecting the best system
when the number of alternatives is large. Operations
Research 49:950–963.

Paulson, E. 1964. A sequential procedure for selecting
the population with the largest mean from k normal
populations. Annals of Mathematical Statistics 35:174–
180.

Pichitlamken, J., and B. L. Nelson. 2003. A combined pro-
cedure for optimization via simulation. ACM Transac-
tions on Modeling and Computer Simulation 13:155–
179.

Pichitlamken, J., B. L. Nelson, and L. J. Hong. 2006. A
sequential procedure for neighborhood selection-of-the-
best in optimization via simulation. European Journal
of Operational Research 173:283–298.

Rinott, Y. 1978. On two-stage selection procedures and
related probability-inequalities. Communications in
Statistics—Theory and Methods A7:799–811.

Santner, T. J., and A. C. Tamhane. 1984. Designing exper-
iments for selecting a normal population with a large
mean and a small variance, In Design of Experiments
172
– Ranking and Selection: Essays in Honor of Robert
E. Bechhofer. ed. T.J. Santer and A. C. Tamhane,
179–198. New York: Marcel-Dekker.

Schmeiser, B. W. 1982. Batch size effects in the analysis of
simulation output. Operations Research 30:556–568.
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