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ABSTRACT

We present a hybrid model of the interactions within
(multiple-species) populations of bacteria in a develop-
ing biofilm which integrates continuum models of popula-
tion processes (e.g., diffusion of substrates and signalling
molecules) with individual-based models of cellular pro-
cesses (notably growth, division, displacement, and up-
regulation). The cell level models combine both aggregated
models of continuous processes (growth, division and dis-
placement) for small collections of cells and individual-cell
level models of quorum sensing molecule (QSM) sens-
ing, production and up-regulation which encompass both
stochastic and discrete processes. The use of both aggre-
gated and individual models of cellular processes allows
the resolution of the model to be tailored for a particu-
lar modelling problem, while at the same time remaining
computationally tractable.

1 INTRODUCTION

In recent years major advances have been made in under-
standing the gene and signalling networks that control the
behaviour of individual cells, and the need to understand the
implications of these breakthroughs at the population level
is increasingly widely recognised. However, while there
has been a significant amount of work on continuum and
qualitative (process calculi) models of cell level processes
on the one hand and both continuum and individual-based
models of population scale effects on the other, there has
been relatively little work which attempts to span these
scales. Accounting adequately for the relevant subcellular
behaviour in a population of millions of distinct, diverse
individuals in order to bridge the scales presents significant
81-4244-1306-0/07/$25.00 ©2007 IEEE
modelling and simulation challenges but offers the potential
for significant benefits for biology and medicine.

In this paper we present a hybrid model of the inter-
actions within (multiple-species) populations of bacteria in
a developing biofilm which integrates continuum models
of population processes (e.g., diffusion of substrates and
signalling molecules) with individual-based models of cel-
lular processes (notably growth, division, displacement, and
up-regulation). The cell level models in particular are novel
in combining aggregated models of continuous processes
(growth, division and displacement) for small collections
of cells, and individual-cell level models of quorum sens-
ing molecule (QSM) sensing, production and up-regulation
which encompass both stochastic and discrete processes. In
contrast to previous work, e.g., Picioreanu, Kreft, and van
Loosdrecht (2004), the use of both aggregated and individ-
ual models of cellular processes allows the resolution of
the model to be tailored for a particular modelling problem,
while at the same time remaining computationally tractable.
More generally, the approach embodied in our model pro-
vides a multiscale framework for modelling interactions
between cells, which spans from the cellular level to the
population level.

2 BACKGROUND

We focus on multiscale models describing the interactions
within (multiple-species) populations of bacteria in a devel-
oping ‘biofilm’. Biofilms comprise communities of diverse
individuals which may interact in both cooperative and
non-cooperative fashions. They thus provide comparatively
simple (and experimentally relatively well characterised)
systems in which variety and selfish, spiteful, ‘altruistic’
and mutually beneficial behaviours all have scope to flour-
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ish as a heterogeneous population develops (for a precise
classification of such matters see, for example, West et al.
2006). They are sufficiently complex to exemplify many
of the generic features of multi-cellular behaviour, without
such complexity becoming overwhelming. They are in ad-
dition of enormous environmental, industrial and medical
importance.

Although relatively simple in biological terms, the in-
teractions within a biofilm span a vast range of spatial
scales from sub-cellular to population, with scope for gen-
erating a huge variety of emergent behaviour. Cellular
inter-relationships, even in single-species populations, are
themselves highly complex, with signalling systems, such
as quorum sensing, able to lead to coordinated changes in
phenotype (see, for example, Winzer, Hardie, and Williams
2002). These quorum-sensing systems, whereby the bacte-
ria communicate to monitor their population size and control
their behaviour, are increasingly being understood in terms
of the subcellular interactions which govern the production
of the relevant signalling molecules. Moreover, mathemat-
ical models of these processes are increasingly becoming
established and validated, together with those of the cor-
responding macroscale behaviour (transport of signalling
molecules and nutrient, biofilm growth etc.).

Macroscale processes are susceptible to continuum
modelling approaches, e.g., systems of (possibly stochas-
tic) differential equations and differential-delay equations.
However interactions between individuals, such as signalling
between neighbours belonging to distinct bacterial strains,
leads to phenomena that cannot readily be captured by
traditional multiscale mathematical procedures such as ho-
mogenisation. Individual-based models are becoming in-
creasingly widely used in this type of context (see, for exam-
ple, Kreft, Booth, and Wimpenny 1998; Ginovart, Lopez,
and Valls 2002; Krawczyk, Dzwinel, and Yuen 2003; Chang
et al. 2003; Picioreanu, Kreft, and van Loosdrecht 2004;
Paton et al. 2004). Such models use agent-based sim-
ulation techniques to investigate the interactions between
(often relatively small) groups of cells and their environ-
ment. However, existing work in this area has tended to
focus on the emergence of complex organisation in biofilms,
with the individual cells being treated as ‘black boxes’ as
far as possible, e.g., the use of cellular-automata approaches
to describe biofilm growth.

However, to investigate many phenomena of interest,
it is essential that such agent-based models incorporate in
an appropriate way information about the macroscale be-
haviour and their results must in turn be coupled back into
the rules adopted in the cell-scale modelling. Account-
ing adequately for the relevant subcellular behaviour in a
population of millions of distinct, diverse individuals in or-
der to bridge the scales presents significant modelling and
simulation challenges (for example, to fully investigate the
effect of QSM on colony development it is necessary to
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simulate bacterial colonies consisting of millions or tens of
millions of bacteria) but offers the potential for significant
benefits for biology and medicine. The issues which arise
are not only of great practical significance, but are also rep-
resentative of some widely-recognised multiscale modelling
challenges, relating to how differences in the behaviour of
individuals and stochastic effects each manifest themselves
at the population scale.

In the next section we present a multiscale biofilm
model which integrates continuum models of population
scale processes with individual-based models of cellular
level processes. It thus attempts to incorporate, albeit in a
simplified way, the types of complex signalling pathways
and gene networks which are currently the subject of a vast
amount of experimental study within a population model.
At the same time it seeks to address the multiscale and inte-
grative challenges associated with embedding agent-based
models within continuous fields associated with nutrient,
quorum-sensing molecules and proliferative pressures.

3 THE MODEL

The model system is similar to that described in Piciore-
anu, Kreft, and van Loosdrecht (2004), and consists of a
3D ‘biofilm reactor’ with two compartments, bulk liquid
and biofilm (see Figure 1). The bulk liquid compartment
contains a (well mixed) solution of S different soluble sub-
strates at constant concentrations. The biofilm compartment
contains B different types of biomass which grow on a pla-
nar support inside a rectangular box with periodic x and
y boundaries. In addition to the biomass and soluble sub-
strates, the biofilm compartment contains a single type of
extracellular polysaccharide (EPS) and Q different types
of quorum sensing molecule. The biofilm and bulk liquid
compartments are in contact and exchange solutes only by
diffusion. Substrate and biomass which move beyond the x
and y boundaries reappear at the opposite boundary. Bacte-
ria, substrates, QSMs and other material are assumed to be
washed away once they reach the z boundary (detachment
layer).

In what follows, we focus on the multiscale aspects of
the model, i.e., the integration of population level processes
with individual-based models of cellular-level processes. A
complete description of the model can be found in King,
Lees, and Logan (2006).

3.1 Bacterial Particles

For efficiency of computation, individual cells are aggregated
into bacterial particles as in Picioreanu, Kreft, and van
Loosdrecht (2004). Each particle represents one or more
cells of a single bacterial strain. The smallest possible
particle is equivalent to a single cell; the largest possible
particle is that which will fit in a voxel (see section 3.2).
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Figure 1: Computational domain.

As a particle consumes substrate its radius increases until
it reaches a user-specified maximum particle radius, R, at
which point it divides resulting in the creation of a new
particle. The maximum size of a particle, i.e., its size
at division, thus determines the resolution of the model.
Particles of all biomass types (including EPS) are assumed
to have the same maximum radius, but their density and
hence the number of bacterial cells they represent depends
on the biomass type. For strains of bacteria with larger
cells the corresponding particles will contain fewer cells;
conversely strains with smaller cells will have particles that
contain a larger number of cells.

Particles allow the use of aggregate models of continu-
ous processes (growth, division and displacement) for small
collections of cells, and also facilitate visualisation of the rel-
ative proportions of different biomass types within a voxel.
However some processes must be modelled at the level of
individual cells. For example, quorum sensing molecule
sensing, production and up-regulation encompasses both
stochastic and discrete processes, and must be modelled at
the level of individual cells. Particles therefore also con-
tain information about the state of the individual cells they
represent. Cells within a particle exist in one of two differ-
ent states: up-regulated and down-regulated. Particles keep
track of the number of up-regulated and down-regulated
cells they currently contain and cells can change from one
state to another at each timestep, in response to the level
of QSMs (see section 4.5).

Up-regulated cells produce extracellular polysaccharide
(EPS). The EPS produced by cells in biomass particles is
aggregated into EPS particles. EPS particles are assumed
to have mass MEPS, where MEPS is the mass of a particle
of radius R and density ρEPS. The number of EPS particles
at any given point is therefore simply the quantity of EPS
mod MEPS.
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3.2 Voxels

The biofilm compartment is discretised into sub-
compartments or voxels containing particles, substrate and
signalling molecules. The size of the computational do-
main (LX ,LY ,LZ) is assumed to be an integer multiple of
the size of a voxel lX . Substrate and QSM concentrations
are assumed to be uniform across each individual voxel, and
the upper bound on the size of a voxel is chosen such that
the substrate and QSM concentration values are ‘reasonably
close’ to the continuous values. The size of voxels, lX , is
chosen appropriately for the system to be modelled, with
smaller values (criteria being deduced from the correspond-
ing continuum models, i.e., the size of a voxel is taken
to be much smaller than the diffusion length determined
from the corresponding reaction-diffusion equation) giving
greater resolution at increased computational and commu-
nication cost. However the voxels are typically fairly large
in relation to the size of a cell, e.g. each voxel may contain
of order 102 particles or 104 cells. The bulk liquid com-
partment is represented by a single point for the purposes
of discretisation, and this point is adjacent to all the voxels
immediately below the detachment layer.

Each voxel contains zero or more particles of each
biomass type (including EPS). The particles in a voxel exert a
‘pressure’ on the particles in the neighbouring voxels which
is a function of the relative number of particles in the voxels,
and these pressures are used to displace particles during the
division of biomass. Each voxel has six adjacent voxels,
connected at each face, which are considered in determining
relative pressures, and into which particles may be displaced.
Voxels have a pre-determined maximum particle capacity,
N, and the pressure in the voxel is considered to be infinite
when this maximum is reached. N is calculated using lX and
the maximum radius of a particle, R, assuming simple cubic
packing. EPS particles behave in the same way as biomass
particles for the purposes of the pressure calculation. The
arguments used in developing this pressure model are again
based on the continuum modelling, in this case building on
multiphase formulations for growing populations such as
those described in Byrne et al. (2003).

Each particle has a notional 3D position within its
containing voxel which is used for visualisation purposes
(see Figure 2). These notional positions are chosen such
that the particles do not overlap. The pressure model and
maximum particle size are chosen to ensure that there is
enough free space in the voxel for this to be possible. Note
that the resolution of the model with respect to substrate and
QSM concentrations is determined by the size of voxels, lX .
The resolution of the model with respect to the distribution
of biomass is also determined by the size of a voxel, in that
the mass of each biomass type in each voxel is known. The
3D positions of particles simply make it easier to visualise
the distribution of different types of biomass.
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At any given point the state of the model is specified
by: the amount and distribution of each type of biomass, the
number of up- and down-regulated cells of each biomass
type, the amount and distribution of extracellular polysac-
charide, the concentration and distribution of each type of
substrate and quorum sensing molecule, and the pressure
distribution.

4 MODEL EVOLUTION

There are three main processes which determine the evo-
lution of the model: the diffusion of substrate and QSM
from voxel to voxel, the displacement of particles between
voxels in response to proliferative pressures, and changes
in the state of the particles themselves in response to the
substrate and QSM concentrations in their containing voxel.
The transport of substrate and QSM between voxels corre-
sponds precisely to a simple central-difference discretisation
of the relevant continuum reaction-diffusion equations. The
pressure model underlying particle displacement builds on
multiphase formulations for growing populations as de-
scribed in Byrne et al. (2003). Particles are modelled as
agents and implement a simple model of growth and division
similar to that in Kreft, Booth, and Wimpenny (1998), and
up-regulation (e.g., the production of extracellular polysac-
charide) in the presence of QSM (Ward et al. 2003). These
processes interact: particles consume substrate and produce
QSM, leading to transport associated with the diffusion gra-
dients. Consumption of substrate results in particle growth,
which in turn results in increased pressures and particle
displacement. Finally, the number of cells in a voxel deter-
mines QSM production and hence QSM concentration and
up-regulation.

4.1 Diffusion

Diffusion is performed globally over all voxels. The diffu-
sion algorithm iterates over each voxel using the concen-
tration of substrate in the neighbouring voxels to determine
the change in concentration at the current voxel. For each
substrate, s, the change in concentration at a voxel e as a
result of diffusion is:

dcs,e

dt
= Ds

(
i

∑∆cs,i

)
dt

(dx)2 (1)

where cs,e is the concentration of substrate s is voxel e,
∑

i
∆cs,i is the difference in concentration between the voxel

e and each of its neighbours (i = 1, . . . ,6) and Ds is the
diffusivity of substrate s. The bulk liquid compartment is
assumed to have constant concentration and the substratum
has the same concentration as the voxels in the bottom
layer of voxels. Thus for computational convenience the
bulk liquid is taken to be well-stirred (avoiding the need to
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treat advective and diffusive transport there, together with
any boundary layer effects at the fluid/biofilm interface),
and negligible nutrient is assumed to be able to penetrate
deep into the biofilm. The x and y boundaries are treated as
periodic, i.e., the concentration at (−1,y,z) is the same as
the concentration at (LX ,y,z). The volume fraction of cells
is ignored when doing diffusion calculations—the uptake of
substrate by cells (see section 4.2) is much more important.

The substrate concentration at the next timestep, c′s,e
can then be calculated as:

c′s,e = cs,e +
dcs,e

dt
. (2)

The diffusion algorithm repeatedly computes the concen-
tration in each voxel using equation (2) until the maximum
change in concentration for any voxel is less than a pre-
defined constant:

dcs,e

dt
< δcmax.

At the voxel level, quorum sensing molecules are treated
as a substrate, i.e., the QSM concentration aq,e, is constant
across a voxel and diffuses between voxels. The QSM
concentration(s) in a voxel at a given timestep are therefore
given by the amount of quorum sensing molecule produced
by all particles in the voxel (see section 4.5) and by dif-
fusion of signalling molecule between surrounding voxels.
Note that while the evolution of the QSM concentration
is determined from the time-dependent problem (cf. 1), it
rapidly reaches a quasi-steady state.

4.2 Growth

The growth of each particle is a function of the substrate
concentration(s) in the voxel containing the particle. The
model of particle growth comprises three separate processes:
uptake, metabolism (creation of new biomass) and mainte-
nance (Kreft, Booth, and Wimpenny 1998).

At each time-step each particle consumes an amount
of substrate proportional to the concentration of substrate
in the voxel and the mass of the particle. The metabolism
of substrate into new biomass is given by:

dm j

dt
= ks, j Ymax (3)

where m j is the mass of the particle j, ks, j is the consumption
of substrate s by particle j, and Ymax is the yield at the
maximum growth rate. The kinetics are taken to be described
by the Best equation (Koch 1997). Maintenance is modelled
as consumption of biomass, and is proportional to the mass
of the particle:

−
dm j

dt
= m j gYmax (4)
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where g is the apparent maintenance rate at zero growth.
The overall growth (i.e., change is mass) of a single particle
j is therefore:

dm j

dt
= (ks, j Ymax)− (m j gYmax). (5)

At lower concentrations, particles grows more slowly, and
at sufficiently low concentrations they start to shrink (when
they are unable to consume sufficient substrate to satisfy
their maintenance requirement). At present we do not
consider the death of particles: instead particles continually
shrink until the uptake and maintenance balance and the
cell becomes dormant.

As noted in section 3.1, a single particle represents a
collection of cells some of which may be up-regulated and
some down-regulated. When the number of cells represented
by a particle increases as a result of growth, i.e., when m j
increases by the average mass of a cell of the appropriate
biomass type, a new down-regulated cell is “created”, by
incrementing the number of down-regulated cells in the
particle.

4.3 Division

Particle division occurs when the mass of a particle exceeds
the user-specified maximum particle mass:

m j >
4
3

πR3
ρb (6)

where ρb is the density of biomass of type b. At this point,
the original particle is split and a new daughter particle
is created in the same voxel as the original particle. (The
actual 3D position of the particle is not relevant, since it
will be adjusted for the purposes of visualisation.) The
mass of the daughter particle is randomly chosen between
0.4 and 0.6 of the mass of the particle at division, with the
original particle retaining the remainder of the mass. The
daughter particle is also allocated (up and down regulated)
cells from the original particle in proportion to its mass.
The cells transferred from parent to daughter are chosen
randomly using a uniform distribution.

4.4 Displacement

As we are not currently considering real positions of particles
within voxels (except for visualisation purposes), spreading
does not occur within a single voxel. However, spreading
and displacement may occur between voxels.

Particles are transferred between voxels if the difference
in pressure between the voxels is large enough. The pressure
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in a voxel e, pe is given by:

pe =
ne

N−ne
(7)

where ne is the total number of particles of all biomass types
(including EPS) in the voxel and N is the maximum number
of particles in a voxel at close packing. The pressure in the
substratum is assumed to be infinite, and so particles cannot
disperse down through the bottom layer. Particle pressure
in the bulk liquid is assumed to be zero, so particles can
transfer freely into the bulk liquid.

Each type of biomass has a transfer coefficient, Tb
which specifies how easy it is for biomass of that type to
be displaced. The number of particles of biomass of type
b to be displaced from a voxel e to the neighbouring voxel
e′ is then

∆nb,e→e′ = Tb× (pe− pe′)× (nb,e−nb,e′). (8)

The total number of particles of biomass type b to be
displaced out of the voxel e is given by

∆nb,e =
e′

∑∆nb,e→e′ , (9)

and the total number of particles of all biomass types to be
displaced out of the voxel e is given by

∆ne =
B

∑
b=1

e′

∑∆nb,e→e′ . (10)

The individual particle(s) of each biomass type to displace
are chosen randomly.

Tb must be large enough that particles will displace faster
than the maximum particle division rate when the voxel is
full and small enough that no more than ne particles are
transferred at any timestep. If Tb is too large, too many
particles will be transferred at each timestep. For example,
consider a situation where a voxel contains 15 particles of
biomass type b and all of its neighbouring voxels are empty.
The pressure gradient is equal in all directions and so the
same number of particles will be transferred in each direction.
However, if ∆nb,e→e′ > 3 there will be insufficient particles
to transfer in each direction. Conversely, if Tb is too small,
voxels will become over-full. As such, it can be difficult to
determine appropriate values of Tb in advance. Moreover,
the model outlined above is susceptible to discretisation
effects when the number of particles in a voxel is small.

To prevent over sensitivity to values of Tb, we limit
the fraction of the particles in a voxel that can be trans-
ferred in any given timestep to N∆, and set the maxi-
mum number of particles that can be transferred to be
∆ne,max = min(∆ne,N∆ne). (N∆ is currently 25%.) The
5
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number of particles of each biomass type to transfer, ∆nb,e,
are then scaled in proportion ∆nb,e = ∆nb,e

∆ne,max
∆ne

. Full vox-
els are also handled specially: if ne > N, the total number
of particles to transfer out of the voxel, ∆ne, is increased
to be at least ne−N.

The appropriate number of particles of each biomass
type are then selected at random for transfer at this timestep.
To avoid bias in the direction in which particles are trans-
ferred with small values of ne, the direction in which a
particle is displaced is chosen probabilistically, with the
probability of transferring a particle to a neighbouring voxel
e′ being ∆pe,e′/∑

ei ∆pe,ei , where the ei are the neighbour-
ing voxels of e such that ∆pe,ei > 0. Particles which are
displaced beyond the boundary layer, i.e., LZ above the
substratum, are simply discarded.

4.5 Inter-Cell Signalling

Quorum sensing molecules (QSM) are generated by particles
and provide a form of cell to cell communication known as
quorum sensing. The molecules, which are typically differ-
ent for each strain of bacteria, control a number of aspects
of bacterial growth and development, including biolumines-
cence, population expansion by swarming, virulence, and
the production of extracellular polysaccharides.

The quorum sensing mechanism involves the QSMs
triggering increased expression of certain genes in the bac-
terium. One of the genes codes for the QSM itself, creating
a positive feedback loop. The QSM therefore functions as
an ‘autoinducer’, and bacteria will create more of the same
QSM when they are surrounded by it. A cell that is in a
QSM triggered state is referred to as ‘up-regulated’, and
one that is not is referred to as ‘down-regulated’. A QSM
can combine with a down-regulated cell to produce an up-
regulated cell and an up-regulated cell can spontaneously
revert to being down-regulated (by the loss of the bound
QSM). A down regulated cell produces a QSM q at a low
(basal) rate Zq,d . Once the cell becomes up-regulated it pro-
duces QSM at a much higher rate Zq,u (Zq,u >> 100Zq,d).
The amount of QSM produced by a particle is determined
by the relative number of up-regulated and down-regulated
cells within the particle.

Other signalling molecules function as inhibitors, which
prevent an autoinducer combining with a cell, or prevent
up-regulation when a cell combines with the autoinducer.
Inhibitors therefore restrict the production of QSM by the
bacteria. Inhibitors are particularly interesting from a bio-
logical point of view as they allow control of up-regulation
and hence development of the bacterial colony. The relative
ease with which a QSM q and the corresponding inhibitor
q̄ can combine with a cell is denoted by γq and γq̄. In
what follows, for simplicity we assume that γq = γq̄ = γ . In
the presence of inhibitor, the probability of a cell changing
8

from down to up-regulated is given by:

P(up) = α
aq,e

1+(γ(aq,e +aq̄,e))
dt (11)

where aq,e is the concentration of QSM q in voxel e, aq̄,e is
the concentration of inhibitor q̄ and α is the conversion rate
of down-regulated cells to up-regulated cells due to QSM
binding. A cell reverts from up-regulated to down-regulated
with probability:

P(down) = β
1+(γaq̄,e)

1+(γ(aq,e +aq̄,e))
dt (12)

where β is the spontaneous down-regulation rate.
Up-regulated cells produce extracellular polysaccharide

(EPS) at a constant rate and particles therefore produce EPS
at a rate proportional to the number of up-regulated cells
they currently contain. The EPS produced is aggregated
into new EPS particles. Whenever the amount of EPS in the
voxel increases by the maximum mass of a particle, a new
EPS particle is created in the voxel. New EPS particles
behave in the same way as other particle types for the
purposes of pressure calculation, and like biomass particles
can be displaced into surrounding voxels.

5 IMPLEMENTATION

To facilitate distribution, the implementation of the model
is decomposed into a ‘diffusion module’ (which handles
diffusion calculations) and one or more ‘model regions’.
Each model region processes one or more voxels, and handles
the growth and division of particles within voxels, and the
displacement of particles between voxels. In addition there
is a visualisation module for run-time monitoring of the
simulation progress and post-simulation analysis of results
(see Figure 2). The model region and visualisation modules
are implemented using the Mason agent toolkit (Luke et al.
2005). The diffusion module is written in Java. Interaction
between modules can be by means of procedure calls, HLA
(IEEE 2000) (RTI) calls, or Grid invocations. The HLA
distribution uses the DMSO RTI 1.3NGv6 Java bindings,
and the Grid distribution is based on HLA GRID (Xie
et al. 2005), which allows HLA-compliant simulators to be
instantiated and linked using Grid services. In the interests
of simplicity, we focus here on the non-distributed case in
which the modules communicate via procedure calls. We
assume that each model region processes a single voxel, and
use the terms voxel and model region interchangeably. (In
reality, model regions typically process more than one voxel,
and facilitate distribution by mapping ‘non-local’ voxel to
voxel communication into HLA or Grid invocations.) See
Lees, Logan, and King (2007) for an overview of the model
distribution.
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Figure 2: Simulation visualisation.

5.1 Model Timestep

In this section we give a high level description of a single
iteration of one timestep of the model. This illustrates the
operation of both the diffusion module and the voxels and
how they interact to update the state of the model. The
state of a voxel at each timestep is given by the number of
particles of each biomass type, the concentration of each
substrate, the consumption of each substrate at this timestep,
the concentration of each quorum sensing molecule, and
the production of each QSM at this timestep.

The processing of the voxels at timestep t occurs in
two phases. The first involves the execution of the voxels to
calculate the consumption of substrate by particles, particle
growth and the number of particles following division of
the biomass. Processing of phase one within each voxel
itself occurs in three steps. Firstly, the growth step increases
the mass of each particle within each voxel given the con-
centration of substrate for this timestep in the voxel. (For
t = 0, the concentrations and number of particles are taken
as parameters of the simulation.) This also gives the total
consumption of all substrates by all particles in this voxel
for this timestep. The second step computes the production
of QSMs by each particle in the voxel. The third step is
particle division: each particle which reached the maximum
allowable mass during the growth step is split into two par-
ticles, increasing the number of particles in the voxel. Each
voxel then sends the consumption of each type of substrate
and the amount of QSM produced by its particles to the
diffusion module. At the same time, each voxel sends its
current particle counts to each of its neighbouring voxels.

The second phase of the timestep involves executing the
diffusion module once it has received substrate and QSM
information from all voxels. The diffusion module uses the
substrate consumption for this timestep together with the
diffusion algorithm to calculate the new substrate and QSM
concentrations for the next timestep. The diffusion module
8

then sends each voxel the substrate and QSM concentrations
for the next, t +1, timestep.

In parallel with the execution of the diffusion module,
each voxel also executes a displacement step, which uses
the difference in pressure between the voxel and each of
its adjacent voxels (which each voxel calculates using the
number of particles in each of its neighbouring voxels) to
determine displacement of particles between voxels. The
(possibly empty) list of displaced particles is then sent to
each of the neighbouring voxels. A snapshot of the state
of a particle for migration purposes consists of its biomass
type, mass, the number of up-regulated cells, the voxel from
which the particle is being migrated and the direction in
which it is being migrated. Once each voxel has received
a list of transfer particles from all its neighbours the voxel
updates its particle counts for the next timestep.

The timestep is then incremented and the cycle repeats
with the voxels using the newly calculated concentrations
and particle counts. While the scheme could be made
significantly more efficient by exploiting the disparities in
timescales between nutrient transport and growth (for ex-
ample), for the purposes of this study we have for simplicity
chosen to place all the effects on a similar footing. The re-
sulting inefficiency is to some extent offset by the flexibility
of the code (in particular allowing additional effects read-
ily to be incorporated without reconsidering the simulation
approach).

6 PRELIMINARY RESULTS

In this section we present some preliminary experimental
results from the current version of the model. Our initial
experiments have focused on the role of QSM in the devel-
opment of bacterial colonies, and in particular how QSM
inhibitors can be used to prevent the up-regulation of cells
within a colony (Koerber et al. 2002).

To allow comparison with an existing analytic model,
our experiments used a single species of bacteria, a single
substrate, and two types of signalling molecules. We stress
that the numbers of biomass types, substrates and QSMs
were chosen purely for experimental convenience and do not
reflect limitations of the underlying simulator. The parameter
values for the bacterial growth and division models were
taken from Kreft, Booth, and Wimpenny (1998) and the
parameters for the inter-cellular signalling and up-regulation
model from Koerber et al. (2002). The experiments used
a 17× 17× 17 micron voxel as in Picioreanu, Kreft, and
van Loosdrecht (2004), a maximum cell radius of 0.756
microns, and a maximum particle radius of 5× the radius
of a cell, giving up to 1371 cells per voxel. The total size of
the model was 68×68×1700 microns, i.e., 4 voxels in the
x and y dimensions and 100 voxels in the z dimension. (The
x and y dimensions are periodic, so the model only needs to
be large enough in x and y to allow reasonable spreading of
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Figure 3: Up-regulation of the colony.

particles.) The model timestep was 0.1 seconds (determined
by diffusion requirements), and the simulations ran for 24
hours of simulated time, i.e., 864,000 timesteps.

The initial population consisted of 80 particles (each
representing a single cell) randomly distributed on the pla-
nar support. The maximum number of particles during the
simulation was 16,000 representing approximately 1.3 mil-
lion bacterial cells (see below). The runs required about
40 hours elapsed time on a single processor (P4, 2.4GHz)
with 2GB of physical memory.

Figure 3 shows the total number of cells, the number of
up-regulated cells and the proportion of up-regulated cells
over the course of the simulation for a model system without
inhibitor. As can be seen there is a marked increase in up-
regulation after about 7 hours, rising from less than 10%
up-regulated cells at 6 hours to about 85% up-regulated
cells at 8 hours. At this point, the apparent threshold
concentration of QSM is reached (reflecting high bacterial
density adjacent to the planar support), triggering positive
feedback in the production of QSM and a corresponding
sharp rise in QSM concentration (not shown). These results
are qualitatively similar to those for the continuum model
presented in Ward et al. (2001).

Once the critical cell density is reached, the number
of up-regulated cells increases exponentially (in line with
the total number of cells) until the biofilm approaches the
detachment layer at the top of the model. During this
period, the proportion of up-regulated cells continues to
climb slowly, reaching a peak at about 18 hours, before
declining to about 70% up-regulation at 24 hours. At 24
hours, all the voxels below the detachment layer contain
particles, and a significant fraction of the new particles
produced are immediately washed away. In the region im-
mediately below the detachment layer, QSM concentration
is low (as the molecules are continuously washed away at
the detachment layer), with the result that fewer cells in this
region are up-regulated. The percentage of cells which are
up-regulated therefore declines as the biofilm approaches
the detachment layer. Moreover, towards the end of the
run, the consumption of substrate in the biofilm below the
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Figure 4: Effect of inhibitor on up-regulation.

detachment layer reduces the diffusion of substrate to the
particles in the lower layers. As a result, the particles in
the lower layers start to shrink, as they are unable to obtain
enough substrate to meet their maintenance requirements.
This reduces the number of cells in each particle, and, as
QSM production is determined by the number of cells rather
than the number of particles, QSM production in the lower
layers of the biofilm declines, resulting in a lower overall
concentration of QSM.

Figure 4 shows the effect of introducing a signalling
molecule that functions as an inhibitor. Different concen-
trations of inhibitor were added to the bulk liquid after
9 hours of simulation time, i.e., after up-regulation of the
colony has occurred. As expected, the highest concentration
of inhibitor (80 molecules fl−1) has the greatest effect on
up-regulation, reducing the percentage of up-regulated cells
from about 85% to less than 5%. Lower concentrations,
have a less marked effect. For example, at a concentration of
20 molecules fl−1, the inhibitor only reduces up-regulation
by about 40%.

The results in Figure 4 clearly indicate that inhibition
of up-regulation is possible in our example population.
However, in therapeutic applications, the amount of inhibitor
used (corresponding to e.g., an antibiotic) is of critical
importance. In future work, we plan to investigate the
relationship between amount of inhibitor required and the
time at which it is introduced, and the maximum thickness
of the biofilm thickness which allows inhibition of up-
regulation.

7 SUMMARY

We have presented a generic multiscale framework for mod-
elling populations of cells, which spans from the cellular
level to the population level. Our model integrates population
level processes (e.g., diffusion of substrates and signalling
molecules) with individual-based models of cellular-level
processes (notably growth, division, displacement, and up-
regulation). Our approach is individual-based in the sense
that the model tracks the state of individual cells and ag-
8
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gregations of cells (particles) over time, and in utilising
multiagent simulation tools and techniques as the basis of
the simulator implementation. In contrast to previous work,
e.g., Picioreanu, Kreft, and van Loosdrecht (2004), it incor-
porates both aggregated and individual models of cellular
processes, allowing the resolution of the model to be tai-
lored for a particular modelling problem, while at the same
time remaining computationally tractable. For example, in
experiments to investigate the effect of QSM inhibitor on
the up-regulation of the population, we have successfully
simulated models containing 106 cells (104 particles) in near
real time on a single processor.

The model aims extend the state of the art in biofilm
modelling by providing support for hypothesis testing, e.g.,
“What would happen if we starved bacteria of this strain
or in this region of nutrient?” Such predictions are still
qualitative, but could be tested in the lab. While the cell
models used in the current prototype are somewhat simplis-
tic, the approach provides a generic framework into which
different types of cells and more complex models of gene
expression and signalling pathways (which are currently
the subject of a vast amount of experimental study) can
be plugged. More detailed cell level models are likely to
impact simulation performance, but we believe this can be
addressed through the support for distributed simulation are
already incorporated in the model.
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