
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

AN EFFICIENT ALGORITHM IN THE HLA TIME MANAGEMENT

Buquan Liu
Yiping Yao

Huaimin Wang

School of Computer
47 Yanwachi Street, National University of Defense Technology

Changsha, Hunan 410073, P. R. CHINA

ABSTRACT

The HLA time management is an important factor that lim-
its the scalability of distributed simulations. An efficient
algorithm of Greatest Available Logical Time (GALT) is
thus much critical for the time management in an RTI to
support large-scale simulations. The concept of GALT in
IEEE 1516 was also called Lower Bound Time Stamp
(LBTS) in HLA 1.3. The computation of GALT in the
HLA time management is different from that of LBTS in
traditional Parallel Discrete Event Simulation (PDES). In
this paper, an algorithm about GALT is presented and its
correctness is proved. Its efficiency is also explained by
applying it to RTI1.3-NG. In fact, the algorithm has been
implemented in our RTI to support thousands of federates
in our cluster systems. In addition, a real-world example is
introduced to explain the correctness of the algorithm prov-
ing, and the reason of our RTI supporting large-scale simu-
lations.

1 INTRODUCTION

The HLA time management is an important factor for lim-
iting the scales of distributed applications. The overhead
for time synchronization is much higher for large-scale
simulations. One important problem of using the HLA time
management for large-scale simulations lies in the Greatest
Available Logical Time (GALT) algorithm of RTI. GALT
is the maximal logical time that a federate may advance se-
curely, which is defined in IEEE 1516 and it is also called
Lower Bound Time Stamp (LBTS) in HLA 1.3. Though
many LBTS algorithms have been proposed in the Parallel
Discrete Event Simulation (PDES) area, a GALT algorithm
is virtually different from those LBTS algorithms in PDES.
For example, the important concepts of Local Virtual Time
(LVT) and Global Virtual Time (GVT) (Jefferson 1985) in
PDES do not appear in the HLA time management. In
HLA, a federate must schedule an event and advance its
logical time under the control of RTI, while a process usu-
581-4244-1306-0/07/$25.00 ©2007 IEEE
ally does without such an underlying infrastructure in
PDES. For the optimistic mechanism, a process may roll
back its virtual time even to its start in PDES, while a fed-
erate cannot roll back its logical time in HLA. A federate
can only call the timeAdvanceRequest (TAR), timeAd-
vanceRequestAvailable (TARA), nextMessageRequest
(NMR), nextMessageRequestAvailable (NMRA), and
flushQueueRequest (FQR) services to advance its logical
time. However, a federate should receive the
‘RTI::LogicalTimeAlreadyPassed’ exception if it tries to
roll back its logical time according to the HLA standard.

Computing GALT is a complicated problem as stated
in Fujimoto (1998). In the next section, some factors of
GALT computation according to the IEEE 1516 standard
are discussed. A GALT algorithm shall consider the TAR,
TARA, NMR, NMRA, and FQR services. The earliest al-
gorithms about the TAR service might be those presented
in Fujimoto (1996) and Carothers et al. (1997), which were
a little different from subsequent HLA standards (HLA 1.3
and IEEE 1516). A more detailed algorithm was discussed
in a book by Kuhl, Weatherly, and Dahmann (1999). But
the book was written for HLA beginners rather than RTI
developers, and its algorithm was easily understood. The
algorithm mentioned in the book was a recursive one and
its lookahead was supposed to be unchangeable. In the
third section, an efficient GALT algorithm is brought for-
ward. In fact, our algorithm originally comes from the
book and we have made much improvement on it. Now the
algorithm can be practically used for RTI developers to
implement the HLA time management. One important
characteristic is that there is no recursion in our algorithm
any more, and consequently it does not need to consider
any deadlock caused by recursion. In addition, the looka-
head in the algorithm may be changeable during the whole
federation. In fact, the algorithm has been successfully ap-
plied to StarLink+ (Liu, Yao, and Wang 2005; Liu et al.
2006a). Nowadays, an RTI cannot efficiently support more
than 100 federates in a federation very well. Millennium
Challenge 2002 (MC02) was regarded as the largest, most
5

Liu, Yao, and Wang

complex military experiment ever conducted, and the
simulation included around 90 federates (Ceranowicz et al.
2002). However, StarLink+ is an RTI which can support
thousands of federates in our self-made supercomputers
(NUDT 2007). Thousands of federates can join to a federa-
tion within one minute in our experiments. In the fourth
section, we apply the GALT algorithm to RTI1.3-NG, and
discuss the efficiency of the algorithm. In the fifth section,
the correctness of the new algorithm is proved. Finally, we
explain the proving process of the GALT algorithm by us-
ing the example of pyramidal mountain climbing, and
briefly discuss how the algorithm in StarLink+ can be used
for simulations with thousands of federates.

2 COMPUTING FACTORS OF GALT

In this section, three important factors about GALT com-
puting are discussed, which are advancing services, net-
work messages, and underlying communication mecha-
nisms.

2.1 Advancing Services

Five time advancing services are provided according to the
IEEE 1516 standard, which are TAR, TARA, NMR,
NMRA, and FQR. Typically, the TAR and TARA services
are used in time stepped simulations and the NMR and
NMRA services are used in discrete event simulations.
They are also called conservative advancing services.
While the FQR service is used in optimistic simulations.

2.1.1 TAR/TARA

For the TAR and TARA services, only logical time and
lookahead need to be considered when counting GALT.
That is to say, it is not necessary to consider a certain Time
Stamp Order (TSO) message in one federate’s TSO queue
if the federate calls the two services to advance. However,
this is definitely different from the NMR and NMRA serv-
ices.

2.1.2 NMR/NMRA

For convenience, a new concept called LETS is introduced
in the paper which means Least Existent Time Stamp.

Definition 1 A federate's LETS is the smallest time
stamp of all TSO messages in its TSO message queue.

LETS is different from the Least Incoming Time
Stamp (LITS) that is defined in IEEE 1516. LITS is the
smallest time stamp that the joined federate could (but not
necessarily would) receive in the future in a TSO message
queue. A federate’s LITS can be set as the smaller of its
GALT and LETS. LITS shall result in the recursion of
GALT computing. The differences between both concepts
of LETS and LITS show the main differences between our
58
approach and that is currently used by the HLA specifica-
tion.

For a federate using the NMR or NMRA service to
advance to the specified logical time T, it may advance to
the smaller of T and its LITS according to HLA standard.
So the invoking federate may not be always granted to
logical time T. Therefore, besides logical time and looka-
head, network messages should be considered in a distrib-
uted simulation when counting GALT for the NMR and
NMRA services.

2.1.3 FQR

There are two ways to compute GALT for the FQR serv-
ice.

1. When a federate requests advancing to logical

time T by invoking the FQR service, the advanc-
ing request is always granted by the RTI and the
federate may arrive at the minimum of GALT,
LETS and T, which is just the smaller of LITS and
T. The logical time which the federate arrives at
may be less than T. Thus when computing GALT,
the FQR service can use the same algorithm as the
NMR and NMRA services.

2. The FQR service can be regarded as an atomic
operation because the FQR service is always
granted in any case. As both states before and af-
ter the FQR service are granted, only logical time
and lookahead should be considered. We adopt
the second way in this paper. In addition, The
Grant state is that when a federate’s time advanc-
ing request is granted. A federate’s initial state
can also be thought as Grant. Consequently, only
five states should be taken into account, which are
Grant, TAR, TARA, NMR and NMRA.

2.2 Network Messages

An RTI should consider two types of messages on count-
ing GALT, i.e. the messages that are already stored in each
federate’s TSO queue, and the transient messages that are
being transferred in network and haven’t arrived in the
RTI. Of the two kinds of messages, transient messages are
indeterminate for GALT computation because the RTI
hasn’t received them. In fact, this problem can be solved
by using the pipeline mechanism, which means messages
sent first from a federate should arrive at the RTI first, i.e.
the FIFO (First In First Out) rule.

In Figure 1, after a federate has sent the messages m1,
m2 and m3, it invokes the TAR, TARA, NMR, NMRA or
FQR service to request advancing logical time. It then
sends messages m4 and m5 to the RTI. According to the
IEEE 1516 standard, only the messages before invoking
time advancing services (i.e. m1, m2 and m3) should be
6

Liu, Yao, and Wang

considered on counting GALT, and the latter messages (i.e.
m4 and m5) should not be considered. The correctness is
confirmed by the following theorem, which is guaranteed
by the IEEE 1516 standard.

Theorem 1 A federate mustn’t send any TSO mes-
sages less than T+L in time advancing state. T means the
specified logical time that the federate requests to advance
to, and L means the actual lookahead when the RTI grants
the federate’s request.

The concept of time advancing state is defined in
IEEE 1516, which means the interval between a federate’s
request to advance its logical time by invoking the TAR,
TARA, NMR, NMRA or FQR service and the correspond-
ing grant.

Though a federate requests the NMR, NMRA or FQR
service to advance to logical time T, the RTI may grant it
to the logical time which is less than T. So the federate
may send the messages less than T+L after the foregoing
request is granted. But the federate absolutely follows
theorem 1 in time advancing state.

Figure 1: The rule of FIFO.

2.3 Underlying Communication

Another factor is the reliability of message transferring in
the network. Underlying communication can be divided
into reliable and best-effort models. The former can be im-
plemented by TCP and the latter can be implemented by
UDP. Of course, a best-effort message may also be trans-
mitted as a reliable one by TCP.

For the reliable model, it is certain that the messages
and time advancing requests must be received by the RTI.
But it is not the case at all for the best-effort model imple-
mented by UDP, and this makes the computation of GALT
complicated. For the best-effort model, both RTI and fed-
erates are difficult to know whether a message has been re-
ceived by the other side. In the PDES area, a paper by
Riley, Fujimoto, and Ammar (2000) showed that the capa-
bilities and reliability of various network models could be
exploited in the design of a LBTS algorithm. Because the
time management in PDES is different from that in HLA,
the LBTS algorithms in PDES shall not be directly mi-
grated to the RTI.

For simple discussion, the FIFO rule and the TCP
communication model are used in the remainder of the pa-

R TAR/TARA/NMR/NMRA/FQR

m1 m2 m3 R m4 m5

Federate
RTI
58
per. In addition, we also assume that all federates call the
enableTimeRegulation and enableTimeConstrained serv-
ices to be time regulating and time constrained.

3 ALGORITHM

Since Lamport presented the concept of a logical clock
(Lamport 1978), the question about deadlock based on
logical time has been a focus in distributed systems. The
HLA time management is also faced the problem inevita-
bly. Two deadlock cases exist in the HLA time manage-
ment. One is caused by zero lookahead (Fujimoto 1997),
which has a close connection with the application itself.
Lookahead is introduced to resolve this deadlock essen-
tially. The other deadlock is caused by a GALT algorithm.

We start from the following formula, which is suitable
for the TAR and TARA services if a federate’s lookahead
is not modified during the federation.

 ,)},()(min{)(jijLjTiGALT !+= (1)

where:

• When federate j is in time granted state, T(j)

means federate j’s current logical time; when fed-
erate j is in time advancing state, T(j) means the
logical time that federate j requests advancing to.

• L(j) means federate j’s lookahead.

Next, we modify formula (1) twice, and the GALT al-

gorithm comes out eventually. The first modifications aims
at the changeable lookahead, and the second makes it suit-
able for the NMR and NMRA services.

3.1 Modifying Lookahead

Now a federate is permitted to modify its lookahead during
the whole federation. The following theorem is still tenable.
 Theorem 2 For TAR and TARA, the sum of T(j) and
L(j) in formula (1) mustn’t be decreased.

Proof According to the IEEE 1516 standard, T(j) can
not be decreased. Federate j shall receive the
‘RTI::LogicalTimeAlreadyPassed’ exception if it tries to
roll back its logical time. Now we know that only L(j) can
be decreased. But the modifyLookahead service in the
IEEE 1516 standard declares that “If the requested value is
less than the joined federate’s actual lookahead, the change
shall take effect gradually as the joined federate advances
its logical time and the actual lookahead is initially un-
changed. Specifically, the joined federate’s actual looka-
head shall decrease by T units each time logical time ad-
vances T units until the requested lookahead is reached.” A
good algorithm of modifying lookahead can be found in
Carothers et al. (1997). Therefore, T(j)+L(j) mustn’t be de-
creased. □
7

Liu, Yao, and Wang

Here, we emphasize two issues.
• The modifyLookahead service can only be suc-

cessfully called when the calling federate is in
time granted state in accordance with IEEE 1516.
If the requested value is greater than or equal to
the joined federate’s actual lookahead, the modifi-
cation shall take effect immediately and the re-
quested lookahead shall become the actual looka-
head. If the requested value is less than the joined
federate’s actual lookahead, the service shall be
suspended by the RTI and the change shall take
effect later gradually as the joined federate ad-
vances its logical time.

• The RTI::InTimeAdvancingState exception will
occur when a federate wants to modify its looka-
head in time advancing state.

Supposing that a federate is in time advancing state,

we mark L1 as its current lookahead and L2 as the actual
lookahead the federate would have if it is granted. If a fed-
erate wants to decrease its lookahead, we have L1≥L2.
Hence, T(j)+L1≥T(j)+L2. From theorem 2, we know that
L(j) in formula (1) should be L2 rather than L1.

Now formula (1) may be modified into formula (2) as
follows.

 ,)},()(min{)(jijLjTiGALT !+= (2)

where:

• When federate j is in time granted state, T(j)

means federate j’s current logical time and L(j)
means federate j’s actual lookahead.

• When federate j is in time advancing state, T(j)
means the logical time that federate j requests ad-
vancing to, and L(j) means the lookahead that fed-
erate j will have once it is granted.

A federate’s lookahead shall be considered in order to

compute GALT. But the lookahead to be considered is de-
pendent on a federate’s state. For convenience, anther defi-
nition is introduced.

Definition 2 Modified Lookahead (ML). When a fed-
erate is in time granted state, Modified Lookahead is de-
fined as its actual lookahead. When a federate is in time
advancing state, Modified Lookahead is defined as the loo-
kahead the federate will have once it is granted to ad-
vance.

From the definition, we know that a federate’s Modi-
fied Lookahead is equal to its actual lookahead if it doesn’t
call the modifyLookahead service. In addition, the looka-
head in formula (2) is just a federate’s Modified Looka-
head.
58
3.2 GALT Algorithm

For NMR/NMRA, we further modify formula (2) to obtain
our GALT algorithm. For any federate i, we note S(i) as
federate i’s stature. A federate’s stature is different from
the output time defined in the book by Kuhl, Weatherly,
and Dahmann (1999). It is only a metaphor for numeric
comparison.

Definition 3 A federate i’s stature is defined as

!
"
#

+

+
=

./);()}(),(min{

//);()(
)(

stateNMRANMRiniifiLiLETSiT

stateTARATARGrantiniifiLiT
is

Where:

• S(i) is federate i’s stature.
• When federate i is in time granted state, T(i) is

federate i’s current logical time. When federate i
is in time advancing state, T(i) is the logical time
that federate i requests to advance to.

• L(i) is federate i’s Modified Lookahead.
• LETS(i) is the smallest time stamp of TSO mes-

sages in federate i’s TSO queue.

The following algorithm is the GALT algorithm.
GALT Algorithm For any federate i, its GALT is de-

termined by other federates’ statures. GALT(i) is computed
as

.)},(min{)(jijSiGALT !=

The algorithm is simple and efficient, and it does not

result in deadlock.
Theorem 3 For the GALT algorithm, if a federate

with minimal stature is in time advancing state and its
Modified Lookahead is greater than zero, the federate’s
advancing request must be granted.

Proof. Suppose that federate a has minimal stature,
thus S(a) is minimal. From the GALT algorithm, we know
that GALT(a)=min{S(i)}≥S(a), i≠a.

If a is in TAR/TARA state, we know that GALT(a)
≥T(a)+L(a)>T(a). Federate a’s request can be granted.

IF a is in NMR/NMRA, we get that GALT(a) ≥
min{T(a),LETS(a)}+L(a) > min{T(a),LETS(a)}. According
to IEEE 1516, the RTI can grant federate a to min{T(a),
LETS(a)}.

If a is in FQR, the request can always be granted. □
Theorem 4 If each federate’s Modified Lookahead is

greater than zero, the GALT algorithm won’t result in
deadlock.

Proof. Suppose that the GALT algorithm result in a
deadlock. Then all federates must be in time advancing
state. For all federates, the set Φ can be defined as {S(1),
S(2), S(3), …, S(n)}. In the finite set Φ, there must exist a
minimal number noted as S(a). By theorem 3, we know
8

Liu, Yao, and Wang

that federate a’s request must be granted. This conflicts
with the assumption of deadlock. □

4 APPLYING TO RTI1.3-NG

In this section, we apply the GALT algorithm to RTI1.3-
NG. The RTI is composed of a Central RTI Component
(CRC) and multiple Local RTI Components (LRCs). Here
is a possible procedure when a federate calls
TAR/TARA/NMR/NMRA/FQR to advance simulation.
For simplicity, we do not consider other services such as
the enableTimeRegulation, disableTimeRegulation, modi-
fyLookahead, and even resignFederationExecution serv-
ices. These services may change a federate’s stature, and
have effects on the advancement of the federation.

1. Each LRC contains an array to save all federates’

statures, which are initialized to infinity.
2. When federate i calls TAR/TARA/NMR/NMRA/

FQR to advance logical time, do following steps.
Let’s note LRCi as federate i’s LRC.
(a) LRCi computes i’s stature by definition 3. If

the new value is different from (larger or
smaller than) i’s old stature, LRCi saves the
value in its array and sends it to all other
LRCs.

(b) LRCi computes i’s GALT by our GALT algo-
rithm. The GALT can be easily computed be-
cause LRCi can obtain all federates’ stature
from its array.

(c) If i’s request can be granted, LRCi calls the
timeAdvanceGrant service to notify federate
i.

3. When a LRC receives a federate’s new stature, the
LRC saves the value in its array. If the LRC’s
federate is in time advancing state, do the same
things as step 2.

From the procedure, we know that our GALT algo-

rithm has following characteristics, which show that the
algorithm is highly efficient.

• A LRC can compute its federate’s GALT imme-

diately without communicating with other LRCs.
In fact, a LRC can determine if its federate is
granted to advance only according to its local in-
formation, i.e. the array for saving statures. There-
fore, all LRCs can compute GALTs simultane-
ously and the lock mechanism for consistency is
not necessary although a federate’s stature may
not be consistent in all LRCs.

• A TSO message has nothing to do with the proce-
dure of GALT computing above. From definition
3, we know that a federate’s stature may decrease
when it is in NMR/NMRA and receives a smaller
58
TSO message. But the federate’s LRC needn’t no-
tify the new value to other LRCs. This is guaran-
teed by theorem 8. An example for decreasing
stature is given in Liu et al. (2006b), and Figure 3
in this paper is another one.

• The algorithm is not recursive. This is very impor-
tant because an RTI needn’t detect, resolve, or
avoid deadlock resulted from recursion.

5 CORRECTNESS

The conservative mechanism in time management requires
that a federate shouldn’t receive an outdated TSO message,
i.e., it must follow the local causality constraint rule (Fuji-
moto 2000). For an RTI developer, a good GALT algo-
rithm must adhere to this rule. Now the question is: Will
our GALT algorithm result in an outdated TSO message
during the federation execution? Theorem 12 declares the
correctness of the algorithm.

Theorem 5 A federate’s logical time that the RTI
would grant mustn’t be greater than its stature.

The theorem follows from definition 3.
Theorem 6 For any state, a federate mustn’t send any

TSO messages with time stamps less than its stature.
Proof In this paper, the states can be defined as Grant,

TAR, TARA, NMR and NMRA. In time granted state,
federate i mustn’t send any TSO messages with time
stamps less than the sum of its current time and lookahead.
By definition 3, we know that the theorem is correct when
federate is in time granted state. In time advancing state,
federate i mustn’t send any TSO messages with time
stamps ≤ T(i)+L(i) by theorem 1. Here T(i) is the logical
time that federate i requests to advance to, and L(i) is its
Modified Lookahead. By definition 3, we know that
S(i)≤T(i)+L(i). Thus, a federate cannot send any TSO mes-
sages less than its stature. □

We reemphasize that a federate in NMR/NMRA ad-
vancing state cannot send any messages with time stamps
less than its request advancing logical time plus its Modi-
fied Lookahead according to the HLA time management.
But this does not mean that it will not send such messages
forever. An example of decreasing stature is given in Liu et
al. (2006b). The concept of stature defined in this paper is
different from that of output time defined in the book by
authors Kuhl, Weatherly, and Dahmann (1999). Because
there is no recursion in the definition of stature, GALT can
be computed easily and efficiently.

The following corollary is attained from theorem 6.
Corollary 1 For any state, a federate mustn’t send

any TSO messages with time stamps less than the minimal
stature in the federation.

Theorem 7 If the federate with minimal stature is in
time advancing state, the stature after the grant by the RTI
mustn’t be less than the stature before the grant.
9

Liu, Yao, and Wang

Proof Suppose that federate i is in time advancing

state, the requested advancing logical time is represented
by the variable requestTime, the current actual lookahead
is represented by LT1, the logical time after the grant by
the RTI is represented by grantTime, and the correspond-
ing actual lookahead is represented by LT2. From defini-
tion 2, we know that the Modified Lookahead defined in
the GALT algorithm is LT2 rather than LT1. For
TAR/TARA, requestTime = grantTime, and request-
Time+LT2 = grantTime+LT2. From definition 3, request-
Time+LT2 is the stature before the grant, and grant-
Time+LT2 is the stature after the grant. Hence, the stature
after the grant is equal to the stature before the grant. For
NMR/NMRA, the stature before the grant is represented by
S1, and S2 means the stature after the grant. From corollary
1, we know that other federates mustn’t send federate i any
TSO messages with time stamps less than S1. Therefore,
the messages that federate i receives later don’t work on
the computation of S1, and S1 shouldn’t be decreased by
receiving later messages. Now we have that
S1=min{requestTime, LETS} + LT2 = grantTime + LT2 =
S2. □

Theorem 8 If a federate’s stature is not minimal, its
stature may be decreased. But the federate’s stature
mustn’t be decreased to be less than the minimal stature.

Proof When a federate is in time granted state, it can
only successfully increase its current lookahead. Otherwise
the modifyLookahead service will be suspended when it
attempts to decrease its lookahead. In addition, a federate
cannot change its lookahead when it is in time advancing
state. Hence, a federate’s stature mustn’t be decreased
when it is in Grant/TAR/TARA. Thus a federate’s stature
can only be decreased when the federate receives the TSO
messages with smaller time stamps when it is in
NMR/NMRA. From corollary 1, we know that no federate
can send any TSO messages with time stamps less than the
minimal stature in the federation. From the definition of
stature, we know that the NMR/NMRA federate’s stature
can’t be decreased to be less than the minimal stature. □

Theorem 9 The federate with minimal stature mustn’t
receive any outdated messages.

From theorem 8, theorem 7, corollary 1 and theorem 5,
we know that theorem 9 is correct apparently.

Theorem 10 Any federate’s current logical time
mustn’t be larger than any other federates’ statures.

Proof If the RTI grants federate i to advance to logi-
cal time T at any wall clock time, we must have T≤GALT(i).
From the GALT algorithm, we know that GALT(i) =
min{S(j)}, i≠j. Hence, T≤min{S(j)}. □

The following corollary can be directly obtained from
theorem 10.

Corollary 2 Any federate’s current logical time
mustn’t be larger than the minimal stature in the federa-
tion.
59
Theorem 11 If a federate’s stature is not minimal, it
mustn’t receive any outdated messages.

Proof Suppose that federate i is not a federate with
minimal stature. From theorem 10, we know that the cur-
rent logical time of federate i mustn’t be larger than the
minimal stature. From corollary 1, we have that federate i
mustn’t receive any outdated messages. □

Theorem 12 The GALT algorithm mustn’t result in a
federate to receive any outdated messages.

From theorem 9 and theorem 11, we know that the
theorem is correct.

6 EXAMPLE ANALYSIS

6.1 Explanation for Algorithm Proving

Figure 2 shows the procedure that nine people climb a py-
ramidal mountain together from three directions. Here we
use this example to explain the correctness in the previous
section. Each person is modeled by a black (hollow) image
and a red (solid) image. The position of a black image
shows the stages where the person arrives at, which is
modeled as a federate’s current logical time. In Figure 2,
a1’s logical time is 1. The values of logical time for a2, a3,
b1, b2, b3, c1, c2, c3 are 2, 3, 1, 3, 2, 2, 2, 1 respectively.
Now suppose the lookahead of each person is 3, and they
are all time regulating and time constrained by calling the
enableTimeRegulation and enableTimeConstrained serv-
ices. This means that the farthest distance between the fast-
est person and the slowest is not more than 3 stages. It may
be also the maximal stages for each person to stride for one
step but everyone cannot go too far from the others.

The red image is the stature we defined in this paper,
and it can be thought as the farthest stage that a person can
arrive in the following step. In Figure 2, the statures for a1,
a2, a3, b1, b2, b3, c1, c2, c3 are 4, 5, 6, 4, 6, 5, 5, 5, 4 re-
spectively. A TSO message is modeled by what a person
says to another for waiting. For example, If a1 says to a3
“please wait for me in the 5th stage”, a3 will receive the
TSO message with logical time 5.

Figure 2: Pyramidal mountain climbing.

0

Liu, Yao, and Wang

• The red image mustn’t be under its corresponding

black image, i.e. any person shall not walk down
at any time. This is what theorem 5 means.

• Anyone cannot ask others to wait for him at the
stages under the speaker’s red image. For exam-
ple, a1 shall not ask a3 to wait at the 2nd or 3rd
stage, which is under a1’s red image. This is what
theorem 6 means.

• Corollary 1 means that anyone shall not ask an-
other to wait for him under the red image with
minimal value. In Figure 2, a1, b1 and a3 have the
minimal red images with value of 4.

• Suppose a1 wants to arrive at the 4th stage, He
can stride to the stage only when he is granted by
all others. Now he is in time advancing state, and
his stature is 4+3=7. Here the value of 4 is the
time he requests to arrive at. When he arrives at
the 4th stage, his stature is also 4+3=7. Here the
value of 4 is the time he has arrived at. The pro-
cedure is complicated if a1 wants to arrive at the
5th stage and he may receive one message with
time stamp of 4th which is less than that he wants
to get to. But at that moment of granting, the stat-
ure after the grant is equal to (also not less than)
that before the grant. This is what theorem 7 says.

• If a1 wants a3 to wait for him at the 5th stage, a3
will receive the TSO message with logical time 5.
Now a3’s stature is decreased to 5 in Figure 3,
which is not 6 in Figure 2. Although a3’s stature
is decreased to 5 from 6, but it still above a1’s
stature. Here a1 is the federate with minimal stat-
ure. This is what theorem 8 says. Of course, this is
suitable for the NMR and NMRA services, but not
for TAR or TARA.

• Theorem 9 is apparent for the cases in Figure 2
and Figure 3. For example, a1 is one of the slow-
est, and no one else shall tell him to walk down to
wait for the teller.

• All red images are above (not under) any black
images in our example, and this is what theorem
10 means.

• All red images are above (not under) the slowest
a1, b1 and c3’s black images in our example, and
this is what the corollary 2 means.

• The a3’s stature is not minimal as shown in Fig-
ure 2, and he may receive a message with logical
time less than his stature as shown in Figure 3.
However, he shall not receive any messages that
ask him to walk down for waiting, i.e. a3’s red
image can’t be under his black image. This is
what theorem 11 means.

• Theorem 12 says that everyone shall not receive
any messages that ask him to walk down.

Figure 3: a3 receives a smaller TSO message and its stature
is decreased.

6.2 Rationale for Experiments with Thousands of
Federates

Now it is time for us to see why the HLA time manage-
ment in StarLink+ can be used for large-scale simulations
with thousands of federates. Suppose that 1,000 people
climb the pyramidal mountain from 25 directions in Figure
2; thus, each 40 people climb the mountain from the same
direction. In an RTI as RTI1.3-NG, each federate has its
LRC. For a simulation with 1,000 federates, all LRCs shall
participate in the computation of GALT in time manage-
ment. If a LRC is modeled as one’s mobile telephone, it is
nearly impossible today for 1,000 people to walk together
up to the mountain because everyone shall connect with
other 999 people to know whether he can stride the next
step. Note that the distance between the fastest and the
slowest is 3 stages, which is the supposed lookahead of
each person.

However, the procedure of climbing mountain is more
efficient if a team leader is selected in each direction. Now
only 25 team leaders communicate with each other by their
telephones, while anyone else have not got a telephone if
he is not a team leader. When a person wants to advance,
he only requests to his team leader. The team leader can
know if the person can be granted according to the loca-
tions of his all members and all other 24 team leaders. A
team leader knows the locations of his all members be-
cause each member shall tell the leader his position. In ad-
dition, a team leader shall communicate with all other team
leaders only when his slowest member moves ahead. Thus,
an interesting thing is that a team leader doesn’t communi-
cate with another team leader if the member who is not the
slowest moves ahead. Similarly, StarLink+ is made up of
one Central RTI Server (CRTI) and multiple Local RTI
Servers (LRTIs). Each LRTI manages multiple federates,
but a federate has no its LRC. A federate communicates
with its LRTI via underlying CORBA middleware. The
CRTI is useless for time management in StarLink+. Spe-
cially, it is highly efficient if one LRTI and its federates are
deployed in the same node of a cluster system. In such a
cluster system, only all LRTIs participate in the computa-
591

Liu, Yao, and Wang

tion of GALT in StarLink+. From the mountain-climbing
example, we know that a LRTI in StarLink+ is approxi-
mately equal to a team leader, and a federate is approxi-
mately equal to a member. Now we know that it is really
not strange for StarLink+ to support thousands of federates
in our experiments. In Liu et al. (2006a), we presented the
unique hierarchical architecture in StarLink+, which is
definitely different from that in RTI1.3-NG and has noth-
ing to do with the concept of hierarchical federations pre-
sented in Myjak and Sharp (1999). The RTI1.3-NG soft-
ware is comprised of the RTI Executive process (RtiExec)
and the Federation Executive process (FedExec), and a
federate may simultaneously participate in more than one
federation (DMSO 2000). However, these FedExec proc-
esses are independent, and they don’t communicate with
each other. HLA is the standard about one federation, and
the software must not be an RTI if it can interconnect with
different federations. In fact, it is unreasonable to ask an
RTI to support the interconnection between multiple fed-
erations, not even to compute GALTs subject to multiple
federations. However, different federations may be con-
nected by the upper layer application, which is also a fed-
erate belonging to multiple federations and is usually
called ‘bridge’, ‘gateway’, or something similar.

7 CONCLUSION

The computation of GALT is a complicated problem and it
is very important for RTI developers to implement the
HLA time management. After analyzing some factors
about GALT computation such as time advance services,
network services and underlying communication mecha-
nisms, we present a GALT algorithm without deadlock nor
recursion. The algorithm has been successfully imple-
mented in StarLink+, which can support thousands of fed-
erates in high performance computers. Then we analyze
the efficiency of the algorithm by applying it to RTI1.3-
NG. The algorithm’s correctness is also proven. In addi-
tion, the proving procedure is explained by an example of
mountain climbing. The rationale about the algorithm to be
used for thousands of federates within StarLink+ is also
introduced. The algorithm in this paper can be practically
applied to the implementation of time management in vari-
ous RTIs.

ACKNOWLEDGMENTS

We thank the National High Technology Research and De-
velopment Program of China (863 program) under the
grant of No. 2006AA01Z330 for its support. We also ap-
preciate the National Natural Science Foundation of China
under the grant of No. 90412011.
5

REFERENCES

Carothers, C. D., R. M. Weatherly, R. M. Fujimoto, and A.
L. Wilson. 1997. Design and implementation of HLA
time management in the RTI version F.0. In Proceed-
ings of the 1997 Winter Simulation Conference, ed. S.
Andradottir, D. H. Withers, and B. L. Nelson, 373-380.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers. Available online via
<http://www.informs-
sim.org/wsc97papers/0373.PDF> [accessed
March 20, 2007].

Ceranowicz, A. Z., M. Torpey, W. Hellfinstine, J. Evans,
and J. Hines. 2002. Reflections on building the joint
experimental federation, Proceedings of the 2002
I/ITSEC Conference, Orlando, Florida.

DMSO. 2000. RTI 1.3-Next Generation Programmer's
Guide Version 6. Available online via
<http://hla.dmso.mil> [accessed April 8,
2002].

Fujimoto R. M. 1996. HLA time management: design
document. Available online via
<http://www.cc.gatech.edu/computing/
pads/papers.html> [accessed March 20, 2007].

Fujimoto, R. M. 1997. Zero Lookahead and repeatability in
the high level architecture. 1997 Spring Simulation
Interoperability Workshop. Available online via
<http://www.cc.gatech.edu/computing/
pads/papers.html> [accessed March 20, 2007].

Fujimoto, R. M. 1998. Time Management in the High
Level Architecture. Simulation 71(6): 388-400. Avail-
able online via
<http://www.cc.gatech.edu/computing/
pads/papers.html> [accessed March 20, 2007].

Fujimoto, R. M. 2000. Parallel and distributed simulation
systems. New York: John Wiley & Sons.

Jefferson, D. R. 1985. Virtual time. ACM Transactions On
Programming Languages and Systems 7(3): 404-425.

Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating
computer simulation systems: an introduction to the
high level architecture. Prentice Hall PTR, Upper
Saddle River, NJ.

Lamport, L. 1978. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM
21(7): 558-565.

Liu, B. Q., H. M. Wang, and Y. P. Yao. 2005. Data Con-
sistency in a large-scale runtime infrastructure. In Pro-
ceedings of the 2005 Winter Simulation Conference,
ed. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J.
A. Joines, 1787-1794. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers. Available
online via <http://www.informs-
sim.org/wsc05papers/221.pdf> [accessed
March 20, 2007].
92

Liu, Yao, and Wang

Liu, B. Q., Y. P. Yao, J. Tao, and H. M. Wang. 2006a. De-
velopment of a runtime infrastructure for large-scale
distributed simulations. In Proceedings of the 2006
Winter Simulation Conference, ed. L. F. Perrone, F. P.
Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R.
M. Fujimoto, 1036-1043. Piscataway, New Jersey: In-
stitute of Electrical and Electronics Engineers. Avail-
able online via <http://www.informs-
sim.org/wsc06papers/131.pdf> [accessed
March 20, 2007].

Liu, B. Q., Y. P. Yao, J. Tao, and H. M. Wang. 2006b. Im-
plementation of time management in a runtime infra-
structure. In Proceedings of the 2006 Winter Simula-
tion Conference, ed. L. F. Perrone, F. P. Wieland, J.
Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto,
1044-1052. Piscataway, New Jersey: Institute of Elec-
trical and Electronics Engineers. Available online via
<http://www.informs-
sim.org/wsc06papers/132.pdf> [accessed
March 20, 2007].

Myjak, M. D., and S. T. Sharp. 1999. Implementations of
hierarchical federations. In Proceedings of 1999 Fall
Simulation Interoperability Workshop, 99F-SIW-180.

NUDT. 2007. Available online via
<http://www.nudt.edu.cn/newweb/resea
rch/achievement.htm> [accessed March 20,
2007].

Riley, G. F., R. Fujimoto, and M. H. Ammar. 2000. Net-
work aware time management and event distribution.
The Workshop on Parallel and Distributed Simula-
tions. Available online via
<http://www.cc.gatech.edu/computing/
pads/papers.html> [accessed March 20, 2007].

AUTHOR BIOGRAPHIES

BUQUAN LIU received his B.S. degree in computer sci-
ence from Nanjing University in 1991. His M.S. and Ph.D.
degrees were received in School of Computer from Na-
tional University of Defense Technology (NUDT) in 1998
and 2004 respectively. He has achieved 2 Provincial Sci-
ence and Technology Advance Awards and 1 patent of the
design of hierarchical RTI servers based on interoperabil-
ity protocol. Now he is an associate professor in the school
and his research interests include distributed simulation
and high performance computing. His e-mail address is
<bqliu@nudt.edu.cn>.

YIPING YAO is a professor in the School of Computer at
National University of Defense Technology. In this school,
he received his M.S. and Ph.D. degrees in 1987 and 2004
respectively. he received his B.S. degree in computer sci-
ence from Huazhong University of Science and Technol-
ogy in 1985. At present, he has achieved 2 second-class
National Science and Technology Advance Awards and 8
593
Provincial Science and Technology Advance Awards.
More than 40 papers and 3 monographs were also pub-
lished. His research areas are distributed simulation and
virtual reality. His e-mail address is
<ypyao@nudt.edu.cn>.

HUAIMIN WANG is a professor in the School of Com-
puter at the National University of Defense Technology.
He received his Ph.D. degree in computer science in 1992.
He is a member of the Editorial Board of Chinese Journal
of Computers and Journal of Computer Science and Tech-
nology. Dr. Wang has served as a member of the Expert
Committee for Computer Software and Hardware of the
National High Technology Research and Development
Program of China (863 Program). Since 1990, he has
chaired more than 10 research projects under the grants of
the National Natural Science Foundation of China, 863
Program, and the National Basic Research Program of
China (973 Program), etc. In 2003, he was awarded one
2nd class National Science and Technology Advance
Award. Up to now, he has published more than 100 papers
and directed 20 graduate students. His research focuses on
distributed object, agent technology, grid computing and
network security. His e-mail address is
<whm_w@163.com>.

