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ABSTRACT

Planning and steering numerical experiments that involve
many simulations are difficult tasks to automate. We describe
how a simulation scheduling tool can help experimenters
submit and revoke simulation jobs on the basis of the most up
to date partial results and resource estimates. We show how
ideas such as pre- and post-conditions; interrupt handling;
rapid experiment schema creation; and sparse parameter
cross-products can be used to make a generalisable and user-
friendly scheduling toolset. We describe our prototype in the
context of typical long-running computational experiments
of a complex networks simulation problem.

1 INTRODUCTION

Although scientists tend to write up reports on experimental
studies as though the experiments were carefully planned and
were carried out in a sequential and organised manner, this is
not the way experimental science is actually done. We know
from our own experiences (Hawick, Epperson, Windsor, and
Rainey 1990, Epperson, Hawick, Windsor, and Rainey 1990)
and of others (Feynman, Leighton, and Hutchings 1997,
Medawar 1988), that both real and numerical experiments
are almost never carried out in the neat structure that best
fits the report.

In practice scientists interact very strongly with exper-
imental results as they come in and the particular sample
space investigated will be varied in direction and level of
detail, as can be guided from the partial results already ob-
tained. This “computational steering” (Smarr and Catlett
1992) is vital to obtain useful results both from the perspec-
tive to posing specific and finite experimental questions, but
also from the practicalities of their being limited resources.
Generally speaking if an investigation or experiment has a
set of input search parameters, it is neither practical nor de-
sirable to carry out a brute force search of the space spanned
61-4244-1306-0/07/$25.00 ©2007 IEEE
by a full flat cross-product of all the parameters. Some areas
of the search space are flat and will not contribute insights
to the posed questions. Not all parts of the space are worth
searching in equally fine resolution. Indeed many of the
numerical experiments that involve questions of power laws
and other scaling phenomena need to be searched using a
multi-scale or logarithmic resolution. A large part of the
experimenter’s skill is being able to manage, with finite
resources, the sparse searching of the problem parameter
search-space.

Despite the almost ubiquitous nature of computing in
all fields of science and engineering, the problem of au-
tomating experimental science is still considerable. There
are many ad hoc tools that help an experimenter and his
team, such as spreadsheets, automated data collection sys-
tems and tools to word process the report. However, the
goal of a fully integrated experimental management suite
remains elusive. One approach that might be favoured by
a traditional software vendor would be to try to produce a
monolithic software product that meets the needs of at least
some specific experimenter scenarios. Another approach,
which we favour, is to look at how existing software tools
and technologies can be better organised into a recognis-
able kit of parts that can be put together in a customisable
manner for an experiment and team scenario.

To this end, in this paper we describe some issues that
we have found important in managing large scale numerical
simulation experiments and some of the tool components
and interoperability protocols that we have used. In partic-
ular we focus on the issues of scheduling simulations that
involve large and complex multi-scale parameter spaces,
where the experimenter wants to make best use of limited
time and computational resources. An adaptive and user-
friendly simulation scheduling and management system is
necessary. In Section 2 we illustrate the issues facing a
computational scientist based on our experiences with a
long running investigation of phase transitions in a complex
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networks problem. A key issue we have identified is the
need to adapt the schedule when partial information ac-
crues. We want an experiment scheduler that incorporates
and combines the best estimates on progress so far and
allows the experimenter to change his mind – adapting
the parameter search space on the basis of the most up-to-
date information. In Section 3 we review traditional and
current approaches to scheduling and their limitations. We
present an initial scheduler developed for our problem in
Section 4 and then a prototype solution based on various
user-friendly programming concepts such as: high level
pattern matching; interrupt handling; graphical interfaces;
and integration scripting technologies in Section 5. Finally
in Section 6 we suggest some ways whereby these ideas
could be adapted to manage the scheduling of other custom
numerical simulation experiments.

2 THE PROBLEM DOMAIN

We have battled for almost three years with naive solutions
to managing experiments that are comprised of multiple
independent parameters. Most of our initial solutions have
been based on shell scripts that execute jobs with parameters
drawn from a pre-set range. This paper presents a GUI-based
solution to the composition and management of complex,
sparse, cross-products of parameters in a local or LAN-based
environment.

Our GUI prototype allows an experimenter to specify
pre- and post-conditions for elements of an experiment and
how successful experimental results are to be staged and
incorporated into a well-managed experiment. Furthermore,
the solution allows individual job elements of an experiment
to be suspended or stopped, and the bulk experiment’s
configuration to be saved and later re-started.

We use our recent study of the Ising model (Hawick and
James 2006), as the motivating experiment for this paper.
The objective of our study is to identify the so-called “critical
temperature” of the system. Briefly, each experiment in our
programme involves the Monte Carlo sampling of a large
number of configurations of an Ising system that can be
represented, in part, by the following parameters:

• temperature, T
• number of lattice sites (N as a function of di-

mension, d, and lattice size in each dimension, L)
N = Ld

• lattice perturbation percentage, p
• random number generator (RNG) seed, s

In fact, the simulation program we have developed for
this experiment can take up to 17 different command-line
parameters at once to produce different simulation outputs.
However, a typical experiment may be posed as such:
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fixed d = 5, spin states = 2, rewiring model = 1,
repetitions = 10

experiment set L = [15,16,17]
experiment set [p, [T ]] = [0.0100, [8.76,8.85,0.001]]
experiment set [p, [T ]] = [0.0200, [8.78,8.85,0.001]]
experiment set [p, [T ]] = [0.0400, [8.79,8.87,0.001]]

This experiment is interpreted as such: dimension of
the system, number of spin states, the rewiring model and
number of times to repeat the experiment are all fixed for
the experiment as a whole; for each of the L values, perform
each p×T parameter product produced by the range given.
For example, for p = 0.0100, 8.76 ≤ T ≤ 8.85 using a
delta of 0.001. Thus, the above experiment will result in
3×(91+71+81)×10 = 7290 individual experimental jobs
which must be scheduled and successfully run to complete
the experiment. It must be noted that each experiment is
assumed to have a unique RNG seed; this is crucial to achieve
statistically significant results when repeating experiments
with the same input parameters. This experiment is quite
complex, but in our experience is not atypical. The system
we describe in this paper tries to address this complexity. The
structure of a typical experiment is then shown graphically
in Figure 1.

We have discussed the task of managing the individual
data files of this magnitude elsewhere for the purposes of
quality control and also analysis (James and Hawick 2005).
In this paper we focus on the ability to specify and steer
simulation experiments in real-time.
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Figure 1: Structure of an experiment. Each experiment
consists of a set of job elements created by the (potentially
sparse) cross-product of input parameters.
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Let us consider, for example an average high-end work-
station that has four processors available for the user. Let
us further assume, for simplicity, that the user decides to
reserve one of those processors for doing interactive work,
leaving three to run the experiment. A naive method of
partitioning the jobs between the processors would be to
assign each of the above [p, [T ]] sets to a separate processor.
However, our simulation, like others, exhibits a phase tran-
sition in the execution time: when T is below or above the
critical temperature the execution time is much faster than
when T is approximately the critical temperature (James and
Hawick 2007). Unfortunately we do not know the critical
temperature a priori: in practice we observe that by simply
dividing the work up based on either p or T we always end
up with a significant fraction of our available processors still
working and the remainder idle, waiting for us to analyse
the results before submitting a new set of jobs.

3 EXISTING SYSTEMS

When one considers how to best schedule jobs across either
a local set of processors or a cluster of closely-connected
processors there are a number of important factors to con-
sider. To us, the most significant factor is the ease with
which we can submit the job to the scheduler. The next
most significant factor is the reliability of the scheduler –
that is our confidence that the experiment will complete.

An Internet search will reveal a lack of research or
commercial products to manage simulation experiments.
There are some specialised tools available (for example,
Angel 1996), but these require one to write their code in
a particular programming language or environment. Also
available are so-called “wet-science” experiment managers
(for example, STARLIMS Corporation 2007).

One general tool that is available for creating and con-
trolling a set of parametrised experiments is Nimrod (Abram-
son, Sosic, Giddy, and Hall 1995). This tool allows an
experimenter to specify a single experiment consisting of
a cross-product of parameters and monitor its progress.
Unfortunately it does not allow for the case where the pa-
rameters themselves are comprised of a “holey” or sparse
cross-product (for example see the different T ranges in
the experiment specified in Section 2). Treating the cross-
product as dense can be extremely wasteful of resources and
research effort. Thus, if an experimenter were content to
run each experiment in isolation then it would be a perfectly
adequate solution. Later versions of Nimrod (Abramson,
Giddy, and Kotler 2000) have been extended to operate on
the burgeoning Grid (Foster and Kesselman 1999). Other
software (for example, FlowGrid Consortium 2004), has
been created for running CFD applications across the Grid.
Systems such as Persson, Grimm, and Ng (2006) allow users
to computationally steer simulations to trade off optimisation
objectives.
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Thus, there are no real candidates for creating and
controlling experiments which feature multiple “holey” cross
products of parameters. As such we have written our own
manager and associated schedulers.

We have experimented with using fully-fledged clus-
ter scheduling and queue management software, such as
PBS (Altair Grid Technologies 2007) (and its variants) and
XGrid (Apple Computer Inc 2007) on our local processors.
Anecdotally we have found these products a non-trivial bur-
den to set up and administer, and the apparatus required
to batch submit thousands of copies of anything but the
simplest jobs can become quite complicated.

The main drawback to using cluster queue manager
software on even our local machines is the case in which
we need to revoke the experiment (or part thereof) after it
has started. This is a non-trivial exercise in most scheduling
software, even with a graphical front-end to the cluster such
as provided by xpbsmon (Altair Grid Technologies 2007):
one must semi-manually work out which jobs are no longer
required and remove them from the execution queues. Only
some queuing systems provide automatic clean-up scripts.

4 AN INTERIM SOLUTION

If one is developing a user-friendly scheduler that is only
intended for use with a single application then it is easy to
construct a multi-threaded program in, say, Python (Python
Software Foundation 2007) that will maintain a queue of
experimental jobs and allocate each job to an available
processor in a first-come first-serve fashion. The basic
pseudo-code for this program is shown in Algorithm 1.

Algorithm 1 Scheduler pseudocode
while more job parameter sets do

Read job parameter set
Expand list of jobs
Check to see whether it is necessary to run each job

end while
Create N queues, one for each processor, as a thread
for each queue do

if non-empty queue of jobs then
take job from front of queue
inspect pre-conditions
run job
inspect post-conditions

end if
end for

Ensure: appropriate cleanup on interrupt

We specify the job elements for our Ising code by
an n−tuple consisting of the command-line string used to
invoke the simulation and another command to run the
post-conditions, as such:
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cmdstring1 = "<pre-conditions>"
cmdstring2 = "<run experiment>"
cmdstring3 = "<post-conditions>"
tuple = filenameLog, cmdstring1, \

cmdstring2, cmdstring3
q.put_nowait(tuple);

Each of the processor threads exists in a simple loop
while there are jobs remaining in the queue:

def worker():
while True:
# item[0] filename mask
# item[1] pre-conditions
# item[2] runs experiment
# item[3] post-conditions
item = q.get()
commands.getoutput(item[1])
# pre-conditions

commands.getoutput(item[2])
# run experiment

commands.getoutput(item[3])
# quality control and
# compress the output

q.task_done()
print "Jobs remaining in queue: "+
str(q.qsize())

We have introduced exception handler code that enables
us to not only stop the scheduler on demand, but to also
kill any running experiment processes and execute their
post-condition code. Typically the post-condition code we
are interested in involves the testing of an output file either
for a set number of lines or the presence of certain strings.
If these features are not present in the output file then it
should either be deleted or at least moved to a temporary
place for human inspection.

5 A MORE GENERAL SOLUTION

We have since generalised the scheduler system developed
for the application described in Section 2. The new GUI-
based prototype scheduler is applicable to multiple different
types of of simulation experiment while still retaining the
most important design feature: allowing running tasks to
be cleanly killed while allowing for inherent variations in
simulation run-time to be “smoothed out”. We chose to
implement the prototype using Python’s Tcl/Tk interface
module, Tkinter. This system allows us to efficiently spec-
ify “simulations on demand” (Fox, Williams, and Messina
1994).

The architecture of our generalised scheduler is shown in
Figure 2. The system is broken into two main components:
the Experimental Manager and the Scheduler/Dispatcher.
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Figure 2: Architecture of our generalised prototype. Each
experiment is specified by a customised GUI specification
which tells the Experiment Manager how to display the
Experimental Parameters. Once the user submits an exper-
iment a configuration file containing the experiment details
is created and then passed to the Scheduler. The user has
the ability to control the Scheduler from the Experiment
Manager module.

The Manager is generic: it requires a per-experiment
GUI/Experiment specification file to specify the details of
an experiment. After an experiment is specified a configu-
ration file is created to save the details; this is, in a sense,
passed to the Dispatcher for processing. The Manager is
then able to monitor the Dispatcher and request updates on
the experiment’s progress or revoke submitted jobs.

Our current prototype, shown in Figure 3 allows the
experimenter to specify a set of pre- and post-conditions
that must be satisfied for the experiment to be deemed
successful. At present the conditions may only be selected
from a list of generic choices such as “require a file”, “space
available”, “length of a file” and “occurrences of a symbol
in a file”. In order to specify which file the operations
apply we allow the experimenter to either use a concrete
filename (e.g. rng.cfg) or to use general patterns (e.g.
ising-*-*-*.log). We are mindful of UML’s Object
Constraint Language extension (Object Management Group
(OMG) 2006) and are using this for a reference for future
prototypes.

The figure also shows a basic experiment posed through
the management system. In fact this experiment is the
same as discussed in Section 2. One can see three sets of
P− [T ] variables that must be explored to complete this
experiment. Of particular note is the fact that the start and
end temperatures for each P value overlap but are not the
same.

When the experimenter submits the experiment to the
system they are presented with a monitor interface that
shows the different parameter sets, the number of jobs this
expands into (see Figure 1) and also what job each processor
is currently running. In addition, the user has the option
to update the monitor interface to show the percentage that
each parameter set has been processed. This is shown in
Figure 4.
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Figure 3: Our GUI front-end to the scheduler
Figure 4: Manager interface

It is not unusual for experimenters to perform partial
analysis of results as they become available. In our case
this is a simple task that is implemented by yet more
scripts. Furthermore, it is not unusual, especially in the early
stages of posing an experiment to perform a coarse-grained
parameter sweep to identify the areas of parameter-space
of interest. In these cases it is often useful to be able to
computationally steer the simulation towards parameters of
greater interest. For example, if one realises the area of
interest is in the first half of a T set’s range then there is little
point in processing the second half of the set. For this reason
the user is given the opportunity to steer their experiment
through the revocation of either complete parameter sets
or canceling individual jobs running on processors. The
614
use of post-conditions allows a canceled job to be cleaned
up and the next job started by the system without leaving
“dangling” files.

We are currently experimenting with efficient ways of
specifying the files in the case that a complete experimental
set needs to be revoked. Currently under consideration is
the use of revocation-masks for the Scheduler/Dispatcher.

We intend that future versions of our scheduling pro-
totype will include the ability to use a simple web-services
interface to allow the remote creation and steering of sim-
ulation experiments. This was an idea that we successfully
used to control the automatic processing of large amounts
of satellite data held in an online data repository (James
and Hawick 1998).

6 DISCUSSION AND CONCLUSIONS

It is of course an ambitious goal to construct a toolset that
really automates the highly humanised process of formu-
lating a research question and a series of experiments to
address it. Nevertheless we believe it is possible for a set of
tool components to be suitably integrated into an interoper-
able suite that supports this human activity. An experiment
might start off described in a very vague natural language
form, but as we have discussed, once the parameter set can
be identified and quantified, the matter of managing a set
of overlapping and “holey” cross-product parameter spaces
is a suitable target for automatic tool support.
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A quantifiable experiment scenario might be to locate
the value of some parameter such as temperature or pressure
where an effect, once identified, occurs. Another scenario
might be to push known parameter regions outwards to con-
firm that an effect does or does not still occur at extreme
conditions. Our numerical phase transition simulations fall
into the former category. Many materials science experi-
ments involving real physical systems fall into the latter.

Experimental science is limited by the sheer complexity
of parameter spaces and closely interlinked parameters as
well as the resource cost of searching large parameter spaces.
We believe this applies equally to the arena of computational
simulation science.

We have identified what we believe are the main issues
for a practical set of experiment management tools. The
first of these concerns the need to handle complex sparse
parameter spaces, particularly with multi-scale parameters.
Other issues include: the ability to revoke or refine the
set of simulation parameters dynamically; the need for
heuristics and other techniques to allow resource estimates
and partial results to be used to guide the experiments; an
ability to integrate relatively simple tool components with
new ones or with off the shelf systems. The ability to adapt
is probably the main failing of most existing simulation
scheduler systems. We believe there is great scope for a
toolset, based around the prototype ideas we present, that
could be customised semi-automatically for a wide range
of specific simulation experiments.
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