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ABSTRACT

A simulation-based methodology is proposed to map the
mean of steady-state cycle time as a function of throughput
and product mix for manufacturing systems. Nonlinear re-
gression models motivated by queueing analysis are assumed
for the underlying response surface. To insure efficiency and
control estimation error, simulation experiments are built
up sequentially using a multistage procedure to collect data
for the fitting of the models. The resulting response surface
is able to provide a cycle-time estimate for any throughput
and any product mix, and thus allows the decision maker to
instantly investigate options and trade offs regarding their
production planning.

1 INTRODUCTION

Planning for semiconductor manufacturing, either at the
factory or enterprise level, requires answering what-if ques-
tions involving (perhaps a very large number of) different
scenarios for product mix, production targets, and capital
expansion. Many man-hours are invested in developing
and exercising simulation models of wafer fabs, models
that include critical details that are difficult or impossible
to incorporate into simple load calculations or queueing
approximations. Unfortunately, simulation models can be
clumsy tools for planning or decision making because even
a few minutes per simulation run (which is optimistic) is too
slow to allow what-if analysis in real time. In our research,
we develop techniques to support strategic planning from
a new perspective: we combine computing horsepower,
adaptive statistical methods and queueing theory to make
simulation a much more effective tool than before.

In this paper, we propose a simulation-based method-
ology to estimate the mean of steady-state cycle time (CT)
as a function of throughput (TH) and product mix (PM).
Cycle time is defined as a random variable representing the
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time required for a job or lot to traverse a given routing
in a production system (e.g., Hopp and Spearman 2001).
A fab can control cycle time by controlling the product
mix and the rate at which lots are started in the factory
(lot-start rate or equivalently, throughput rate). Hence, the
CT-TH-PM surface can play an important role in strategic
planning of semiconductor manufacturing including evalu-
ating the mean of cycle time for a given throughput and
product mix; determining the sensitivity of product cycle
times to changes in throughput or product mix; determining
feasible throughputs that satisfy cycle-time constraints; and
finding a product mix that maximizes revenue subject to
cycle-time and throughput constraints.

Our methodology is able to generate a complete CT-
TH-PM surface (with the response of interest being the
long-run average cycle time of products) like that provided
by a tractable queueing model, but with the fidelity of simu-
lation. Given a simulation model of a wafer fab, simulation
experiments are sequentially performed at selected settings
of throughput and product mix until a desired precision
has been achieved on the estimation. Based on the data
collected over the TH-PM space, CT-TH-PM surfaces are
fitted assuming that the underlying surface can be captured
by the proposed regression models, the forms of which are
motivated by queueing analysis. Such a response surface
is able to provide a cycle-time estimate for any throughput
and any product mix, and thus allows the decision maker to
investigate options and trade offs almost instantly without
running additional simulations.

2 STATEMENT OF THE PROBLEM

2.1 Formulation of the Product System

As noted, our goal is to approximate the cycle-time response
surface as a function of the factory throughput and product
mix. In this section, we define most of the notation that
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will be used in the remainder of this paper, and state the
research problem in more precise terms. We formulate a
stylized model of a manufacturing system to motivate the
CT-TH-PM response-surface model that we ultimately fit
to a detailed simulation model.

We consider an M-station manufacturing system (e.g.,
wafer fab) which processes K different types of products,
and we define the system in a generic way as follows.

{s j, j = 1,2, . . . ,M}: the number of parallel resources
at station j.

µi j: the effective service rate of each resource at station
j for products of type i.

δi j: the expected number of visits by product type i to
station j.

The product flow is described by:

λ : the overall release rate of all the products into the
system.

α = (α1,α2, . . . ,αK): the product-mix vector with each
element αi representing the fraction of type i prod-
ucts in the flow, so that ∑

K
i=1 αi = 1, αi ∈ [0,1].

λi = αiλ : the release rate of product type i to the
system.

Under this formulation, we can easily calculate ρ j,
the utilization of station j ( j = 1,2, . . . ,M). Let ρi j =
δi j/(s jµi j), then ρ j = λ ∑

K
i=1 αiρi j. The maximum utiliza-

tion ρmax = max j ρ j is called the system utilization and is
denoted by x in this paper. A station, say, station jBN that
reaches ρmax is called a bottleneck (BN) station, that is,

jBN = argmax jρ j = argmax j

K

∑
i=1

αiρi j. (1)

The stability constraint on the system requires x =
λ ∑

K
i=1 αiρi jBN < 1, or equivalently,

λ < 1/
K

∑
i=1

αiρi jBN = µ
∗(α) (2)

where µ∗(α) is the system capacity, the upper limit on λ

(or overall throughput) for stability. Obviously, capacity
µ∗(α) depends on the system parameters as well as α , and
we assume that µ∗(α) can be analytically approximated for
a given system and product mix.

2.2 CT-TH-PM Surface

The response of interest is the mean of steady-state cycle
time for products of type i (i = 1,2, . . . ,K), denoted Ci(λ ,α).
Different types of products follow different processing steps,
and thus have different cycle-time distributions. For each
323
type of product, we seek to estimate its average cycle
time which depends on the overall product flow through
the system. The product flow is characterized by starting
rate/throughput λ and product mix α , and in our work,
we consider λ and α as independent variables that can
be controlled by the production manager (equivalently, the
decision variables are {λi = αiλ , i = 1,2, . . . ,K}, the start
rates of each product). As established in (2), the stability
condition of the system is such that λ has to be less than
the capacity µ∗(α), which is a function of α . To normalize
the range of λ across the PM region, we chose to directly
estimate Ci(x,α) where x = λ/µ∗(α) is the fraction of
system capacity in use and x is on the scale of [0,1) regardless
of the value of α . Once we have obtained ci(x,α), a simple
transformation will give us ci(λ ,α).

To model the CT-TH-PM surface, the most straight-
forward way is to develop a response-surface model that
incorporates x and α as independent variables. However,
our investigation of analytically tractable queueing network
models convinces us that a general model for ci(x,α) is
unlikely to be successful because the correct form of the
model depends on specifics of the network topology of the
factory. Therefore, we proposed a 2-step methodology for
the generation of the CT-TH-PM surface, which is described
in the next section.

3 OVERVIEW OF THE METHODOLOGY

Our objective is to estimate the cycle-time measure at any
normalized throughput x and for any feasible product mix
α . In light of the issues discussed in Section 2.2, we decided
to utilize our success in estimating CT-TH curves with a
fixed product mix. We propose first using simulation to
fit CT-TH curves for a carefully selected range of product
mixes, and then perform model fitting across the α-space.
More specifically, we define

ci,x(α): the cycle time of product i at fixed throughput
x as a function of product mix α .

ci,α (x): the cycle time of product i for a given product
mix α as a function of throughput x.

A = {α1,α2, . . . ,αn}: a collection of n product mixes.

Our methodology consists of two steps:

1. Use an extended version of the methodology of
Yang, Ankenman, and Nelson (2007) to estimate
the CT-TH curves {ci,α (x),α ∈ A } for product
i (i = 1,2, . . . ,K) over a given throughput range
x ∈ [xL,xU ] (0 < xL < xU < 1). We take products
of type 1 for example. Figure 1 shows the CT-TH
curves for product 1 with each curve corresponding
to a different product mix α i ∈ A (i = 1,2,3).
Note that by making the independent variable for
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Figure 1: CT-TH curves for product 1 at different product
mixes.

each product’s CT-TH curve the fraction of system
capacity at a given product mix, all curves run
from [xL,xU ], providing a common scale.

2. With these estimated CT-TH curves for product 1 at
a selected set of product mixes {ĉ1,α (x),α ∈A },
we can predict at any throughput x the cycle times
ĉ1,α (x) = ĉ1,x(α), α ∈ A . Based on data points
{ĉ1,x(α)α ∈A } denoted as black dots in Figure 1,
model fitting is performed over the α-space to
obtain ĉ1,x(α) for any feasible product mix α .

Next, we discuss the technical details of this approach.

4 REVIEW OF THE ESTIMATION OF CT-TH
CURVES

As already illustrated, estimating CT-TH curves over a
collection of product mixes A is the primary step for
generating the CT-TH-PM response surface, which provides
the basis for the estimation of cycle time across product-mix
space.

In Yang, Ankenman, and Nelson (2007), a simulation-
based method was proposed for the generation of CT-TH
curves at a fixed product mix. A nonlinear regression
model (3), which is motivated by heavy-traffic queueing
analysis, was developed to represent the underlying CT-TH
curve

Ci,α (x) =
∑

t
`=0 c`x`

(1− x)p . (3)

We fit such a model for each product i and for each
product mix α ∈A . To estimate the model efficiently, sim-
ulation experiments are sequentially performed at different
throughput rates x for data collection. The experimentation
is continued until a desired precision has been achieved for
the curve estimation.
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Figure 2: Feasible product-mix space: unconstrained (left)
and constrained (right).

In the next section, we discuss issues related to the
estimation of the CT-PM surface (modeling of the cycle
time across the product-mix space with fixed utilization x).

5 CT-PM RESPONSE SURFACE

5.1 The Feasible Product-Mix Space

Obviously, product mix α has to satisfy:

K

∑
i=1

αi = 1, αi ∈ [0,1]. (4)

Figure 2 (left) illustrates the feasible product-mix region
in a 3-product case defined by constraint (4). In practice, the
product mix is usually subject to additional linear constraints
imposed by realistic situations (e.g., lower bounds on release
rates). We use the following notation to represent the linear
constraints on product mix

Aα ≤ b (5)

where A is a matrix with K columns with each row rep-
resenting a constraint. Figure 2 (right) gives an example
of the more restricted product mix region defined by (4)
and (5).

5.2 Partitioning the Product-Mix Space

Production systems are usually constrained by one or more
bottleneck resources. A bottleneck (BN) is usually a facility
or resource which most constrains the production flow, and
it plays a key role in determining the overall performance of
the manufacturing system. As we change the product mix,
BN may shift from one resource to anther, which complicates
the way that product mix affects the cycle time. As will
be seen in Section 5.3, within an α-region where no BN
shift occurs, ci,x(α) tends to be smooth and differentiable
with respect to α . For the purpose of modeling the CT-PM
surface, we divide the product-mix space into a number
of subregions with each one dominated by a different BN
station or stations.
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Figure 3: Division of the feasible product-mix region.

Suppose the product-mix region of feasibility is defined
as Ω = {α|α satisfies constraints (4) and (5)}. Following
the definition of BN station provided by (1), the subregion
Ων = {α|α ∈Ω and α mix makes station ν a BN} is given
as the collection of α that satisfies

K

∑
i=1

αi = 1

Aα ≤ b (6)
ρν ≥ ρ j j = 1,2, . . . ,M and j 6= ν .

Returning to the example of 3-product and 3-station system
provided in Section 5.1, the feasible region as shown in
Figure 2 (right) could be divided in three different ways as
shown in Figure 3 depending on the system parameters.

5.3 Form of the CT-PM Model

To estimate ci,x(α) for product i, we developed a nonlinear
regression model to represent the underlying CT-PM surface,
the form of which is motivated by simple queueing models
such as Jackson network and M/G/1 queue.

5.3.1 Open Jackson Network Motivation

Consider a Jackson network in which each station has a single
server having exponentially distributed service time with
rate µ j (independent of product type). For this network the
expected cycle time for each product type can be computed
analytically, and for product 1 it is

c1,x(α) =
M

∑
j=1

δ1 j

µ j

[
1− x

(
∑

K
k=1 αkδk j/µ j

maxh ∑
K
k=1 αkδkh/µh

)] . (7)

Note that in (7), a station that achieves maxh ∑
K
k=1 αkδkh/µh

is a BN station. Within a subregion Ων defined by (6)
where station ν stays BN, (7) can be written as:

C1,x(α) =
M

∑
j=1

δ1 j

µ j

[
1− x

(
∑

K
k=1 αkδk j/µ j

∑
K
k=1 αkδkν /µν

)] α ∈ Ων . (8)

From (8), we can see that the cycle time is a continuous and
differentiable function of α within a constant-BN subregion.
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This motivates us to separately fit a regression model to
each subregion defined by (6).

Moreover, with simple mathematical manipulation, (8)
can be written as:

c1,x(α) =
M

∑
j=1

∑
K
k=1 ak jαk

∑
K
k=1 hk jαk

= e0 +
M

∑
j=1

∑
K−1
k=1 ek jαk

h0 j +∑
K−1
k=1 hk jαk

.

(9)
where all the coefficients ak j, hk j, ek j, and e0 depend on
system parameters only.

5.3.2 M/G/1 Queue Motivation

Consider a multiproduct M/G/1 queue where the service
rate (equivalently mean service time) of product type i is
µi (equivalently ti), and the variance of the service time is
σ2

i . Then using standard M/G/1 results we can show that

ci,λ (α) = t1 +
λ

2 ∑
K
i=1 αi(t2

i +σ2
i )(

1−λ ∑
K
i=1 αiti

) . (10)

For this queue, x = λ ∑
K
i=1 αiti is the utilization, which allows

us to rewrite (10) as a function of x:

ci,x(α) = t1 +
∑

K
k=1

x
2(1−x)αk

∑
K
`=1 t`α`

= u0 +
∑

K−1
k=1 ukαk

t0 +∑
K−1
`=1 t`α`

(11)

Apparently, functional form (9) reduces to (11) in a special
case of M = 1.

5.3.3 CT-PM Regression Model

Motivated by (9) and (11), we adopted a nonlinear regression
model (12),which will be referred as CT-PM model, to
approximate the CT-PM surface for product of type i within
a constant-BN region.

ci,x(α) = µ(α) = τ +
R

∑
r=1

f (α,br)

= τ +
R

∑
r=1

∑
K−1
k=1 bkrαk

b0r +∑
K−1
`=1 d`rα`

(12)

where

α = (α1,α2, . . . ,αK−1) are independent variables. We
eliminate αK = 1−∑

K−1
k=1 αk from the model due

to linear dependence.
Unknown parameters are the constant term τ , and the co-

efficients br = (b0r,b1r, . . . ,bK−1,r) r = 1,2, . . . ,R.
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Model (12) is the sum of R ratio models

f (α,br) =
∑

K−1
k=1 bkrαk

b0r +∑
K−1
`=1 d`rα`

r = 1,2, . . . ,R.

(13)
R is the number of ratio models f (α,br) included

in (12). The value of integer R depends on the true
CT-PM surface, and the determination of R will
be discussed below.

Vectors dr = (d1r,d2r, . . . ,dK−1,r) r = 1,2, . . . ,R are pa-
rameters estimated prior to and independent of the
fitting of (12), and they are treated as known values
in Model (12) (see Section 5.4).

The CT-PM model (12) is almost the same as formula (9)
although it is expected that R is much smaller than M, the
number of stations in the system. In the remainder of
Section 5, we will further examine the shape of the CT-
PM surface and detail a strategy for fitting the nonlinear
response surface model (12).

5.4 Curvature of CT-PM Surface

In this subsection, we discuss the curvature (or the bending)
of CT-PM surface based on Jackson networks, which is the
queueing network that motivates our regression model (12).
The form of (9) for a Jackson network clearly suggests
an additive model which is the sum of a number of ratio
functions. For the convenience of discussion, we rewrite (9)
as follows

c1,x(α) = e0 +
M

∑
j=1

g1 j(α)
g2 j(α)

= e0 +
M

∑
j=1

∑
K−1
k=1 ek jαk

h0 j +∑
K−1
k=1 hk jαk

.

(14)
For each ratio function g1 j(α)/g2 j(α), both the numera-
tor g1 j(α) and denominator g2 j(α) are linear functions of
α . Geometrically speaking, g2 j(α) is a one-dimensional
projection of the variable vector α onto the system param-
eter vector h j = (h1 j,h2 j, . . . ,hK−1, j). Since the numerator
g1 j(α) is linear with respect to α , for response surface (14)
curvature is only induced to the surface along the projec-
tions defined by h j ( j = 1,2, . . . ,M). Consider a simple case
with M = 1, the curvature of c1,x(α) is most pronounced
along vector h1 whereas there is no curvature in directions
orthogonal to h1.

Real manufacturing systems could be composed of a
large number of workstations (e.g., M could be on the scale
of hundreds), which implies response curvature on M di-
rections {h j, j = 1,2, . . . ,M}. However, it is reasonable to
believe that using a substantially smaller number of, say
R, carefully-chosen directions, (14) could be well approxi-
mated by the sum of ratio functions along those R directions.
Identifying the curvature directions of the CT-PM surface
plays an important role in determining the number of ratio
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models R incorporated in the CT-PM model and in assisting
the nonlinear fitting of (12) as will be seen later. In this
paper, a method based on the quadratic polynomial approx-
imation is used for the identification of curvature directions,
namely the determination of the vectors {dr,r = 1,2, . . . ,R}
in model (12).

We assume that c1,x(α) can be approximated by a full
quadratic model:

c1,x(α) = β0 +α
′
β +α

′Bα

= β0 +
K−1

∑
k=1

βkαk +
K−1

∑
k=1

βkkα
2
k +

K−2

∑
k=1

K−1

∑
`=k+1

βk`αkα` (15)

where β = (β1,β2, . . . ,βK−1), and B is the (K−1)×(K−1)
symmetric matrix

B =


β11 β12/2 · · · β1,K−1/2

β12/2 β22 · · · β1,K−1/2
...

. . .
...

βK−1,1 βK−1,2 · · · βK−1,K−1

 . (16)

It is our empirical experience that a quadratic model, al-
though inadequate to accurately characterize the CT-PM
surface, provides a reasonably good response surface ap-
proximation. We perform the curvature analysis based on
the full quadratic model (15) following the approach in
Myers and Montgomery (2002).

The curvature of the surface depends on the second-
order coefficient matrix B. Let P′BP = Λ where Λ is a
diagonal matrix containing the eigenvalues of B as main
diagonal elements, and P is the (K− 1)× (K− 1) matrix
whose columns are the normalized eigenvectors associated
with the eigenvalues of B. Let dmax be the (K − 1)× 1
eigenvector of B associated with the maximum absolute
eigenvalue λmax. Then dmax represents the projection direc-
tion of α along which the curvature of the surface is most
marked. In model (12), dmax will be assigned to d1, and
sequentially d2,d3, . . . ,dR will be determined in the process
of fitting (12) in an iterative manner. The detailed method
will be given in Section 5.5, which will also show that as
a by-product, the fitted quadratic model (15) serves as an
approximate reference for the underlying surface to prevent
overfitting of the CT-PM model.

5.5 Fitting of the CT-PM Model

There are three major difficulties involved in the nonlinear
fitting of the CT-PM model:

• A high degree of correlation between model pa-
rameters is very likely to exist given the structure
of the CT-PM model, and obtaining good starting
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values for the unknown parameters is important to
achieving a well-estimated model.

• Constraining the denominator of ratio functions
f (α,br) to not be zero cause additional complica-
tions to performing the nonlinear regression.

• The number of ratio functions R characterizes the
complexity of the CT-PM model and needs to be
determined to avoid either underfitting or overfitting
of the model.

As already mentioned, determining the curvature direc-
tions d1,d2, . . . ,dR independently of the nonlinear regression
fitting will help alleviate the difficulties. Here, we discuss
a complete model fitting strategy seeking to provide a good
estimation for the CT-PM model.

Suppose that N observations have been collected within
a BN-constant region Ων . For a given throughput x, we have
{(α1, ĉ1,x(α1)),(α2, ĉ1,x(α2)), . . . ,(αN , ĉ1,x(αN))}. We as-
sume that

ĉ1,x(α i) = c1,x(α i)+ εi = µ(α i)+ εi i = 1,2, . . . ,N

where εi ∼ N(0,σ2) (this assumption can be justified
from estimating the CT-TH curves {ĉ1,α i(x) = ĉ1,x(α i), i =
1,2, . . . ,N}. In addition, for convenience of the discussion,
we temporarily assume that N is sufficiently large to allow
for any model fitting to be performed.

To estimate the CT-PM model, we solve a constrained
nonlinear least squares problem. The constraints are given
as follows. For each ratio model f (α,br) incorporated in
the CT-PM model, the denominator cannot be 0 over the
entire subregion Ων . That is, for the nonlinear fitting, the
unknown parameter b0,r has to satisfy either of the following
constraints:

Constr1
b0r +d′rα > ε ⇔ b0r > ε −minα∈Ων

{d′rα};
Constr2

b0r +d′rα <−ε ⇔ b0r <−ε −maxα∈Ων
{d′rα}.

where ε is a small positive value, α could be any prod-
uct mix within the subregion Ων , and dr is the curvature
direction. When performing the constrained nonlinear re-
gression, only one type of constraint can be imposed on the
unknown parameter b0r. Let ActiveConstr be a R×1
array defined as: ActiveConstr(r)=1 if b0,r is subject
to Constr1; ActiveConstr(r)=2 otherwise. For a speci-
fied ActiveConstr array, the constrained nonlinear least
squares fitting can be formalized as:

min
τ,b1,...,bR

N

∑
i=1

[yi−µ(α i,τ,b1, . . . ,bR)]2

Subject to : b0,r satisfies constraint of type (17)
ActiveConstr(r)for r = 1,2, . . . ,R
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We propose to estimate model (12) in three steps.
Initially, we set R = 0 (the number of ratio functions included
in the CT-PM model is 0); and the set of curvature directions
D = ∅.

Step 1

1. Fit the full quadratic model (15) to the data
{(α i,yi), i = 1,2, . . . ,N}, and determine the cur-
vature direction dmax and the corresponding eigen-
value λmax. Denote the estimated quadratic model
as µ̂QC(α i).

2. Set R = R+1, dR = dmax, and D = D
⋃

dR.
3. Fit the CT-PM model with the current value

of R and curvature directions D. Two differ-
ent least squares problems (17) will be solved
subjecting b0,R to Constr1 and Constr2 respec-
tively. Compare the sum of squared error (SSE)
resulting from the two nonlinear fittings. If
SSE1<SSE2, set ActiveConstr(R)=1; other-
wise, ActiveConstr(R)=2.

Step 2

1. From the latest CT-PM fitting, compute the resid-
uals {(α i,resi), i = 1,2, . . . ,N} , based on which
perform the quadratic linear regression to identify
the curvature direction dmax. If the new direction
dmax is nearly parallel to the directions included in
D or the corresponding eigenvalue |λmax|< λ0 (λ0
is a user-specified positive constant), then stop and
declare µ̂R(α i) obtained in Step 3(1) as the best
fitted model from the current data set; Otherwise,
continue.

2. Set R = R+1, dR = dmax, and D = D
⋃

dR.
3. Fit the partial model E[resi] = f (α,bR) to

{(α i,resi), i = 1,2, . . . ,N}. As in Step 1(3), two
different nonlinear fitting will be performed sub-
jecting b0R to two types of constraints. Again, if
SSE1<SSE2, set ActiveConstr(R)=1; other-
wise, ActiveConstr(R)=2.

Step 3

1. Estimate the CT-PM model µ̂R(α i) by solving (17)
with the current values of R, curvature directions D,
and ActiveConstr array specified in the previ-
ous steps. The latest estimates of the unknown pa-
rameters τ,b1, . . . ,bR obtained from previous steps
will be used as the starting values.

2. Compare µ̂R(α i) obtained in Step 3(1) and
µ̂QC(α i). If the maximum relative deviation over
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Ων is intolerably large, say,

µ̂R(α i)− µ̂QC(α i)
µ̂QC(α i)

> 50%, (18)

then stop; reject the current fitting and declare
µ̂R−1(α i) as the best fitted model from the current
data set. Otherwise, go back to Step 2.

6 PROCEDURE FOR ESTIMATING THE
CT-TH-PM RESPONSE SURFACE

This section is devoted to construction of the experiment
design and issues related to computational efficiency. To
provide context, a high-level description of the procedure is
provided in Figure 4. To generate the CT-TH-PM response
surface, simulation experiments have to be performed at a
number of TH-PM combinations for data collection. Our
approach is to first select the factor levels in PM space, and
then for each product mix, apply the procedure proposed
by Yang, Ankenman, and Nelson (2007) to decide at what
throughput rates the simulation should be carried out. As
illustrated in Figure 4, the experimentation is initiated with
a pilot design A0 consisting of N0 product mixes. For each
α ∈A0, CT-TH curves {Ci,α (x), i = 1,2, . . . ,K;x∈ [xL,xU ]}
are generated by running simulation at different throughputs.
Based on these curves, we can estimate cycle time for any
product type at any throughput and product mix and evaluate
the relative error obtained for the cycle-time estimates. The
design is augmented by including one additional point at a
time until the desired precision is achieved on the estimated
response surface.

6.1 Experiment Design

Yang, Ankenman, and Nelson (2007) has provided efficient
and effective experiment design strategies when product
mix is fixed. In that context a “design” corresponds to
settings of the normalized throughput x at which to make
simulation runs, and an allocation of simulation effort to
each design point. To estimate the complete CT-TH-PM
surface, the design also includes A , the collection of product
mix settings at which we fit the CT-PM surface. In this
section, we focus on the design in the product-mix space.

As already explained, the fitting of the CT-PM surface
is based on model (12) over a constant-BN region Ω j 6= ∅
( j is a station that can serve as BN of the system). Hence,
we discuss the allocation of the PM design points within
Ω j for the purpose of achieving well-estimated (12). Fur-
thermore, in the following discussion regarding the design
of experiments, we assume without loss of generality that
products of type 1 and a given production throughput x0 are
of particular interest. Our goal is to estimate the expected
cycle time at throughput x0 for product 1 with a specified
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• Select an initial design �0 = {�1, �2,…, �N0 } 
from the candidate set of design points ���

• Generate CT-TH curves for each �� �0 

Evaluate the CT estimates via cross 
validation based on the current design 

Desired precision  
achieved? 

No

Yes 
STOP 

• Include an additional design point �.  
• Generate CT-TH curves for �. 

Figure 4: Flow chart for the procedure.

precision, while still well estimating the CT-PM-TH surface
for all xL ≤ x ≤ xU and all types of products.

Each subregion Ω j is a simplex defined by linear con-
straints (6), so what we have is a K-component mixture
design problem within Ω j for the estimation of model (12)
at x0 for products of type 1.

6.1.1 Initial Design

For such constrained mixture designs, Myers and Mont-
gomery (2002) recommended selecting design points from
a candidate set, say C = {α∗

1,α
∗
2, . . . ,α

∗
N}, which provides

a good coverage of the feasible space. They claim that
the set of candidate points to use for designing experiments
should depend upon the form of the model the experimenter
wishes to fit, and they recommended three different sets for
linear, quadratic, and cubic models based on their practical
experience. Our model (12) does not fall into the category of
polynomials with which they have experimented. However,
our empirical experience with the CT-PM surface suggests
that a quadratic model is able to provide an approximate fit
for the response surface, although obviously inferior com-
pared to (12). Thus, in our experiments, we chose to use
the set Myers and Montgomery (2002) recommended for
quadratic models, that is, the candidate set of design should
include the following points of the simplex Ω j: extreme
vertices, edge centers, constraint plane centroids, overall
centroid and axial points.

Given the constraints (6) that defines Ω j, we can use the
CONVRT and CONAEV algorithms developed by Piepel
(1988) to find the vertices, edge centers, and all other
centroids of the simplex. In our procedure, the initial design
points will be selected as a subset of these candidate points
in C . Let A0 denote the set of initial design points of size
N0 within constant-BN region Ω j. To avoid extrapolation,
we include all the Nv extreme vertices of Ω j in A0. Besides
the vertices, A0 must include some inner points so that we
can use cross-validation to estimate the prediction error at
points in C \A0 as described in Section 6.1.3. In addition,
N0 should be sufficiently large to allow for the fitting of the
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Station 1 
s1 = 1 
�1 = 4 
�11 = 1 
�21 = 3 
�31 = 2 

s2 = 1 
� 2 = 3 
�12 = 2 
�22 = 2 
�32= 1 

s3 = 1 
� 3 = 2.8 
�13= 3 
�23= 1 
�33= 1 

Station 2 Station 3 

Figure 5: Three-station Jackson queueing model.

full quadratic model given by (15). In our experiments, the
additional N0 −Nv non-vertex points are selected from C
using a maxmin criterion which maximizes the minimum
distance between any two points.

6.1.2 Design Augmentation

As illustrated in Figure 4, we initiate the experiments with a
pilot design as discussed in Section 6.1.1. The design points
will be sequentially added one at a time until the stopping rule
is satisfied. We propose to perform the design augmentation
following the method described in Seber and Wild (2003).
After observations have been made at n design points,
the (n + 1)st additional design point αn+1 is introduced
to minimize the determinant of the asymptotic variance-
covariance matrix of estimated unknown parameters (D-
optimality criterion).

6.1.3 Stopping Criterion

We allow the user to specify a desired precision, say γ%,
defined as the relative error on the cycle-time estimates.
The sequential experimentation is terminated when the pre-
specified precision is achieved.

We use cross-validation to estimate the relative error
of cycle-time estimates obtained from the fitted model. For
each non-vertex design point α ∈A , the relative error can
be estimated as

RE1,x0(α) =
Ĉ1,x0(α)−C̃(−k)

1,x0
(α)

Ĉ1,x0(α)
(19)

where Ĉi,x(α) is a CT observation used for fitting (12), and
C̃(−k)

i,x (α) is the cycle-time predictor obtained at α based
on the design set A \α . Let WRE = maxα RE1,x0(α), and
we terminate the procedure when WRE < γ%.

6.2 An Example

In Yang, Ankenman, and Nelson (2007), the efficiency of
the proposed methodology for generating CT-TH curves has
been demonstrated through extensive numeric experiments.
Thus the primary focus of this paper is on the modeling of
the CT-PM surface ci,x(α). Here, we illustrate the estimation
of CT-PM model (12) through a simple Jackson queueing
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B2 

Figure 6: Division of the product-mix space and a constant-
ratio product-mix path.

B1 B2 

Figure 7: CT-PM curves.

model, for which the true CT-PM surface is known from
queueing theory and hence provides a benchmark to evaluate
the results obtained from our procedure. We consider a 3-
station system that processes 3 different types of products.
The system parameters are given in Figure 5. Figure 6
shows the division of product-mix space for this example.
Each station can serve as a BN and the product-mix region
is divided into 3 subregions with Ω j being dominated by
BN-station j ( j = 1,2,3).

For Jackson queueing systems, the CT-PM surface (for
a given x) is given by (7). Before we apply our procedure on
this system, we first examine the CT-PM surface through (7).
If we fix α2 : α3 = 3 : 1, and vary α1 from 0 to 1, we obtain
a PM path as the dotted line in Figure 6. Along this path,
we plot ci,0.8(α) (i = 1,2,3), the cycle time at throughput
x = 0.8, against α1, and the resulting CT-PM curves are
given in Figure 7. Obviously in Figure 7, the CT-PM curves
are smooth and differentiable except at BN-shift points B1
and B2, which are also marked in Figure 6. We can change
the ratio of α2 : α3, and plot CT-PM curves similar to
those obtained in Figure 7. This graphically demonstrates
our conclusion in Section 5.3.1 that the CT-PM surface are
smooth and differentiable in constant BN subregions, which
motivate us to model each subregion Ω j separately.

The proposed experiment design and model fitting meth-
ods have been applied on the three constant-BN subregions
given x = 0.8. In our experiments, the desired estimation
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precision γ% is set at 5%. Due to space constraint, we
chose to present the estimation results for Ω1, and the fitted
and true CT-PM models are given in (20) and (21) respec-
tively. The fitted model is able to approximate the true
response surface to a desired precision (in this case, the
maximum deviation of the fitted model from the true model
is 3% < 5%), although the estimated parameters are not the
same as the parameters of the true surface model, as can
be seen from comparing (20) and (21).

ĉ1,0.8(α) = 5.2562+
5.9886α1−1.1809α2

0.3579−0.9889α1 +0.1487α2

+
−2.0462α1 +0.8385α2

0.4498−0.9944α1−0.1054α2
(20)

c1,0.8(α) = 5.1786+
1.1054α1 +0.3685α2

0.4514−0.9995α1−0.0322α2

+
2.0797α1−1.0399α2

0.2496−0.9567α1−0.2912α2
(21)

The design strategy and model evaluation methods de-
scribed above are simply one of many possible choices that
we have. In future research, we will investigate and evaluate
various such options. Experiments will also be performed
on real manufacturing systems to demonstrate the efficiency
of the proposed methodology.
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