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ABSTRACT 

The HLA time management is an important factor that lim-
its the scalability of distributed simulations. An efficient 
algorithm of Greatest Available Logical Time (GALT) is 
thus much critical for the time management in an RTI to 
support large-scale simulations. The concept of GALT in 
IEEE 1516 was also called Lower Bound Time Stamp 
(LBTS) in HLA 1.3. The computation of GALT in the 
HLA time management is different from that of LBTS in 
traditional Parallel Discrete Event Simulation (PDES). In 
this paper, an algorithm about GALT is presented and its 
correctness is proved. Its efficiency is also explained by 
applying it to RTI1.3-NG. In fact, the algorithm has been 
implemented in our RTI to support thousands of federates 
in our cluster systems. In addition, a real-world example is 
introduced to explain the correctness of the algorithm prov-
ing, and the reason of our RTI supporting large-scale simu-
lations. 

1 INTRODUCTION 

The HLA time management is an important factor for lim-
iting the scales of distributed applications. The overhead 
for time synchronization is much higher for large-scale 
simulations. One important problem of using the HLA time 
management for large-scale simulations lies in the Greatest 
Available Logical Time (GALT) algorithm of RTI. GALT 
is the maximal logical time that a federate may advance se-
curely, which is defined in IEEE 1516 and it is also called 
Lower Bound Time Stamp (LBTS) in HLA 1.3. Though 
many LBTS algorithms have been proposed in the Parallel 
Discrete Event Simulation (PDES) area, a GALT algorithm 
is virtually different from those LBTS algorithms in PDES. 
For example, the important concepts of Local Virtual Time 
(LVT) and Global Virtual Time (GVT) (Jefferson 1985) in 
PDES do not appear in the HLA time management. In 
HLA, a federate must schedule an event and advance its 
logical time under the control of RTI, while a process usu-
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ally does without such an underlying infrastructure in 
PDES. For the optimistic mechanism, a process may roll 
back its virtual time even to its start in PDES, while a fed-
erate cannot roll back its logical time in HLA. A federate 
can only call the timeAdvanceRequest (TAR), timeAd-
vanceRequestAvailable (TARA), nextMessageRequest 
(NMR), nextMessageRequestAvailable (NMRA), and 
flushQueueRequest (FQR) services to advance its logical 
time. However, a federate should receive the 
‘RTI::LogicalTimeAlreadyPassed’ exception if it tries to 
roll back its logical time according to the HLA standard. 

Computing GALT is a complicated problem as stated 
in Fujimoto (1998). In the next section, some factors of 
GALT computation according to the IEEE 1516 standard 
are discussed. A GALT algorithm shall consider the TAR, 
TARA, NMR, NMRA, and FQR services. The earliest al-
gorithms about the TAR service might be those presented 
in Fujimoto (1996) and Carothers et al. (1997), which were 
a little different from subsequent HLA standards (HLA 1.3 
and IEEE 1516). A more detailed algorithm was discussed 
in a book by Kuhl, Weatherly, and Dahmann (1999). But 
the book was written for HLA beginners rather than RTI 
developers, and its algorithm was easily understood. The 
algorithm mentioned in the book was a recursive one and 
its lookahead was supposed to be unchangeable. In the 
third section, an efficient GALT algorithm is brought for-
ward. In fact, our algorithm originally comes from the 
book and we have made much improvement on it. Now the 
algorithm can be practically used for RTI developers to 
implement the HLA time management. One important 
characteristic is that there is no recursion in our algorithm 
any more, and consequently it does not need to consider 
any deadlock caused by recursion. In addition, the looka-
head in the algorithm may be changeable during the whole 
federation. In fact, the algorithm has been successfully ap-
plied to StarLink+ (Liu, Yao, and Wang 2005; Liu et al. 
2006a). Nowadays, an RTI cannot efficiently support more 
than 100 federates in a federation very well. Millennium 
Challenge 2002 (MC02) was regarded as the largest, most 
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complex military experiment ever conducted, and the 
simulation included around 90 federates (Ceranowicz et al. 
2002). However, StarLink+ is an RTI which can support 
thousands of federates in our self-made supercomputers 
(NUDT 2007). Thousands of federates can join to a federa-
tion within one minute in our experiments. In the fourth 
section, we apply the GALT algorithm to RTI1.3-NG, and 
discuss the efficiency of the algorithm. In the fifth section, 
the correctness of the new algorithm is proved. Finally, we 
explain the proving process of the GALT algorithm by us-
ing the example of pyramidal mountain climbing, and 
briefly discuss how the algorithm in StarLink+ can be used 
for simulations with thousands of federates. 

2 COMPUTING FACTORS OF GALT 

In this section, three important factors about GALT com-
puting are discussed, which are advancing services, net-
work messages, and underlying communication mecha-
nisms. 

2.1 Advancing Services 

Five time advancing services are provided according to the 
IEEE 1516 standard, which are TAR, TARA, NMR, 
NMRA, and FQR. Typically, the TAR and TARA services 
are used in time stepped simulations and the NMR and 
NMRA services are used in discrete event simulations. 
They are also called conservative advancing services. 
While the FQR service is used in optimistic simulations. 

2.1.1 TAR/TARA 

For the TAR and TARA services, only logical time and 
lookahead need to be considered when counting GALT. 
That is to say, it is not necessary to consider a certain Time 
Stamp Order (TSO) message in one federate’s TSO queue 
if the federate calls the two services to advance. However, 
this is definitely different from the NMR and NMRA serv-
ices. 

2.1.2 NMR/NMRA 

For convenience, a new concept called LETS is introduced 
in the paper which means Least Existent Time Stamp. 

Definition 1 A federate's LETS is the smallest time 
stamp of all TSO messages in its TSO message queue. 

LETS is different from the Least Incoming Time 
Stamp (LITS) that is defined in IEEE 1516. LITS is the 
smallest time stamp that the joined federate could (but not 
necessarily would) receive in the future in a TSO message 
queue. A federate’s LITS can be set as the smaller of its 
GALT and LETS. LITS shall result in the recursion of 
GALT computing. The differences between both concepts 
of LETS and LITS show the main differences between our 
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approach and that is currently used by the HLA specifica-
tion. 

For a federate using the NMR or NMRA service to 
advance to the specified logical time T, it may advance to 
the smaller of T and its LITS according to HLA standard. 
So the invoking federate may not be always granted to 
logical time T. Therefore, besides logical time and looka-
head, network messages should be considered in a distrib-
uted simulation when counting GALT for the NMR and 
NMRA services. 

2.1.3 FQR 

There are two ways to compute GALT for the FQR serv-
ice.  

 
1. When a federate requests advancing to logical 

time T by invoking the FQR service, the advanc-
ing request is always granted by the RTI and the 
federate may arrive at the minimum of GALT, 
LETS and T, which is just the smaller of LITS and 
T. The logical time which the federate arrives at 
may be less than T. Thus when computing GALT, 
the FQR service can use the same algorithm as the 
NMR and NMRA services. 

2. The FQR service can be regarded as an atomic 
operation because the FQR service is always 
granted in any case. As both states before and af-
ter the FQR service are granted, only logical time 
and lookahead should be considered. We adopt 
the second way in this paper. In addition, The 
Grant state is that when a federate’s time advanc-
ing request is granted. A federate’s initial state 
can also be thought as Grant. Consequently, only 
five states should be taken into account, which are 
Grant, TAR, TARA, NMR and NMRA.  

2.2 Network Messages 

An RTI should consider two types of messages on count-
ing GALT, i.e. the messages that are already stored in each 
federate’s TSO queue, and the transient messages that are 
being transferred in network and haven’t arrived in the 
RTI. Of the two kinds of messages, transient messages are 
indeterminate for GALT computation because the RTI 
hasn’t received them. In fact, this problem can be solved 
by using the pipeline mechanism, which means messages 
sent first from a federate should arrive at the RTI first, i.e. 
the FIFO (First In First Out) rule. 

In Figure 1, after a federate has sent the messages m1, 
m2 and m3, it invokes the TAR, TARA, NMR, NMRA or 
FQR service to request advancing logical time. It then 
sends messages m4 and m5 to the RTI. According to the 
IEEE 1516 standard, only the messages before invoking 
time advancing services (i.e. m1, m2 and m3) should be 
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considered on counting GALT, and the latter messages (i.e. 
m4 and m5) should not be considered. The correctness is 
confirmed by the following theorem, which is guaranteed 
by the IEEE 1516 standard. 

Theorem 1 A federate mustn’t send any TSO mes-
sages less than T+L in time advancing state. T means the 
specified logical time that the federate requests to advance 
to, and L means the actual lookahead when the RTI grants 
the federate’s request. 

The concept of time advancing state is defined in 
IEEE 1516, which means the interval between a federate’s 
request to advance its logical time by invoking the TAR, 
TARA, NMR, NMRA or FQR service and the correspond-
ing grant. 

Though a federate requests the NMR, NMRA or FQR 
service to advance to logical time T, the RTI may grant it 
to the logical time which is less than T. So the federate 
may send the messages less than T+L after the foregoing 
request is granted. But the federate absolutely follows 
theorem 1 in time advancing state. 

 

 
Figure 1: The rule of FIFO. 

2.3 Underlying Communication 

Another factor is the reliability of message transferring in 
the network. Underlying communication can be divided 
into reliable and best-effort models. The former can be im-
plemented by TCP and the latter can be implemented by 
UDP. Of course, a best-effort message may also be trans-
mitted as a reliable one by TCP. 

For the reliable model, it is certain that the messages 
and time advancing requests must be received by the RTI. 
But it is not the case at all for the best-effort model imple-
mented by UDP, and this makes the computation of GALT 
complicated. For the best-effort model, both RTI and fed-
erates are difficult to know whether a message has been re-
ceived by the other side. In the PDES area, a paper by 
Riley, Fujimoto, and Ammar (2000) showed that the capa-
bilities and reliability of various network models could be 
exploited in the design of a LBTS algorithm. Because the 
time management in PDES is different from that in HLA, 
the LBTS algorithms in PDES shall not be directly mi-
grated to the RTI. 

For simple discussion, the FIFO rule and the TCP 
communication model are used in the remainder of the pa-

R TAR/TARA/NMR/NMRA/FQR 

m1 m2 m3 R m4 m5 

Federate 
RTI 
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per. In addition, we also assume that all federates call the 
enableTimeRegulation and enableTimeConstrained serv-
ices to be time regulating and time constrained. 

3 ALGORITHM 

Since Lamport presented the concept of a logical clock 
(Lamport 1978), the question about deadlock based on 
logical time has been a focus in distributed systems. The 
HLA time management is also faced the problem inevita-
bly. Two deadlock cases exist in the HLA time manage-
ment. One is caused by zero lookahead (Fujimoto 1997), 
which has a close connection with the application itself. 
Lookahead is introduced to resolve this deadlock essen-
tially. The other deadlock is caused by a GALT algorithm. 

We start from the following formula, which is suitable 
for the TAR and TARA services if a federate’s lookahead 
is not modified during the federation. 

 
 ,)},()(min{)( jijLjTiGALT !+=  (1) 

 
where:  

 
• When federate j is in time granted state, T(j) 

means federate j’s current logical time; when fed-
erate j is in time advancing state, T(j) means the 
logical time that federate j requests advancing to. 

• L(j) means federate j’s lookahead. 
 
Next, we modify formula (1) twice, and the GALT al-

gorithm comes out eventually. The first modifications aims 
at the changeable lookahead, and the second makes it suit-
able for the NMR and NMRA services. 

3.1 Modifying Lookahead 

Now a federate is permitted to modify its lookahead during 
the whole federation. The following theorem is still tenable. 
 Theorem 2 For TAR and TARA, the sum of T(j) and 
L(j) in formula (1) mustn’t be decreased. 

Proof  According to the IEEE 1516 standard, T(j) can 
not be decreased. Federate j shall receive the 
‘RTI::LogicalTimeAlreadyPassed’ exception if it tries to 
roll back its logical time. Now we know that only L(j) can 
be decreased. But the modifyLookahead service in the 
IEEE 1516 standard declares that “If the requested value is 
less than the joined federate’s actual lookahead, the change 
shall take effect gradually as the joined federate advances 
its logical time and the actual lookahead is initially un-
changed. Specifically, the joined federate’s actual looka-
head shall decrease by T units each time logical time ad-
vances T units until the requested lookahead is reached.” A 
good algorithm of modifying lookahead can be found in 
Carothers et al. (1997). Therefore, T(j)+L(j) mustn’t be de-
creased. □ 
7



Liu, Yao, and Wang 

 
Here, we emphasize two issues. 
• The modifyLookahead service can only be suc-

cessfully called when the calling federate is in 
time granted state in accordance with IEEE 1516. 
If the requested value is greater than or equal to 
the joined federate’s actual lookahead, the modifi-
cation shall take effect immediately and the re-
quested lookahead shall become the actual looka-
head. If the requested value is less than the joined 
federate’s actual lookahead, the service shall be 
suspended by the RTI and the change shall take 
effect later gradually as the joined federate ad-
vances its logical time. 

• The RTI::InTimeAdvancingState exception will 
occur when a federate wants to modify its looka-
head in time advancing state. 

 
Supposing that a federate is in time advancing state, 

we mark L1 as its current lookahead and L2 as the actual 
lookahead the federate would have if it is granted. If a fed-
erate wants to decrease its lookahead, we have L1≥L2. 
Hence, T(j)+L1≥T(j)+L2. From theorem 2, we know that 
L(j) in formula (1) should be L2 rather than L1. 

Now formula (1) may be modified into formula (2) as 
follows. 

 
 ,)},()(min{)( jijLjTiGALT !+=  (2) 

 
where:  

 
• When federate j is in time granted state, T(j) 

means federate j’s current logical time and L(j) 
means federate j’s actual lookahead.  

• When federate j is in time advancing state, T(j) 
means the logical time that federate j requests ad-
vancing to, and L(j) means the lookahead that fed-
erate j will have once it is granted. 

 
A federate’s lookahead shall be considered in order to 

compute GALT. But the lookahead to be considered is de-
pendent on a federate’s state. For convenience, anther defi-
nition is introduced. 

Definition 2 Modified Lookahead (ML). When a fed-
erate is in time granted state, Modified Lookahead is de-
fined as its actual lookahead. When a federate is in time 
advancing state, Modified Lookahead is defined as the loo-
kahead the federate will have once it is granted to ad-
vance. 

From the definition, we know that a federate’s Modi-
fied Lookahead is equal to its actual lookahead if it doesn’t 
call the modifyLookahead service. In addition, the looka-
head in formula (2) is just a federate’s Modified Looka-
head. 
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3.2 GALT Algorithm 

For NMR/NMRA, we further modify formula (2) to obtain 
our GALT algorithm. For any federate i, we note S(i) as 
federate i’s stature. A federate’s stature is different from 
the output time defined in the book by Kuhl, Weatherly, 
and Dahmann (1999). It is only a metaphor for numeric 
comparison. 

Definition 3 A federate i’s stature is defined as 
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Where:  
 

• S(i) is federate i’s stature. 
• When federate i is in time granted state, T(i) is 

federate i’s current logical time. When federate i 
is in time advancing state, T(i) is the logical time 
that federate i requests to advance to. 

• L(i) is federate i’s Modified Lookahead. 
• LETS(i) is the smallest time stamp of TSO mes-

sages in federate i’s TSO queue. 
 
The following algorithm is the GALT algorithm. 
GALT Algorithm For any federate i, its GALT is de-

termined by other federates’ statures. GALT(i) is computed 
as 

 
.)},(min{)( jijSiGALT !=  

 
The algorithm is simple and efficient, and it does not 

result in deadlock. 
Theorem 3 For the GALT algorithm, if a federate 

with minimal stature is in time advancing state and its 
Modified Lookahead is greater than zero, the federate’s 
advancing request must be granted. 

Proof. Suppose that federate a has minimal stature, 
thus S(a) is minimal. From the GALT algorithm, we know 
that GALT(a)=min{S(i)}≥S(a), i≠a. 

If a is in TAR/TARA state, we know that GALT(a) 
≥T(a)+L(a)>T(a). Federate a’s request can be granted. 

IF a is in NMR/NMRA, we get that GALT(a) ≥ 
min{T(a),LETS(a)}+L(a) > min{T(a),LETS(a)}. According 
to IEEE 1516, the RTI can grant federate a to min{T(a), 
LETS(a)}. 

If a is in FQR, the request can always be granted. □ 
Theorem 4 If each federate’s Modified Lookahead is 

greater than zero, the GALT algorithm won’t result in 
deadlock. 

Proof. Suppose that the GALT algorithm result in a 
deadlock. Then all federates must be in time advancing 
state. For all federates, the set Φ can be defined as {S(1), 
S(2), S(3), …, S(n)}. In the finite set Φ, there must exist a 
minimal number noted as S(a). By theorem 3, we know 
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that federate a’s request must be granted. This conflicts 
with the assumption of deadlock. □ 

4 APPLYING TO RTI1.3-NG 

In this section, we apply the GALT algorithm to RTI1.3-
NG. The RTI is composed of a Central RTI Component 
(CRC) and multiple Local RTI Components (LRCs). Here 
is a possible procedure when a federate calls 
TAR/TARA/NMR/NMRA/FQR to advance simulation. 
For simplicity, we do not consider other services such as 
the enableTimeRegulation, disableTimeRegulation, modi-
fyLookahead, and even resignFederationExecution serv-
ices. These services may change a federate’s stature, and 
have effects on the advancement of the federation. 

 
1. Each LRC contains an array to save all federates’ 

statures, which are initialized to infinity. 
2. When federate i calls TAR/TARA/NMR/NMRA/ 

FQR to advance logical time, do following steps. 
Let’s note LRCi as federate i’s LRC. 
(a) LRCi computes i’s stature by definition 3. If 

the new value is different from (larger or 
smaller than) i’s old stature, LRCi saves the 
value in its array and sends it to all other 
LRCs. 

(b) LRCi computes i’s GALT by our GALT algo-
rithm. The GALT can be easily computed be-
cause LRCi can obtain all federates’ stature 
from its array. 

(c) If i’s request can be granted, LRCi calls the 
timeAdvanceGrant service to notify federate 
i. 

3. When a LRC receives a federate’s new stature, the 
LRC saves the value in its array. If the LRC’s 
federate is in time advancing state, do the same 
things as step 2. 

 
From the procedure, we know that our GALT algo-

rithm has following characteristics, which show that the 
algorithm is highly efficient. 

 
• A LRC can compute its federate’s GALT imme-

diately without communicating with other LRCs. 
In fact, a LRC can determine if its federate is 
granted to advance only according to its local in-
formation, i.e. the array for saving statures. There-
fore, all LRCs can compute GALTs simultane-
ously and the lock mechanism for consistency is 
not necessary although a federate’s stature may 
not be consistent in all LRCs. 

• A TSO message has nothing to do with the proce-
dure of GALT computing above. From definition 
3, we know that a federate’s stature may decrease 
when it is in NMR/NMRA and receives a smaller 
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TSO message. But the federate’s LRC needn’t no-
tify the new value to other LRCs. This is guaran-
teed by theorem 8. An example for decreasing 
stature is given in Liu et al. (2006b), and Figure 3 
in this paper is another one. 

• The algorithm is not recursive. This is very impor-
tant because an RTI needn’t detect, resolve, or 
avoid deadlock resulted from recursion. 

5 CORRECTNESS 

The conservative mechanism in time management requires 
that a federate shouldn’t receive an outdated TSO message, 
i.e., it must follow the local causality constraint rule (Fuji-
moto 2000). For an RTI developer, a good GALT algo-
rithm must adhere to this rule. Now the question is: Will 
our GALT algorithm result in an outdated TSO message 
during the federation execution? Theorem 12 declares the 
correctness of the algorithm. 

Theorem 5 A federate’s logical time that the RTI 
would grant mustn’t be greater than its stature. 

The theorem follows from definition 3. 
Theorem 6 For any state, a federate mustn’t send any 

TSO messages with time stamps less than its stature. 
Proof  In this paper, the states can be defined as Grant, 

TAR, TARA, NMR and NMRA. In time granted state, 
federate i mustn’t send any TSO messages with time 
stamps less than the sum of its current time and lookahead. 
By definition 3, we know that the theorem is correct when 
federate is in time granted state. In time advancing state, 
federate i mustn’t send any TSO messages with time 
stamps ≤ T(i)+L(i) by theorem 1. Here T(i) is the logical 
time that federate i requests to advance to, and L(i) is its 
Modified Lookahead. By definition 3, we know that 
S(i)≤T(i)+L(i). Thus, a federate cannot send any TSO mes-
sages less than its stature. □ 

We reemphasize that a federate in NMR/NMRA ad-
vancing state cannot send any messages with time stamps 
less than its request advancing logical time plus its Modi-
fied Lookahead according to the HLA time management. 
But this does not mean that it will not send such messages 
forever. An example of decreasing stature is given in Liu et 
al. (2006b). The concept of stature defined in this paper is 
different from that of output time defined in the book by 
authors Kuhl, Weatherly, and Dahmann (1999). Because 
there is no recursion in the definition of stature, GALT can 
be computed easily and efficiently. 

The following corollary is attained from theorem 6. 
Corollary 1 For any state, a federate mustn’t send 

any TSO messages with time stamps less than the minimal 
stature in the federation. 

Theorem 7 If the federate with minimal stature is in 
time advancing state, the stature after the grant by the RTI 
mustn’t be less than the stature before the grant. 
9
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Proof Suppose that federate i is in time advancing 

state, the requested advancing logical time is represented 
by the variable requestTime, the current actual lookahead 
is represented by LT1, the logical time after the grant by 
the RTI is represented by grantTime, and the correspond-
ing actual lookahead is represented by LT2. From defini-
tion 2, we know that the Modified Lookahead defined in 
the GALT algorithm is LT2 rather than LT1. For 
TAR/TARA, requestTime = grantTime, and request-
Time+LT2 = grantTime+LT2. From definition 3, request-
Time+LT2 is the stature before the grant, and grant-
Time+LT2 is the stature after the grant. Hence, the stature 
after the grant is equal to the stature before the grant. For 
NMR/NMRA, the stature before the grant is represented by 
S1, and S2 means the stature after the grant. From corollary 
1, we know that other federates mustn’t send federate i any 
TSO messages with time stamps less than S1. Therefore, 
the messages that federate i receives later don’t work on 
the computation of S1, and S1 shouldn’t be decreased by 
receiving later messages. Now we have that 
S1=min{requestTime, LETS} + LT2 = grantTime + LT2 = 
S2. □ 

Theorem 8 If a federate’s stature is not minimal, its 
stature may be decreased. But the federate’s stature 
mustn’t be decreased to be less than the minimal stature. 

Proof  When a federate is in time granted state, it can 
only successfully increase its current lookahead. Otherwise 
the modifyLookahead service will be suspended when it 
attempts to decrease its lookahead. In addition, a federate 
cannot change its lookahead when it is in time advancing 
state. Hence, a federate’s stature mustn’t be decreased 
when it is in Grant/TAR/TARA. Thus a federate’s stature 
can only be decreased when the federate receives the TSO 
messages with smaller time stamps when it is in 
NMR/NMRA. From corollary 1, we know that no federate 
can send any TSO messages with time stamps less than the 
minimal stature in the federation. From the definition of 
stature, we know that the NMR/NMRA federate’s stature 
can’t be decreased to be less than the minimal stature. □ 

Theorem 9 The federate with minimal stature mustn’t 
receive any outdated messages. 

From theorem 8, theorem 7, corollary 1 and theorem 5, 
we know that theorem 9 is correct apparently. 

Theorem 10 Any federate’s current logical time 
mustn’t be larger than any other federates’ statures. 

Proof  If the RTI grants federate i to advance to logi-
cal time T at any wall clock time, we must have T≤GALT(i). 
From the GALT algorithm, we know that GALT(i) = 
min{S(j)}, i≠j. Hence, T≤min{S(j)}. □ 

The following corollary can be directly obtained from 
theorem 10. 

Corollary 2 Any federate’s current logical time 
mustn’t be larger than the minimal stature in the federa-
tion. 
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Theorem 11 If a federate’s stature is not minimal, it 
mustn’t receive any outdated messages. 

Proof  Suppose that federate i is not a federate with 
minimal stature. From theorem 10, we know that the cur-
rent logical time of federate i mustn’t be larger than the 
minimal stature. From corollary 1, we have that federate i 
mustn’t receive any outdated messages. □ 

Theorem 12 The GALT algorithm mustn’t result in a 
federate to receive any outdated messages. 

From theorem 9 and theorem 11, we know that the 
theorem is correct. 

6 EXAMPLE ANALYSIS 

6.1 Explanation for Algorithm Proving 

Figure 2 shows the procedure that nine people climb a py-
ramidal mountain together from three directions. Here we 
use this example to explain the correctness in the previous 
section. Each person is modeled by a black (hollow) image 
and a red (solid) image. The position of a black image 
shows the stages where the person arrives at, which is 
modeled as a federate’s current logical time. In Figure 2, 
a1’s logical time is 1. The values of logical time for a2, a3, 
b1, b2, b3, c1, c2, c3 are 2, 3, 1, 3, 2, 2, 2, 1 respectively. 
Now suppose the lookahead of each person is 3, and they 
are all time regulating and time constrained by calling the 
enableTimeRegulation and enableTimeConstrained serv-
ices. This means that the farthest distance between the fast-
est person and the slowest is not more than 3 stages. It may 
be also the maximal stages for each person to stride for one 
step but everyone cannot go too far from the others. 

The red image is the stature we defined in this paper, 
and it can be thought as the farthest stage that a person can 
arrive in the following step. In Figure 2, the statures for a1, 
a2, a3, b1, b2, b3, c1, c2, c3 are 4, 5, 6, 4, 6, 5, 5, 5, 4 re-
spectively. A TSO message is modeled by what a person 
says to another for waiting. For example, If a1 says to a3 
“please wait for me in the 5th stage”, a3 will receive the 
TSO message with logical time 5. 
 

 
Figure 2: Pyramidal mountain climbing. 
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• The red image mustn’t be under its corresponding 

black image, i.e. any person shall not walk down 
at any time. This is what theorem 5 means. 

• Anyone cannot ask others to wait for him at the 
stages under the speaker’s red image. For exam-
ple, a1 shall not ask a3 to wait at the 2nd or 3rd 
stage, which is under a1’s red image. This is what 
theorem 6 means. 

• Corollary 1 means that anyone shall not ask an-
other to wait for him under the red image with 
minimal value. In Figure 2, a1, b1 and a3 have the 
minimal red images with value of 4. 

• Suppose a1 wants to arrive at the 4th stage, He 
can stride to the stage only when he is granted by 
all others. Now he is in time advancing state, and 
his stature is 4+3=7. Here the value of 4 is the 
time he requests to arrive at. When he arrives at 
the 4th stage, his stature is also 4+3=7. Here the 
value of 4 is the time he has arrived at. The pro-
cedure is complicated if a1 wants to arrive at the 
5th stage and he may receive one message with 
time stamp of 4th which is less than that he wants 
to get to. But at that moment of granting, the stat-
ure after the grant is equal to (also not less than) 
that before the grant. This is what theorem 7 says. 

• If a1 wants a3 to wait for him at the 5th stage, a3 
will receive the TSO message with logical time 5. 
Now a3’s stature is decreased to 5 in Figure 3, 
which is not 6 in Figure 2. Although a3’s stature 
is decreased to 5 from 6, but it still above a1’s 
stature. Here a1 is the federate with minimal stat-
ure. This is what theorem 8 says. Of course, this is 
suitable for the NMR and NMRA services, but not 
for TAR or TARA. 

• Theorem 9 is apparent for the cases in Figure 2 
and Figure 3. For example, a1 is one of the slow-
est, and no one else shall tell him to walk down to 
wait for the teller. 

• All red images are above (not under) any black 
images in our example, and this is what theorem 
10 means. 

• All red images are above (not under) the slowest 
a1, b1 and c3’s black images in our example, and 
this is what the corollary 2 means. 

• The a3’s stature is not minimal as shown in Fig-
ure 2, and he may receive a message with logical 
time less than his stature as shown in Figure 3. 
However, he shall not receive any messages that 
ask him to walk down for waiting, i.e. a3’s red 
image can’t be under his black image. This is 
what theorem 11 means. 

• Theorem 12 says that everyone shall not receive 
any messages that ask him to walk down. 
 
Figure 3: a3 receives a smaller TSO message and its stature 
is decreased. 

6.2 Rationale for Experiments with Thousands of 
Federates 

Now it is time for us to see why the HLA time manage-
ment in StarLink+ can be used for large-scale simulations 
with thousands of federates. Suppose that 1,000 people 
climb the pyramidal mountain from 25 directions in Figure 
2; thus, each 40 people climb the mountain from the same 
direction. In an RTI as RTI1.3-NG, each federate has its 
LRC. For a simulation with 1,000 federates, all LRCs shall 
participate in the computation of GALT in time manage-
ment. If a LRC is modeled as one’s mobile telephone, it is 
nearly impossible today for 1,000 people to walk together 
up to the mountain because everyone shall connect with 
other 999 people to know whether he can stride the next 
step. Note that the distance between the fastest and the 
slowest is 3 stages, which is the supposed lookahead of 
each person. 

However, the procedure of climbing mountain is more 
efficient if a team leader is selected in each direction. Now 
only 25 team leaders communicate with each other by their 
telephones, while anyone else have not got a telephone if 
he is not a team leader. When a person wants to advance, 
he only requests to his team leader. The team leader can 
know if the person can be granted according to the loca-
tions of his all members and all other 24 team leaders. A 
team leader knows the locations of his all members be-
cause each member shall tell the leader his position. In ad-
dition, a team leader shall communicate with all other team 
leaders only when his slowest member moves ahead. Thus, 
an interesting thing is that a team leader doesn’t communi-
cate with another team leader if the member who is not the 
slowest moves ahead. Similarly, StarLink+ is made up of 
one Central RTI Server (CRTI) and multiple Local RTI 
Servers (LRTIs). Each LRTI manages multiple federates, 
but a federate has no its LRC. A federate communicates 
with its LRTI via underlying CORBA middleware. The 
CRTI is useless for time management in StarLink+. Spe-
cially, it is highly efficient if one LRTI and its federates are 
deployed in the same node of a cluster system. In such a 
cluster system, only all LRTIs participate in the computa-
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tion of GALT in StarLink+. From the mountain-climbing 
example, we know that a LRTI in StarLink+ is approxi-
mately equal to a team leader, and a federate is approxi-
mately equal to a member. Now we know that it is really 
not strange for StarLink+ to support thousands of federates 
in our experiments. In Liu et al. (2006a), we presented the 
unique hierarchical architecture in StarLink+, which is 
definitely different from that in RTI1.3-NG and has noth-
ing to do with the concept of hierarchical federations pre-
sented in Myjak and Sharp (1999). The RTI1.3-NG soft-
ware is comprised of the RTI Executive process (RtiExec) 
and the Federation Executive process (FedExec), and a 
federate may simultaneously participate in more than one 
federation (DMSO 2000). However, these FedExec proc-
esses are independent, and they don’t communicate with 
each other. HLA is the standard about one federation, and 
the software must not be an RTI if it can interconnect with 
different federations. In fact, it is unreasonable to ask an 
RTI to support the interconnection between multiple fed-
erations, not even to compute GALTs subject to multiple 
federations. However, different federations may be con-
nected by the upper layer application, which is also a fed-
erate belonging to multiple federations and is usually 
called ‘bridge’, ‘gateway’, or something similar. 

7 CONCLUSION 

The computation of GALT is a complicated problem and it 
is very important for RTI developers to implement the 
HLA time management. After analyzing some factors 
about GALT computation such as time advance services, 
network services and underlying communication mecha-
nisms, we present a GALT algorithm without deadlock nor 
recursion. The algorithm has been successfully imple-
mented in StarLink+, which can support thousands of fed-
erates in high performance computers. Then we analyze 
the efficiency of the algorithm by applying it to RTI1.3-
NG. The algorithm’s correctness is also proven. In addi-
tion, the proving procedure is explained by an example of 
mountain climbing. The rationale about the algorithm to be 
used for thousands of federates within StarLink+ is also 
introduced. The algorithm in this paper can be practically 
applied to the implementation of time management in vari-
ous RTIs. 
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