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ABSTRACT

Quantiles, also known as value-at-risk in financial appli-
cations, are important measures of random performance.
Quantile sensitivities provide information on how changes
in the input parameters affect the output quantiles. In this
paper, we study the estimation of quantile sensitivities us-
ing simulation. We propose a new estimator by employing
kernel method and show its consistency and asymptotic
normality for i.i.d. data. Numerical results show that our
estimator works well for the test problems.

1 INTRODUCTION

Quantiles are important measures of random performance.
The α-quantile of a continuous random variable L is a value
qα such that Pr{L≤ qα}= α for any pre-specified α value
(0 < α < 1). It provides tail information of a distribution
that is often missed by other widely used measures, e.g.,
mean and variance.

Quantiles have been adopted by many industries as
major measures of random performance. In financial in-
dustry, the quantile, also known as the value-at-risk (VaR),
is widely used as a measure of capital adequacy. For in-
stance, banks and other large capitalization registrants are
required to report their VaRs by various regulations. For a
thorough introduction to VaR and its applications in finan-
cial industry, one can read the survey paper of Duffie and
Pan (1997) or the monograph of Jorion (2001). In service
industry, quantile is often used as a measure of service
quality. For instance, the out-of-hospital systems often use
the 0.9-quantile of the times taken to respond to emergency
request and to transport patients to a hospital to measure the
service quality (Austin and Schull 2003). Quantiles have
also been used as billing measures in some circumstances.
For instance, some Internet service providers (ISP) charge
their users based on the 0.95-quantile of the traffic load in
a billing cycle (Goldenberg et al. 2004).
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Quantile sensitivities provide information on how
changes in the input parameters affect the output quan-
tile performance. They play important roles in modeling,
analysis and management of random performances. Since
we typically use a model to model the random performance,
and the model always has constants, controllable and un-
controllable parameters. For the constants in the model,
the sensitivities with respect to them provide a measure
of model robustness. If the sensitivities with respect to
these constants are high, then the model is not robust to
the changes in these constants. Since the constants are
often used only for convenience, then modification of the
model may be necessary. For the controllable parameters,
sensitivities provide useful information on how to adjust the
parameters to manage the quantile performance, and they
can also be used to manage risk and to solve stochastic
optimization problems. For the uncontrollable parameters,
the sensitivities can be viewed as risk measures of the quan-
tiles. If the sensitivities with respect to certain parameters
are high, then small changes in these parameters may cause
the output quantiles to change significantly. Then the risks
with respect to these parameters are high.

Estimating sensitivities of expectations and long-run
averages have been studied extensively in the simulation
literature. Readers can refer to L’Ecuyer (1991) and Fu
(2006) for comprehensive reviews. Typical methods include
perturbation analysis, the likelihood ratio/score function
method and the weak derivative method. The estimation
of quantile sensitivities has only been studied very recently
in Hong (2007). Hong (2007) shows that the quantile
sensitivity can be written as a conditional expectation. Then
he proposes a batching estimator based on the conditional
expectation, and proves that the estimator is consistent and
follows an asymptotic normal distribution.

Kernel method has been studied extensively in the
area of nonparametric statistic and is applied to estimate
conditional expectations (see, for instance, Bosq 1998). In
this paper, we use kernel method to estimate the quantile



Liu and Hong
sensitivities. We show that our estimator is consistent and
asymptotically normally distributed for i.i.d. data.

The rest of the paper is organized as follows: Section
2 describes the problem mathematically and introduces our
kernal estimator of the quantile sensitivity. The consistency
and asymptotic normality of the estimator are studied in
Sections 3. Section 4 discusses several implementation
issues of the estimator. Numerical results are reported in
Section 5, followed by the conclusions in Section 6.

2 BACKGROUND

Suppose that the random performance can be modeled as
L(θ), where θ ∈Θ is a parameter of the model and Θ is an
open set in R. Plenty of real-life applications can be modeled
in this way. For instance, in queueing systems θ can be the
arrival rate or service rate with L(θ) being the system time,
while in financial models θ can represent market volatility,
interest rate or some other market parameters with L(θ)
being the price of some security under this parameter setting.
The parameter θ can be multi-dimensional, but all through
this paper we consider scalar θ only. This will not limit the
applicability of our analysis, since every dimension can be
considered individually for a multi-dimensional parameter.

Let qα(θ) be the α-quantile of L(θ) for any θ ∈Θ. In
this paper we are interested in the sensitivity (derivative)
of qα(θ) with respect to θ , denoted by q′α(θ).

We make the following assumptions.

Assumption 1. The pathwise derivative L′(θ) exists w.p.1
for any θ ∈ Θ, and there exists a random variable Y with
E[Y ] < ∞, such that

|L(θ2)−L(θ1)| ≤ Y |θ2−θ1|

for any θ1,θ2 ∈ Θ.

Assumption 2. For any θ ∈Θ, L(θ) has a continuous den-
sity in a neighborhood of qα(θ), and qα(θ) is differentiable
with respect to θ .

Assumption 3. For any θ ∈ Θ, let

l(t;θ) = E[L′(θ)|L(θ) = t].

Then l(t;θ) is continuous at t = qα(θ).

Then Hong and Liu (2007) prove the following lemma.

Lemma 1. If Assumptions 1-3 are satisfied, then

q′α(θ) = E[L′(θ)|L(θ) = qα(θ)]. (1)

Remark 1. Hong (2007) also proves this lemma under more
restrictive assumptions.
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Based on the conditional-expectation form of Lemma
1, this paper investigates the estimation of q′α(θ) using
simulation.

Let D(θ) = L′(θ). By Assumption 1, D(θ) exists w.p.1.
Note that D(θ) is also a random variable. For simplicity we
let (Li,Di) denote (Li(θ),Di(θ)) if there is no ambiguity.
Suppose that we have i.i.d. data {(Li,Di),1≤ i≤ n}, where
Li is an observation of the random performance while Di is
its sample-path derivative with respect to θ . In fact, for a
large amount of systems the sample-path derivatives can be
obtained with only little additional computation effort. For
instance, for a market value of a firm at some pre-specified
due date which follows log-normal distribution, the sample-
path derivative with respect to the market volatility can be
easily calculated based on the sample path itself. One is
referred to Broadie and Glasserman (1996) for the method of
deriving sample-path derivatives in many financial models.
Another example is the queueing system. If the system times
of customers in a GI/G/1 queue are considered as random
performance, then with little additional computation effort
the sample-path gradients can be obtained using Infinitesimal
Perturbation Analysis (IPA). For details of the application
of IPA in queueing networks, one can refer to Glasserman
(1991), and the references therein.

In this paper, we propose a kernel estimator to estimate
q′α(θ) using a set of i.i.d. data {(Li,Di),1 ≤ i ≤ n}. Be-
fore introducing the estimator, we briefly review the kernel
method.

By definition, a kernel on R, denoted by K, is a bounded
symmetric density such that K(u) → 0 as |u| → ∞ and∫

∞

−∞
u2K(u)du < ∞ (Bosq 1998). For instance, the density

of a normal random variable is a kernel. Kernel method
has been extensively studied in the area of nonparametric
statistics. Researchers have found that kernel method has
several advantages: it is easy to compute and robust; and
it reaches optimal rates in terms of the quadratic error. For
more details on kernel estimation, one can refer to Bosq
(1998). Typically, the kernel method involves a smoothing
parameter δn, which satisfies that, as n → ∞, δn → 0 and
nδn →∞. All through the paper, we let K denote the kernel
and qα denote qα(θ) if there is no ambiguity.

With the above preliminary knowledge, the kernel es-
timator that we propose for q′α(θ) is expressed as follows
(denoted by Vn):

Vn =
∑

n
i=1 Di ·K

(
q̂n

α−Li
δn

)
∑

n
i=1 K

(
q̂n

α−Li
δn

) ,

where q̂n
α is the α sample quantile of {Li,1 ≤ i ≤ n}, i.e.,

q̂n
α = Ldnαe:n with Li:n being the i-th order statistic from the

n observations of L.
All through the paper we assume that (L,D) is a con-

tinuous bivariate random variable with joint density f (x,y).
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Also, for any non-negative integers m, we define

gm(x) =
∫

∞

−∞

tm f (x, t)dt,

and

hm(x) =
∫

∞

−∞

|t|m f (x, t)dt.

Then by elementary calculus, Equation (1) can be re-written
as

q′α(θ) =
g1(qα)
g0(vα)

. (2)

Remark 2. In general we assume that (L,D) has joint
density f (x,y). As a special case, (L,D) can be a degenerate
bivariate random variable, i.e., D = D(L) can be viewed as
a function of L. Our method is also valid for this degenerate
case.

The rest of the paper will focus on the consistency
and asymptotic normality of the proposed estimator. Some
implementation issues will also be discussed.

To make the paper easier to follow, in the rest of this
section we state several preliminary results, which will used
many times in our analysis afterwards.

Lemma 2 (Bachner’s Lemma). Suppose that K(y) is a Borel
function satisfying the conditions: sup−∞<y<∞ |K(y)| < ∞,∫ +∞

−∞
|K(y)| dy < ∞ and limy→∞ |yK(y)|= 0. Let f (y) satisfy

that
∫ +∞

−∞
| f (y)|dy < ∞ and let {bn} be a sequence of positive

constants satisfying limn→∞ bn = 0. Let

fn(x) =
1
bn

∫ +∞

−∞

K
(

y
bn

)
f (x− y)dy.

For every x, if f (·) is continuous at x, then

lim
n→∞

fn(x) = f (x)
∫ +∞

−∞

K(y)dy.

Proof of the Bachner’s Lemma can be found in Parzen
(1962), and a direct implication of it is as follows:

Lemma 3. For any non-negative integers m and l > 0.
Suppose that

∫
∞

−∞
Kl(u)du < ∞ and E[|D|m] < ∞. If gm(x)

is continuous at x = t, then

E
[

1
δn

Kl
(

t−L
δn

)
Dm
]
→ gm(t)

∫
∞

−∞

Kl(u)du.
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If hm(x) is continuous at x = t, then

E
[

1
δn

Kl
(

t−L
δn

)
|D|m

]
→ hm(t)

∫
∞

−∞

Kl(u)du.

3 ASYMPTOTIC PROPERTIES OF THE KERNEL
ESTIMATOR

In the previous section we have reviewed the preliminary
results and introduced a kernel estimator, Vn. We will focus
on its asymptotic properties in this section. We show that
it is consistent and follows asymptotic normality.

We first define some necessary notation. We define

Vn(y) =
∑

n
i=1 Di ·K

(
y−Li

δn

)
∑

n
i=1 K

(
y−Li

δn

) .

Moreover, we let P−→ and ⇒ denote convergence in prob-
ability and convergence in distribution, respectively, and
f (m) denote the m-th derivative of the function f .

3.1 Consistency of Vn

In this subsection we show that Vn converges to q′α(θ) in
probability. The general idea of the proof is as follows: we
first prove that Vn(qα) converges to q′α(θ) in probability; and
then we show that Vn−Vn(qα) converges to 0 in probability.
Main results of this subsection are stated as follows:

Theorem 1. Suppose that E[D2] < ∞ and nδn →∞. If g0(t),
g1(t) and g2(t) are continuous at t = qα , and g0(qα) > 0,
then

Vn(qα) P−→ q′α(θ).

Theorem 1 shows that Vn(qα) is a consistent estimator
of q′α(θ). However, it’s not directly applicable since it
requires knowing the α-quantile, qα , which is typically
unknown in practice. A natural way to circumvent this
difficulty is to replace qα by its estimator q̂n

α , producing
the estimator Vn. Before the analysis of consistency of Vn,
we first make another assumption on the kernel K and then
establish a lemma.

Assumption 4. For m = 1,2,3,4,
[
K(m)

]2
is integrable and

yK(m)(y)→ 0 as |y| → ∞.

Remark 3. This assumption on the kernel is easy to satisfy.
For instance, a normal density fulfills all these requirements.
3
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Lemma 4. Suppose that Assumption 4 is satisfied. If g2(t)
and g(4)

1 (t) are continuous at t = qα , then for m = 1,2,3,4,

E

[
1

nδ
m+1
n

n

∑
i=1

K(m)
(

qα −Li

δn

)
Di

]
→ g(m)

1 (vα),

and

Var

[
1

nδ
m+1
n

n

∑
i=1

K(m)
(

qα −Li

δn

)
Di

]
=

σ2
m +o(1)
nδ

2m+1
n

,

where

σ
2
m = g2(qα)

∫
∞

−∞

[
K(m)(t)

]2
dt.

Now we are ready to state the main theorem of this
subsection.

Theorem 2. Suppose that E[D2] < ∞, g0(qα) > 0, and that
nδ 2

n converges to some positive constant or ∞. If g2(t),
g(4)

0 (t) and g(4)
1 (t) are continuous at t = qα , then Vn is a

consistent estimator for q′α(θ).

3.2 Asymptotic Normality of Vn

In this subsection we show that Vn has an asymptotic normal
distribution, which can be used to construct confidence
intervals of q′α(θ).

The basic ideas behind the proof is similar to the
previous one. We first establish the asymptotic normality
for Vn(qα), with convergence rate

√
nδn. Then we show that√

nδn(Vn(q̂n
α)−Vn(qα)) converges to 0 in probability. Then

by Slutsky’s Theorem we obtain the asymptotic normality
of Vn. Main results are listed as follows.

Theorem 3. Suppose that nδn → ∞. For some γ > 0,
E
[
|D|2+γ

]
< ∞ and h2+γ(t) is continuous at t = qα . Also,

g2(t), g(2)
1 (t) and g(2)

0 (t) are continuous at t = qα . Then, if
nδ 5

n → c as n → ∞,√
nδn[Vn(qα)−q′α(θ)]⇒ µ +σN(0,1),

and if nδ 5
n → 0 as n → ∞,√

nδn[Vn(qα)−q′α(θ)]⇒ σN(0,1),

where

µ =
c

g2
0(qα)

[g0(qα)g′′1(qα)−g1(qα)g′′0(qα)]
∫

∞

−∞

t2K(t)dt,
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and

σ
2 =

g0(qα)g2(qα)−g2
1(qα)

g3
0(qα)

∫
∞

−∞

K2(t)dt.

Lemma 5. Suppose that nδ 3
n converges to some positive

constant or ∞. If g2(t), g(4)
0 (t) and g(4)

1 (t) are continuous
at t = qα , then √

nδn(Vn−Vn(qα)) P−→ 0.

Combining Theorem 3 and Lemma 5 together yields
the following central limit theorem for Vn.

Theorem 4. Suppose that nδ 3
n converges to some positive

constant or ∞. For some γ > 0, E
[
|D|2+γ

]
< ∞ and h2+γ(t)

is continuous at t = qα . Also, g2(t), g(4)
0 (t) and g(4)

1 (t) are
continuous at t = qα . Then, if nδ 5

n → c as n → ∞,√
nδn(Vn−q′α(θ))⇒ µ +σN(0,1),

and if nδ 5
n → 0 as n → ∞,√

nδn(Vn−q′α(θ))⇒ σN(0,1),

where µ and σ are defined in Theorem 3.

4 IMPLEMENTATION ISSUES

In the previous sections we have shown that the estimator
we proposed is statistically efficient. However, in order to
use it in practice, several implementation issues need to be
considered. This section will discuss the selection of δn
and how to construct confidence intervals.

4.1 Selection of δn

We have obtained the asymptotic variance of Vn in the
previous analysis. In this subsection we will discuss the
implementation issue on how to select δn for Vn, with
the criterion being minimizing the asymptotic mean square
error of Vn. Then the key of the problem becomes how to
approximate the bias of Vn.

Direct analysis on bias of Vn is difficult. But we note
that difference between Vn and Vn(qα) is negligible in some
sense. Hence the problem can be reduced to analyze bias
of Vn(qα).

Before the discussion we specify some notation first.
Let

Rn(y) =
1

nδn

n

∑
i=1

Di ·K
(

y−Li

δn

)
,
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and

Qn(y) =
1

nδn

n

∑
i=1

K
(

y−Li

δn

)
.

Then

Vn(y) =
Rn(y)
Qn(y)

.

Similar to the analysis in Section 3, we can easily show
that Rn(q̂n

α) and Qn(q̂n
α) are consistent estimators of g1(qα)

and g0(qα), respectively.
First, we note that

Vn−Vn(qα)

=
1

Qn(q̂n
α)Qn(qα)

{Qn(qα)[Rn(q̂n
α)−Rn(qα)]

−Rn(qα)[Qn(q̂n
α)−Qn(qα)]} .

We expand Rn(q̂n
α)−Rn(qα) using Young’s Form of Tay-

lor’s Theorem (Serfling 1980) and assume that the higher
order terms can be ignored. Then an approximation can be
expressed as:

Rn(q̂n
α)−Rn(qα) ≈ 1

nδ 2
n

n

∑
i=1

DiK′
(

qα −Li

δn

)
(q̂n

α −qα).

By Lemma 4 we know that 1
nδ 2

n
∑

n
i=1 DiK′

(
qα−Li

δn

)
converges

to g′1(qα) in probability. Then it is reasonable to expect that
E [Rn(q̂n

α)−Rn(qα)] is of the same order as E[q̂n
α −qα ]. It has

been well known that under mild conditions, E[q̂n
α − qα ]

is of order 1/n (see, for instance, David 1981). Hence,
E [Rn(q̂n

α)−Rn(qα)] is of order 1/n.
Similar argument holds for E [Qn(q̂n

α)−Qn(qα)] and
hence it is reasonable for us to expect that E[Vn−Vn(qα)]
is of order 1/n.

Furthermore, similar to the analysis in Hong and Liu
(2007) we can show that under mild conditions, for large
n,

E[Vn(qα)−q′α(θ)] = µqδ
2
n +o(δ 2

n ),

where

µq =
g′′1(qα)−q′α(θ)g′′0(qα)

g0(qα)

∫
∞

−∞

t2K(t)dt.

We assume that nδ 2
n →∞. Then compared with E[Vn(qα)−

q′α(θ)], E[Vn−Vn(qα)] is of smaller order and can be ne-
glected. Therefore, an approximation for the mean square
9

error of Vn can be expressed as:

E[(Vn−q′α(θ))2] ≈ σ2

nδn
+ µ

2
q δ

4
n .

Minimizing the above approximation of mean square error,
we reach the optimal selection of δn, denoted by δ ∗n :

δ
∗
n = dq ·n−

1
5 ,

where

dq =

(
σ2

4µ2
q

) 1
5

.

During implementation, one can conduct several sim-
ulation runs to estimate dq.

Let

Gn(y) =
1

nδn

n

∑
i=1

D2
i K
(

y−Li

δn

)
.

Then, similar to the analysis in Section 3 we can show that
Gn(q̂n

α), Rn(q̂n
α) and Qn(q̂n

α) are consistent estimators of
g2(qα), g1(qα) and g0(qα), respectively.

Hence, the asymptotic variance σ2 can be consistently
estimated by

Ŝn =
∫

∞

−∞

K2(t)dt
[
Gn(q̂n

α)Qn(q̂n
α)−R2

n(q̂
n
α)
]
/
[
Q3

n(q̂
n
α)
]
.

Moreover, g′′0(qα) and g′′1(qα) can be estimated by the
finite-difference approach. Let s be the step size of finite
difference (for instance, one can choose s = 20%|q̂n

α | if
|q̂n

α |> 0). Then we may estimate g′′1(qα) and g′′0(qα) by

ĝ′′1 =
Rn(q̂n

α + s)+Rn(q̂n
α − s)−Rn(q̂n

α)
s2 ,

and

ĝ′′0 =
Qn(q̂n

α + s)+Qn(q̂n
α − s)−Qn(q̂n

α)
s2 ,

respectively.
Hence, µq can be consistently estimated by

µ̂q =
ĝ′′1 −Vnĝ′′0
Qn(q̂n

α)

∫
∞

−∞

t2K(t)dt.

Therefore, during implementation, we can conduct sev-
eral simulation runs to determine dq. Typically, we first
45
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choose δn to be n−1/5 and estimate dq by

d̂q =

(
Ŝn

4µ̂2
q

) 1
5

.

Then we set the new δn to be d̂q ·n−1/5 and estimate dq again.
After several iterations we stop and obtain an estimate for
dq, which can be used in the main simulation study.

4.2 Constructing Confidence Intervals

In the discussion in the previous subsection, we know that
a near optimal choice for δn is dq ·n−1/5 if the criterion is to
minimize the mean square error of the estimator. However,
if we are interested in constructing confidence intervals of
q′α(θ), then by Theorem 4, we prefer that nδ 5

n → 0. Then
dq ·n−1/5 violates this requirement. In this case, we suggest
to let δn = dq · n−1/3 . Then Vn has a smaller bias but a
larger variance. Then the confidence intervals have better
coverage probabilities.

Specifically, an asymptotic valid 100(1−β )% confi-
dence interval of q′α(θ) is(

Vn− z1−β/2Ŝn/
√

nδn, Vn + z1−β/2Ŝn/
√

nδn

)
,

where z1−β/2 is the 1−β/2 quantile of the standard normal
distribution.

5 NUMERICAL STUDY

In this section we will consider two numerical examples to
illustrate the performance of our estimator. The first one is
an investment problem in financial industry and the second
one is the reliability problem in the service industry. In
both examples we may derive the true values of the quantile
sensitivities. Therefore, we can test the performance of our
estimator by comparing it with the true values. For more
complex systems, theoretical values may not be derived
analytically. However, our estimator may still be applied.

In both of these examples, we let K be the density of
the standard normal random variable and consider α = 0.9.

5.1 An Investment Problem

A portfolio is composed of three risky assets. The annual
rates of return of these assets are denoted by X1, X2 and
X3, and the percentages of the total fund allocated to the
assets are denoted by θ = (θ1,θ2,θ3)′. Suppose that X =
(X1,X2,X3)′ follows a multivariate normal distribution with
946
mean µ = (0.06,0.15,0.25)′ and the covariance matrix

Σ =

 0.0004 −0.0006 −0.0009
−0.0006 0.1000 0.0044
−0.0009 0.0044 0.0484

 .

Then the portfolio annual rate of return is

L(θ ,X) = θ1X1 +θ2X2 +θ3X3,

it follows a normal distribution with mean θ ′µ and variance
θ ′Σθ . Then the quantile sensitivities of L(θ ,X) can be
calculated analytically. Suppose that we are interested in
the sensitivity of qα(L(θ ,X)), with respect to θ3, at the
point θ = (0.2,0.3,0.5)′. By simple calculation, we know
that

∂qα(L(θ ,X))
∂θ3

= 0.25+0.2135 · zα ,

where zα is the inverse function of the standard normal
distribution function evaluated at α .

On the other hand, since ∂L(θ ,X)
∂θ3

= X3, the gradient for
each sample path can be obtained. Then we can estimate
∂qα(L(θ ,X))/∂θ3 using the kernel estimator we proposed.

The estimated MSEs of the point estimator and the ob-
served coverage probabilities of the 90% confidence interval
with respect to different sample sizes are plot in Figures 1
and 2. The plots are based on 500 independent replications.
From these figures, we see that the point estimator and the
confidence interval have the desired properties.
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Figure 1: MSE of the quantile sensitivity estimator for the
investment example.

5.2 A Reliability Problem

A system has three components in sequence. If one of
the component fails, then the whole system fails. Suppose
that the times to failure of the three components can be
modeled as Xi/θi where θi is the failure rate and Xi follows
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Figure 2: Coverage probability of 90% confidence interval
for the investment example.

an exponential distribution with rate 1 for all i = 1,2,3.
Then the time to failure of the system is

L(θ ,X) = min
{

X1

θ1
,

X2

θ2
,

X3

θ3

}
.

It can be seen that L(θ ,X) follows exponential distribution
with rate θ1 + θ2 + θ3. In this example we are interested
in the sensitivity of qα(L(θ ,X)) with respect to θ1, at
θ = (1,1,1). By simple calculation, we know that

∂qα(L(θ ,X))
∂θ1

=
log(1−α)

(θ1 +θ2 +θ3)2 .

On the other hand, the sample path derivative of L(θ ,X)
w.r.t θ1 is

∂L(θ ,X)
∂θ1

=

{
− Xi

θ 2
i

if Xi
θi

= min
{

X1
θ1

, X2
θ2

, X3
θ3

}
,

0 otherwise.

Then we can estimate the sensitivity of qα(L(θ ,X)) using
the method we proposed.

The estimated MSEs of the point estimator and the ob-
served coverage probabilities of the 90% confidence interval
with respect to different sample sizes are plot in Figures 3
and 4. The plots are based on 500 independent replications.
From these figures, we see that the point estimator and the
confidence interval have the desired properties.

6 CONCLUSIONS

In this paper we propose a kernel estimator for estimating
quantile sensitivities. For independent and identically dis-
tributed data, we show the consistency and normality of the
estimator. Numerical study shows that our estimator works
well for the testing examples.
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Figure 3: MSE of the quantile sensitivity estimator for the
reliability example.

1 2 3 4 5 6 7 8 9 10
x 10

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sample size

co
ve

ra
g
e
 p

ro
b
a
b
ili

ty

Figure 4: Coverage probability of 90% confidence interval
for the reliability example.
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