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ABSTRACT

Copulas are used in finance and insurance for modeling
stochastic dependency. They comprehend the entire depen-
dence structure, not only the correlations. Here they are
estimated from measured samples of random vectors. The
copula and the marginal distributions of the vector elements
define a multivariate distribution of the sample which can
be used to generate random vectors with this distribution.
This can be applied as well to time series. A programmed
algorithm is proposed. It is fast and allows for random
vectors with high dimension, for example 100.

1 INTRODUCTION

Stochastic models and discrete simulation are indispensable
means for the quantitative analysis of systems. It is well
known that missing to carefully model the influences from
outside, especially the load, may lead to wrong results and
ultimately to wrong decisions based on the simulation re-
sults. One reason for bad load models may be to ignore
dependencies, i.e. to use independent random variables in-
stead of proper commonly distributed random vectors or
stochastic processes.

Influence from outside of the model like load or failure
of system components can be incorporated into the model
using observed traces or input models, namely random
variables, random vectors, or stochastic processes. Data
from traces can be used directly. If input is modeled, data
are realisations of the model.

The use of random variates is well understood and
common since long time, the use of generated random
vectors and stochastic processes is much more difficult, not
so popular, a topic of current research.

The use of copulas is common in finance and insurance.
In this paper, we propose to use copulas for the analysis of
observed data and for the generation of dependent random
variates and time series.
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The copula of a multivariate distribution describes its
dependence structure completely, not only the correlations
of the random variables. It is uncoupled from the marginal
distributions which can be modeled as empirical distributions
or fitted standard distributions as usual.

The use of copulas makes a difficult task, finding a mul-
tivariate distribution, more facile by performing two easier
tasks. The first step is modeling the marginal distributions,
the second consists in estimating the copula. Once we eval-
uated the estimated copula and marginal distributions, it is
quite simple to use them to generate random vectors.

We model the marginal distributions as usual, and es-
timate the copula from a frequency distribution. This is not
common, usually one of the known families of copulas is
fitted to the sample. There are many such families, see e.g.,
Nelsen (1998), but the most for only two dimensions. For
simulation, more dimensions might be needed. Moreover,
as remarked in Blum, Dias, and Embrechts (2002), fitting
a sample to a family of copulas is essentially as difficult as
estimating the joint distribution in the first place. Thirdly,
different families of copulas account for different kinds of
dependence. Hence, the input modeler must choose the
family according to the actual dependence nature. In con-
trast, an empirical copula incorporates the dependence form
automatically. For these reasons, we use some kind of em-
pirical copulas instead of fitting the samples to families of
copulas.

The new technique contrasts with other proposed input
models. Autoregressive processes (AR) model time series
with Gaussian random variables. They are conveniently
fitted to measured data with the linear Yule-Walker equations.

ARTA-like models (ARTA, Cario and Nelson 1996)
for univariate time-series, NORTA (Cario and Nelson 1997)
for random vectors, VARTA (Biller and Nelson 2003) for
processes of random vectors) allow for general distributions
by means of a Gaussian AR or a multivariate Gaussian
random variable as basis whose random variables are trans-
formed into the desired distributions. The correlations of
the basis process are different from the desired correlations.
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Sometimes this results in infeasible correlation matrices of
the basis process (Ghosh and Henderson 2002), the de-
fective matrix problem. Fitting given autocorrelations and
distributions to an ARTA process is possible but not quite
trivial.

TES processes (Melamed 1997) rely on empirical dis-
tributions of the random variables. They comprise lag 1
correlations. The interactive software system TEStool serves
the purpose of fitting measured data to a TES process.

AR, ARTA-like, and TES processes as input modeling
approaches for random vectors and time-series consider
only the correlations, not the whole dependence structure.
In contrast, copulas take into account the entire dependency,
hence this new technique as well.

In Nassaj and J.Ch.Strelen (2005) we propose some
kind of nonlinear non-Gaussian autoregressive processes.
The dependence structure is more general, nonlinear depen-
dencies are accounted for. The distributions of the random
variables are general. The procedure of fitting to measured
date is done in two successive steps. The first one for the
dependence structure applies optimization with respect to
some parameters. The second one concerns the distribution
of univariate random variables. This separation is similar
to the copula approach.

In Nassaj and J.Ch.Strelen (2006) we propose a method
which is similar to the method of this paper. But there we
apply heuristic approximations of the copula, here proper
copulas.

1.1 Overview

We present a technique to efficiently generate random vectors
with a distribution which is defined on the basis of a given
sample of n random vectors which are realizations of a
usually unknown D-dimensional distribution.

To this end we point out in Section 3 how to estimate
marginal empirical distribution functions of the components
in the form of step functions and an empirical copula from
the sample.

In Section 4 we give an efficient algorithm for the
generation of random D-variates with nearly the original D-
dimensional distribution. An integer K controls the accuracy
and the space and time complexity, all increasing with K.
K may be in a range of about 10...4000.

Efficient means that the algorithm uses a moderate
amount of storage of order O(D2n), and provides fast gen-
eration in computing time of order O(D2K) or even O(D2

log K).
The generation algorithm performs in two steps:

1. Generate a random D-vector with the empirical
copula.

2. Transform its elements with the inverses of the
marginal distribution functions of the sample.
For Step 2 we propose three different alternatives:

• The estimated empirical distribution functions of
the components in form of a step function. Here
one can obtain only values which occur in the
sample. This can be sensible for integer random
variables, in particular.

• Some kind of linear interpolation. Here one can
obtain values which lie between zero and the largest
value of the sample, or something similar.

• Fitted standard distributions if feasible, where fea-
sible means: The empirical distribution function
of the sample is similar to a standard distribution
function, and this standard distribution function
can be inverted in a sufficiently simple manner.

We present examples in Section 5. They were calcu-
lated with a MATLAB program (Strelen 2007) and indicate
accurate statistic properties of the new technique.

But first, in Section 2, we describe basic facts about
copulas which are of interest for this article.

2 COPULAS

A compact definition of copulas is given in Pfeifer and
Neslehova (2003):

Definition 1 A copula is a function C of D variables
on the unit D-cube [0,1]D with the following properties:

1. The range of C is the unit interval [0,1]
2. C(u) is zero for all u = (u1, ...,uD) ∈ [0,1]D for

which at least one coordinate equals zero
3. C(u) = ud if all coordinates of u are 1 except the

d-th one
4. C is D-increasing in the sense that for every a ≤ b

in [0,1]D the measure ∆Cb
a assigned by C to the D-box

[a,b] = [a1,b1]× ...× [aD,bD] is nonnegative, i.e.

∆Cb
a := ∑

(ε1,...,εD)∈{0,1}
(−1)ε1+...+εDC

(
ε1a1 +

(1− ε1)b1, ...,εDaD +(1− εD)bD

)
≥ 0.

In fact, a copula is a multivariate distribution function for
the random vector U = (U1, ...,UD) with univariate uniform
margins restricted to the unit D-cube. All partial derivatives
exist almost everywhere, hence the conditioned distribution
functions and the density as well.

The key theorem due to Sklar clarifies the relations of
dependence and the copula of a distribution:

Theorem 1 (Sklar) Let F denote a D-dimensional
distribution function with margins F1, ...,FD. Then there
exists a D-copula C such that for all real z = (z1, ...,zD),

F(z) = C
(

F1(z1), ...,FD(zD)
)
.
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If all the margins are continuous, then the copula is unique;
in general, it is determined uniquely on the ranges of the
marginal distribution functions. Moreover, if we denote
by F−1

1 , ...,F−1
D quasi-inverses of the marginal distribution

functions, then for every u = (u1, ...,uD) in the unit D-cube,

C(u) = F
(

F−1
1 (u1), ...,F−1

D (uD)
)
.

For a proof, see Nelsen (1998). We define quasi-inverses
of distribution functions as

F−1
d (u) =

{
inf{z|Fd(z)≥ u} u > 0
sup{z|Fd(z) = 0} u = 0

Univariate random variates can be generated with the
common inverse distribution function method. Similarly,
multivariate random vectors can be generated using copulas
in two steps:

1. Generate dependent random numbers u(gen)
1 , ...,u(gen)

D
with the copula. This can be done in the usual way for the
generation of random vectors, see Law and Kelton (2000),
page 479), for example.

2. Transform them into the desired marginal distribu-
tion, z(gen)

d = F−1
d (u(gen)

d ), d = 1, ...,D.
For step 1, we need some conditional distribution

functions, namely Cd(ud |u1, ...,ud−1) = P{Ud ≤ ud |U1 =
u1, ...,Ud−1 = ud−1}, d = 1, ...,D.

Let c(u)≡ cD(u) denote the density of the copula, and
cd(u), d = 1, ...,D−1, the needed marginal densities,

cd(u1, ...,ud) =∫ 1

ud+1=0
...

∫ 1

uD=0
c(u)dud+1...duD. (1)

Then we have for cd−1(u1, ...,ud−1) > 0

Cd(ud |u1, ...,ud−1) =∫ ud
u=0 cd(u1, ...,ud−1,u)du

cd−1(u1, ...,ud−1)
,d = 2, ...,D. (2)

A random variate of the copula is generated as follows.
u(gen)

1 is a random variate from the uniform distribution on the
interval [0,1], denoted by U(0,1), and u(gen)

d , d = 2, ...,D,
are generated with the conditional distribution functions
Cd(ud |u(gen)

1 , ...,u(gen)
d−1 ), in turn.

3 PIECEWISE LINEAR EMPIRICAL COPULAS

We consider empirical copulas C(u), u = (u1, ...,uD), which
are linear in each variable ud if the other variables are fixed.
This holds within certain subcubes of the unit D-cube [0,1]D,
but in different subcubes, the slopes are different, in general.
The density c(u) of the copula is constant in each of these
4

subcubes. We call these copulas piecewise linear, more
precisely piecewise multi-linear.

In this section, we point out how the copulas can be
estimated from a given sample as well as the empirical
distribution functions of the marginal distributions of the
sample, we prove that they are really copulas, we present
an algorithm for computing them and their conditional dis-
tribution functions which we need for generation, and we
consider time and space complexity of this algorithm.

The subcubes are defined with the partition S1, ...,SK
of the interval [0,1], S1 = [0,δ ] where δ = 1/K, K positive
integer, and S j =

(
( j−1)δ , jδ

]
, j = 2, ...,K. The subcubes

are Sj = S j1 × ...×S jD , j = ( j1, ..., jD) ∈K = {1, ...,K}D.
We denote the given sample under consideration as

zi = (z1,i, ...,zD,i), i = 1, ...,n. n is the sample size. We
assume i.i.d. sample vectors zi.

For the definition of the copula, we use in each dimen-
sion d = 1, ...,D the order statistics zd,(i), i = 1, ...,n, of the
elements of dimension d. Let Id : {1 : n}→ {1 : n} denote
the function which maps the old place l of zd,l in the sample
to the new place Id(l) = i in the ordered sequence.

With this mapping, we define ud,l = Id(l)/n, l =
1, ...,n, d = 1, ...,D, and ul = (u1,l , ...,uD,l), l = 1, ...,n. ul
are image points of the sample points zl in the unit D-cube
[0,1]D.

Now we explain that the values ud,l are closely related
to the empirical distribution function of the zd,l . We use
a specific kind of empirical distribution functions, namely
step functions, one in each dimension d = 1, ...,D. They
are defined with the order statistics as follows:

Fd(z) =


0 z < zd,(1)
i/n zd,(i) ≤ z < zd,(i+1), i = 1, ...,n−1
1 zd,(n) ≤ z

(3)

Remark 1. If in the ordered sequence zd,(i) = zd,(i+1),
then there is no z for which Fd(z) = i/n, i/n is not in the
range of Fd .

Remark 2. If all sample values zd,l , l = 1, ...,n, are
different, Fd(zd,l) = ud,l holds. If not, this is true only for
values zd,l which occur only once, and for just one of some
equal values. Namely for multiple values zd,l1 = zd,l2 = ...,
Fd(zd,li) = max{ud,l1 ,ud,l2 , ...} holds for i = 1,2, ....

Let Nj = |{ui|ui ∈Sj, i = 1, ...,n}| denote the number
of points in Sj, j ∈K . Then we define the density c(u)≡
cD(u) of the copula as

c(u) = fj, j ∈K ,

where we use the notation fj = Nj/n/δ D.
For ud ∈ S j \{0}, j = dudKe holds, and for ud = 0, j =

1. Hence, with the up-operator ↑: [0,1] → {1, ...,K}, ↑ u
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= max{1,duKe}, we can write

c(u) = f↑u1,...,↑uD , u ∈ [0,1]D. (4)

The marginal densities (1) can be expressed as

cd(u1, ...,ud) = δ
D−d f (d)

↑u1,...,↑ud
, d = 1, ...,D−1, (5)

where

f (d)
j1,..., jd

=
K×...×K

∑
( jd+1,..., jD)=(1,...,1)

fj,

( j1, ..., jd) ∈ {1, ...,K}d ,

and the distribution functions (2) as

C2(u2|u1) =

δ
D−1

↓u2

∑
j2=1

f (2)
↑u1, j2

+(u2− ↓ u2δ )δ D−2 f (2)
↑u1,↑u2

,

Cd(ud |u1, ...,ud−1) =

δ ∑
↓ud
jd=1 f (d)

↑u1,...,↑ud−1, jd
+(ud− ↓ udδ ) f (d)

↑u1,...,↑ud

δ f (d−1)
↑u1,...,↑ud−1

,

d = 3, ...,D, (6)

with the down-operator ↓: [0,1]→{1, ...,K}, ↓ u =↑ u−1,
for positive denominators.

Now we are prepared to prove
Theorem 2 If the sample size n and K are such

that K divides n, C(u) is a copula.
Proof It suffices to prove that c(u) is a density in the

D-cube [0,1]D, and that c1(u) is the uniform density over
[0,1].

From (4), we conclude c(u)≥ 0. Integrating the c(u)
over the D-cube, one obtaines δ D

∑j∈K fj = δ Dn/n/δ D = 1.
Hence c(u) is a density.

From the definition of Id(l), one can conclude that for
fixed d ∈ {1, ...,D}, Id(l) for all l = 1, ...,n assumes all
values i = 1, ...,n, each value once. Hence, the ud,l for all
l = 1, ...,n assume all values 1/n, ...,(n−1)/n,1, each value
once. Hence, in each subcube S j1 × [0,1]D−1 are n/K image
points ul . From (5) we find f (1)

j1
= n/K/n/δ D = 1/δ D−1

and c1(u1) = 1. c1(u) is the uniform density over [0,1].
This concludes the proof.

The following algorithm can be applied to calculate
the arrays f (d) which we use for the calculation of the
conditional distribution functions of the copula.
Algorithm 1

1. Calculate the empirical distribution functions of the
marginal distributions of the sample with (3) and the
image points ui of the sample points zi, i = 1, ...,n.

2. Set all elements of the arrays f (d) to 0.
3. for i := 1 to n do

for d := 1 to D do
jd :=↑ ud,i;

end
for d := 2 to D do

f (d)
j1,..., jd

plus 1/n/δ D;
end

end

Each of the D empirical distributions need O(n logn)
steps for sorting n numbers, so this is done in O(Dn logn)
time. The loops consist in only O(Dn) steps.

For the space complexity, we remark that the arrays
can be expected to be sparse. The biggest one, f (D), has KD

elements, most of which will be zero if KD � n. Therefore
we propose to store the big arrays f (d) in a sparse manner
where elements with value zero are not stored. Hence, if
KD is not small, the needed storage is of order O(Dn) since
at most (D−1)n times an array element changes its value
from zero to nonzero. So we conclude the space complexity
O(Dn).

But, when an array is stored in a sparse manner, the index
values must be stored together with each array element, and
each time when an element is accessed, its index values are
read. This results in a space and time complexity O(D2n)

So we can state
Theorem 3 Algorithm 1 has the time complexity

O(D2n logn), and the data structures have the space com-
plexity O(D2n).

4 THE GENERATION ALGORITHM

The generation algorithm consists in two steps. First a
random D-vector u(gen) is generated with the copula as
indicated at the end of Section 2. Then each of its elements
ud , d = 1, ...,D, of u(gen) is transformed with the inverse of
the according marginal distribution function of the sample
(The superscript (gen) would overload some formulas of this
section, therefore we omit it at the elements of u(gen) =
(u1, ...,uD)).

In step 1, u1 is a random variate from the uniform
distribution on the interval (0,1], denoted by U(0,1] (We
exclude the random number value zero; this makes the im-
plementation of the quasi-inverse of distribution functions
easier). Then ud , d = 2, ...,D, are generated with the con-
ditional distribution functions (6). To this end, for each
d = 2, ...,D, a random number u is generated from the dis-
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tribution U(0,1], and u = Cd(ud |u1, ...,ud−1) is solved for
ud .

For the ud we obtain the following formulas:

u2 =↓ u2δ +
u−δ D−1

∑
↓u2
j2=1 f (2)

↑u1, j2

δ D−2 f (2)
↑u1,↑u2

(7)

where ↓ u2 is the smallest integer in {0, ...,K−1} for which

uKD−1 ≤
↓u2+1

∑
j2=1

f (2)
↑u1, j2

(8)

holds. For d = 3, ...,D, the formula is

ud =↓ udδ+

δ

u f (d−1)
↑u1,...,↑ud−1

−∑
↓ud
jd=1 f (d)

↑u1,...,↑ud−1, jd

f (d)
↑u1,...,↑ud

(9)

where ↓ ud is the smallest integer in {0, ...,K−1} for which

u f (d−1)
↑u1,...,↑ud−1

≤
↓ud+1

∑
jd=1

f (d)
↑u1,...,↑ud−1, jd

(10)

holds.
If the random vector u(gen) is generated with these

formulas, the calculation of the sums in (7) and (9) consist
in O(DK) steps for calculating the sum with sparse storage
organization; the same holds for the search of ↓ ud with (8)
and (10), for each dimension d. Hence this needs computing
time of order O(D2K).

This can be reduced to O(D2 logK) as follows, which
is worthwile for large K. For example, if K=1000, the
number of steps is about 10D instead of 500D, in average.
In a setup phase of the generation algorithm, the cumulative
sums

s(d)
j1,..., jd

=
jd

∑
j=1

f (d)
j1,..., jd−1, j, (11)

( j1, ..., jd−1) ∈ {1, ...,K}d−1, (12)
jd = 0, ...,K, d = 2, ...,D, (13)

are calculated. In the formulas, the sums are replaced by a
single element of the array s, and the ↓ ud are determined
with binary search. So we found

Theorem 4 A random vector u(gen) can be generated
in O(D2 logK) time.

It must be remarked that the price for the logarithmic
time complexity is a high space need for the s array. But
in the next subsection we propose a tailored data structure
4

for storing the f - and s-arrays which realizes the favourable
space complexity O(D2n) and provides fast access.

Now we discuss the transformation of a random vector
u(gen) into a random vector z(gen) with the original distribution
as defined by the sample.

For the transformation, the elements of u(gen) are trans-
formed with the inverses of the marginal distribution func-
tions of the sample. We propose three different approaches:

1. Using the estimated empirical distribution functions
(3). Here one can obtain only values which occur
in the sample. This can be sensible for integer
random variables, in particular.

2. Using a linear interpolation. The flat steps of the
step distribution function are replaced by straight
lines above them with positive slope. Here one
can obtain values which lie between zero and the
largest value of the sample - different highest and
lowest values can be defined similarly.

3. Using fitted standard distributions if feasible, where
feasible means: The empirical marginal distribution
(3) of the sample is similar to a standard distribution
function, and this standard distribution function can
be inverted in a sufficiently simple manner.

Method 1 The elements of z(gen) are defined by

z(gen)
d,l = zd,(i), l = 1, ...,n, d = 1, ...,D, (14)

where i = max{1,dud,lne}.
Method 2 The elements of z(gen) are defined by

z(gen)
d,l ={

ud,lnzd,(1) i = 0
zd,(i) +(ud,ln− i)(zd,(i+1)− zd,(i)) i > 0

where i = max{1,dud,lne}−1,

l = 1, ...,n, d = 1, ...,D. (15)

Method 3 For a fixed d ∈ {1, ...,D}, the sample
zd,1, ...,zd,D is fitted to a suitable standard dis-
tribution with invertible distribution function, say
F (standard), and the random variates are transformed
as follows:

z(gen)
d,l = F (standard)−1(ud,l), l = 1, ...,n. (16)

4.1 A Tailored Data Structure

When arrays or even sparse matrices are used for storing the
array elements f (d)

j1,..., jd
and their cumulative sums s(d)

j1,..., jd
,

the applicability of our method is restricted with respect
to the precision number K and the dimension D of the
random vectors. Something like K ≤ 1000 and D ≤ 3, or
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K ≤ 30 and D ≤ 6 must be observed with full arrays, and
with sparse matrices in MATLAB, K ≤ 1000 and D≤ 6, or
K ≤ 30 and D≤ 12. Therefore we devised a hash-based data
structure which realizes the more favourable space and time
complexity and therefore makes bigger K and D possible.
We tried our program with K = 4000 and D = 4, with
K = 1000 and D = 40, and with K = 100 and D = 100, for
example. Moreover, the algorithm became much faster. For
big values K, we observed 30...300 times shorter CPU times
for the setup phase and 24...90 times faster generation of
random vectors, compared with a MATLAB program which
relies on sparse matrices.

We only sketch the basic ideas of the data structure
which includes many details and is quite tricky.

In a first phase, the f (d)-values are included one after
the other into a hash table. The hash address depends on
d and on the index tuple ( j1, ..., jd−1).

In a second phase, the data structure is reorganized to
allocate sequentially the cumulative sums s(d)

j1,..., jd
for given

( j1, ..., jd−1). This allows for binary search as will be seen
in the sequel.

After that, the array elements f (d)
j1,..., jd

and s(d)
j1,..., jd

are
accessed as follows.

1. Given d and ( j1, ..., jd), an entry is searched
in the hash table. If none is found, the f (d)-
element or the s(d)-element is 0. Otherwise, in
the entry are two pointers, begin(d, j1, ..., jd−1)
and end(d, j1, ..., jd−1) which point to triples
( jd , f (d)

j1,..., jd
,s(d)

j1,..., jd
) in a list.

2. In the list, between the pointers, all positive f -
values for the given d and ( j1, ..., jd−1) are stored.
The triples are sorted according to increasing jd
which includes increasing cumulative sums s(d)

j1,..., jd
.

If there is no triple for the given jd-value, the array
element f (d)

j1,..., jd
is 0.

When the triples are searched linearly between the
pointers, the access time is O(K) plus the access time to
find the pointers in the hash table which is O(D).

With binary search, the access time is only O(logK)+
O(D).

Due to the sparsity which is often high-grade, there
are only a couple of f (d)

j1,..., jd
> 0, given d and ( j1, ..., jd−1).

Therefore quite often binary searching the triples is not better,
but sequential search is faster. Therefore we use sequential
search in the MATLAB program pwlCopula D with hashing
(Strelen 2007).

4.2 Time Series

The technique for random vectors can be applied for
time series as follows. Consider a stationary time se-
4

ries ti, i = 1, ...,n+m−1, of D′-dimensional random vec-
tors, ti = (t1,i, ...., tD′,i). A moving window with m vec-
tors ti−m+1, ti−m+2, ..., ti is taken as sample vectors zi =
(ti−m+1,1, ..., ti−m+1,D′ ,ti−m+2,1, ..., ti−m+2,D′ , ti,1, ..., ti,D′), i =
m, ...,n+m−1, hence D = mD′ is the dimensionality of the
random vectors zi. With this sample, the marginal distrib-
utions and the copula are estimated as in Section 3. The
reader may realize that there are only D′ different marginal
distributions.

The generation of a time series t(gen)
i , i = 1,2, ..., is

different. In each generation step i, only the last D′ elements
are newly generated, and not the whole vector z(gen)

i . The
first (m−1)D′ elements for the new z(gen)

i are taken from
z(gen)

i−1 instead, namely its last (m−1)D′ elements. Only the
last D′ elements are generated newly each time. The same
holds for the u(gen)

i -vectors.
The first vector z(gen)

1 must be initialized somehow, since
no older random vector is available. For this purpose, the
whole vector can be generated.

The last D′ elements of the generated z(gen)
i series are

the desired generated time series t(gen)
i , i = 1,2, ....

It must be remarked that for this generation method of
time series, two subtle problems must be solved:

1. All parts t j of the vectors zi must have the same
empirical marginal distributions.

2. For each ti in zi = (..., ti), there must be other
vectors z j with this ti in the lower places, like
z j = (ti, ...), z j = (..., ti, ...).

Both postulations are not immediately true and must be
forced explicitly. If they are not fulfilled, the generation
algorithm may run into dead ends. In our MATLAB program
pwcCopula D with hashing (Strelen 2007), this problem is
solved. We omit here the messy details.

5 EXAMPLES

We present numerical examples where we applied our new
technique. In all but the second example, random vectors
zi are generated as samples with known distributions and
dependence structure. The second consists of measured IP
traffic data.

We determined empirical marginal distributions and
the copula with the methods of Section 3 and generated
random vectors z(gen)

i as described in Section 4. We verified
the accuracy with some statistics and, visually, with scatter
diagrams. Scatter diagrams serve the purpose to judge if
there are regions in in the D-dimensional space in which
no sample points are present, and if the same holds for the
generated random vectors. Moreover, they give some visual
impression of the frequency distribution of sample points
and generated points.
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Example 1: A multivariate distribution with dimension
D = 2. The Z1,i have a Weibull(3,1)-distribution, and Z2,i =
Z1,i(1 +Yi), i = 1, ...,n. All Z1,i and Yi are independent
random variables, and the Yi are U(0,1)-distributed.
Example 2: Measured IP-data. ai and bi are inter-arrival
times and packet sizes, respectively. We consider data from
Klemm, Lindemann, and Lohmann (2002). The sample
vectors are z1,i = ai, z2,i = bi, z3,i = ai+1, z4,i = bi+1, i =
1, ...,n−1, and z1,n = an, z2,n = bn, z3,n = a1, z4,n = b1, i =
1, ...,n−1. The values of z3,n and z4,n are a little strange; this
setting is according to the remark 2 at the end of subsection
time series.
Example 3: We consider the stochastic process
where A1 is U(0,1)-distributed, Ak+1 = 0.5(1− 4(Ak −
0.5)2) + 0.5Yk, k = 2, ...,n0 + n, and the sample vectors
are Z1,i = Ai+n0, Z2,i = Ai+n0+1, i = 1, ...,n−1, and Z1,n =
An+n0, Z2,n = Z1,1. The first random variables A1, A2, ...
are not stationary; this is why we skip n0 > 0 realizations,
actually n0 = 100. We hope that the stochastic process is
then nearly stationary. Here, the dimension is D = 2.
Example 4: Here we consider random vectors with high di-
mensions D, namely D = 5,D = 40, and D = 100. Z1,i =Y1,i,
Zd,i = Zdd/2e,i(1− Zdd/2e,i) +Yd,i, d = 2, ...,D, i = 1, ...,n,
and the Yd,i are independent and U(0,1)-distributed.

Statistics and diagrams were calculated for both, the
measured sample zi and the random vectors z(gen)

i which are
generated with the new technique.

The statistics are means, coefficients of variation, and
correlations of the zd,i, the latter between zd,i and zd′,i, d 6= d′,
and correspondingly of the generated random vectors.

We calculated the relative differences of measured and
generated means and differences of measured and generated
coefficients of variation and correlations.

In order to not bother the reader with many figures,
we only give the maximum of the absolute values of these
differences, the maximum statistics difference.

Each generation of random vectors was repeated inde-
pendently six times. We present the interval of the observed
maximum statistics differences.

In many examples, we found that the generated random
vectors seem to have very similar statistical properties,
compared to the samples.

The examples were calculated with the MATLAB pro-
gram pwcCopula D with hashing, see Strelen (2007). The
program can be adapted easily to different samples.
Example 1 Continued: Sample size n = 4000, K = 1000.
The u(gen)

i -vectors were generated with the formulas (7)
and (8). As inverse transformation we applied method 2
with the formula (15), the interpolated empirical distrib-
ution function, and method 3 with the formula (16). For
method 3, the empirical marginal distributions were fitted
to Weibull distributions. We obtained Weibull(3.06,0.983)
4

for dimension 1 and Weibull(2.65,1.48) for dimension 2,
respectively.

For 16000 generated random vectors, the maximum
statistics differences are 0.003 ± 0.002 and 0.022 ± 0.003,
respectively, obviously better when using the inverse trans-
formation method 2.

The scatter diagrams of the sample and the generated
points are nearly equal for both inverse transformation meth-
ods. They indicate that there are obviously regions where
no points can be, and that these regions are observed by
the generated points quite accurately; see Figure 1.

Figure 1: Sample and generated points.

Example 2 Continued: Sample size n = 4000. The u(gen)
i -

vectors were generated with formulas (7) - (10). As inverse
transformation we applied method 1 with the formula (14),
the empirical distribution function, for the integer-valued
packet sizes, and Method 2 with the formula (15), the inter-
polated empirical distribution function, for the interarrival
times.

For the accuracy K = 1000, in 4.8 seconds CPU time on a
Pentium 4 with 3 GHz 16000 random vectors were generated
with maximum statistics differences 0.028 ± 0.016. For the
accuracy K = 4000, in 5.4 seconds CPU time 16000 random
vectors were generated with maximum statistics differences
0.0035 ± 0.0005 which is obviously much more accurate.
The set-up time of 2.6 seconds did not differ because it
depends mainly on the dimension D and the sample size n.

The scatter diagrams show a very irregular dependency
structure. The comparison of the sample and the generated
points indicate good accuracy; see Figures 2, 3 and 4.

Example 3 Continued: Sample size n = 4000. For the
accuracy K = 1000, in 5.1 seconds CPU time 64000 random
vectors were generated with maximum statistics differences
0.0024 ± 0.0012. For the accuracy K = 4000, in 7.8
seconds CPU time 64000 random vectors were generated
with maximum statistics differences 0.0002± 0.00002, very
accurate.
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Figure 2: Sample and generated points, Dimensions 1 and
2.

Figure 3: Sample and generated points, Dimensions 1 and
3.

Example 4 Continued: With sample size n = 4000, di-
mension D = 5, and accuracy K = 4000, in 29 seconds
CPU time 64000 random vectors were generated with max-
imum statistics differences 0.007 ± 0.002. With sample size
n = 1000, dimension D = 40, and accuracy K = 1000, in 74
seconds CPU time 16000 random vectors were generated
with maximum statistics differences 0.028 ± 0.004. With
sample size n = 1000, dimension D = 100, and accuracy
K = 100, in 210 seconds CPU time 16000 random vectors
were generated with maximum statistics differences 0.031
± 0.0035.

CONCLUSION

Copulas seem to be useful for the analysis of multivariate
samples and for the generation of multivariate random vec-
tors and time series. Probably the proposed technique is a
little step towards the consideration of dependency in load
models where needed. The cited computer program should
be developed further to become a useful tool.
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