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ABSTRACT 

Lean principles require the identification of an ideal sys-
tem state along with an associated policy to achieve that 
state. This paper discusses the use of multi-criteria models 
in conjunction with optimization procedures and simula-
tion in order to identify an ideal system state and associ-
ated policy. An illustration involving the determination of 
a replenishment policy for a distribution system is de-
scribed. 

1 INTRODUCTION 

The essence of lean manufacturing can be stated suc-
cinctly as the process of delivering value to the customer 
efficiently. This process is defined by the “value stream”. 
The goal of lean manufacturing, therefore, is to eliminate 
waste in the value stream.  

Lean manufacturing begins with defining customer 
needs and “optimizing” the process of satisfying these 
needs. In the manufacturing context, this would mean 
providing customers with high quality products that meet 
or exceed their requirements, in the right quantities, at the 
right time, at the lowest cost. The difficulty with imple-
menting “lean” in manufacturing results from the fact that 
many of the control factors, that drive the value derived 
by customers, are often conflicting. For example, larger 
inventory or work in process (WIP), may enable provid-
ing customers with the right quantity of products at the 
right time, however, this may conflict with the objectives 
of lower cost and efficiency; smaller lot sizes in produc-
tion and shipping may reduce inventory costs, but in-
crease manufacturing and shipping costs; uncertainties 
related to equipment availability owing to break downs 
and scheduled maintenance, variations in customer re-
quirements, quality deficiencies etc., may require the ad-
dition of inventory, or capacity, however, this would im-
ply increased cost.  Simulation enables the understanding 
of the implications of alternative solutions on multiple ob-
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jectives, thereby facilitating the selection of effective ap-
proaches towards lean.  

One of the important steps in the lean manufacturing 
process involves defining the current state of the system 
and then an ideal state that can be pursued over time. 
These system states should be defined through the use of 
a set of valid performance measures (also called attrib-
utes). Examples of such performance measures would be 
work in process, production rates, number of defective 
items produced, percentage of deliveries made on time, 
number of lost sales, etc.  

Defining an ideal state then just means specification 
of the desired values for the performance measures. How-
ever, it may not be possible to attain the desired values for 
all of the performance measures, since typically tradeoffs 
must be made between various pairs of performance 
measures. For example, it may not be possible to attain 
simultaneously the ideal values for both lost sales (which 
would result when inventory levels for specified items are 
zero) and inventory holding costs. 

One way to specify the tradeoffs of a decision maker 
is through the use of a criterion model. The next section 
of this paper discusses various examples of criterion mod-
els used in simulation studies, while the third section pre-
sents some principles from the area of multi-objective de-
cision analysis that can be used in formulation of criterion 
models. The fourth section presents a case study involv-
ing the determination of an operating policy for a distribu-
tion system. Finally, the last section of the paper provides 
a summary. 

2 DEFINITION AND EXAMPLES OF 
CRITERION MODELS USED IN 
SIMULATION

A criterion model is just a way of combining all of the 
outputs from the simulation model so that a ranking of the 
various alternatives associated with the simulation study 
can be accomplished. More formally, given any two sets 
of outputs (each associated with respective alternatives) 
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from experimentation with a simulation model, the deci-
sion maker can say that Output Set 1 is preferred to Out-
put Set 2, Output Set 2 is preferred to Output Set 1, or in-
difference exists between the two sets of outputs, through 
the use of a criterion model. 

The development and eventual choice of a criterion 
model is an important one, as ultimately this choice will 
affect the alternative chosen for implementation. In addi-
tion, this choice will (or at least should) affect the design 
of the simulation model itself, the set up for the experi-
mental runs of the simulation, and the choice of any opti-
mization procedure used in the study. For example, the 
simulation model must be designed in such a way that the 
performance measure values required by the criterion 
model are output by the simulation model.  

Of course the major determining factor for the choice 
of a criterion model is that it accurately represents the pre-
ference structure of the decision maker(s) (just as the si-
mulation model should be an accurate representation of 
the real system). The key phrase here is: “an accurate re-
presentation”—the more effort that is placed into devel-
oping the criterion model, the more accurate it will be, 
and the more likely it is that the choice of a correct alter-
native will be made as a result. Hence, as is typically the 
case in the development of any type of model, there is a 
tradeoff between effort and accuracy in the development 
of a criterion model. One wants the criterion model to be 
accurate enough so that the “best” alternative is selected 
for implementation. 

Two major considerations must be accounted for in 
the development and use of a criterion model in conjunc-
tion with a simulation study. The first consideration is just 
what should the underlying criterion model be. This im-
plies the choice of performance measures (or attributes), 
as well as how these measures are to be combined to al-
low for the inherent tradeoffs between the various pairs of 
measures. The second consideration, more subtle in na-
ture than the first, is how to address the fact that typically 
one can only achieve estimates of important performance 
measure values through experimentation with a simula-
tion model. This second consideration has important im-
plications for procedures to be used in experimentation 
and optimization. 

One of the characteristics of most simulation models 
is the large number, and wide variety, of performance 
measures which they can output. Indeed, since a simula-
tion model typically “recreates” the processes associated 
with a system, performance measure values are computed 
by executing the model and collecting output data, as op-
posed to just computing performance values as closed-
form function of input/decision variables. In addition, al-
though often glossed over, what one obtains in collecting 
output data from a simulation model are estimates of per-
formance measure values, not the actual values. This fact 
can have important implications for both the criterion 
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model chosen and the set up for experimentation used for 
the simulation analysis. 

There are a wide variety of criterion models that are 
used in conjunction with simulation models described in 
the literature. April et al (2004) describe several examples 
in their paper for various application areas involving si-
mulation, as described below. For example, in a produc-
tion problem for which the alternatives are described in 
terms of various sets of machine capacities, they suggest 
the following criterion model: 

 Maximize Factory Throughput  

 Subject to: Work-in -Process   B1,  and 
                                 Cost  B2,   
 where B1 and B2 are constants.  

Note that in this example, the performance measures 
are Factory Throughput, Work-In-Process Inventory, and 
Cost, and that there are many different criterion models 
that one could form with these performance measures; for 
example, one could use a criterion model involving the 
minimization of work-in-process inventory, subject to 
constraints on factory throughput and cost. Note also that 
this criterion model does not address the stochastic nature 
of these performance measures—that is, for any particular 
alternative, the values for the three performance measures 
can be represented as random variables. 

In a problem involving project portfolio optimization, 
the alternatives can be described in terms of which pro-
jects will be selected for investment by a company. April 
et al (2004) suggest several different criterion models for 
this situation, including the following: 

 Maximize E (NPV) 

 Subject to: SD (NPV)  $140,000,000.,  
    and a Budget Constraint. 

In this criterion model, the two major performance 
measures are the Net Present Value associated with the 
income from the investments, and the cost associated with 
the investments (i.e., the budget). Note that the uncer-
tainty in the estimate of the NPV is accounted for by plac-
ing a constraint on the standard deviation (SD) of the es-
timate of NPV. April et al (2004) provide an alternative 
approach to consider this uncertainty with the following 
criterion model: 

 Maximize E (NPV) 

 Subject to: PR (NPV  $176,000,000) <= .05.,  
    and a Budget Constraint. 
6
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In this model, the first constraint can be stated in 
words as “the probability that the net present value is less 
than or equal to $176,000,000 should be less than or equal 
to .05”. At first glance, this would seem to be a reasonable 
criterion model; but, note how this criterion model would 
favor an outcome stated as “achieving a net present value 
of $177,000,000, with probability of .96 and a net present 
value of $100,000,000 with a probability of .04” over an 
outcome stated as “achieving a net present value of 
$175,000,000 with a probability of .06 and a net present 
value of $200,000,000 with a probability of .94”. The 
second outcome would not even be considered since it is 
infeasible, yet it would be difficult to imagine a decision 
maker who would prefer the first outcome over the sec-
ond. 

Finally, in the area of project portfolio optimization, 
April et al (2004) present the criterion model given by: 

 Maximize Probability (NPV  $394,000,000)  

 Subject to: Budget Constraints and 
    Personnel Constraints. 

Each of the above criterion models, when optimized 
with the simulation model, could lead to the selection a 
different “optimal” alternative, and corresponding out-
come. This then suggests one, ad hoc, approach to the de-
termination of a criterion model: Try several different cri-
terion models, present the resulting solutions and 
corresponding outcomes to the decision maker(s), and 
then have the decision maker(s) select the preferred out-
come. The criterion model associated with this preferred 
outcome is the preferred one. Of course, such an approach 
assumes the existence of enough resources to perform the 
required analysis. It also assumes that, out of all of the 
criterion models developed, and out of the wide variety 
that could have been used, one of these is the best one to 
use.  

In a paper involving supply chain management, Jain 
(2004) employed what might be termed a “scorecard ap-
proach” as a criterion model. In this approach, the deci-
sion maker(s) are presented with the output (as measured 
by several performance measures) for several alternatives, 
and then asked to select the preferred alternative. Hence, 
the criterion model is never made explicit, but instead is 
assumed to exist in the minds of the decision maker(s), 
allowing them to rank the alternatives associated with the 
outcomes, or to at least select the “best” outcome. Of 
course, this scorecard approach, involving the use of an 
implicit criterion model, is not appropriate when some 
type of automatic optimization procedure is needed. Such 
an automatic optimization procedure is needed when there 
are so many alternatives (as in, for example, when the al-
ternatives are defined by a combination of decision vari-
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able values) that only a fraction of them can be explicitly 
evaluated.

In particular, Jain (2004) used a simulation model in 
order to study the impacts of six control parameters on 
three key performance measures: service levels, inventory 
investments, and order-to-delivery lead times, for a large 
logistics supply chain with customers located in 50 states 
and 27 countries. The fact that tradeoffs must be made 
among the three performance measures is obvious. In or-
der to keep the analysis relatively simple, a key control 
variable, administrative business process time (ABPT) 
was employed. Using the simulation model, the control 
parameters (from the six previously mentioned) which 
had a significant impact on ABPT were identified. Fol-
lowing this, again using the simulation model, graphs 
were developed illustrating the relationships between 
ABPT (as the independent variable) and the three per-
formance measures (as dependent variables) mentioned 
above.

Butler, Morrice, and Mullarkey (2001) employ the 
use of a criterion model involving the maximization of 
expected utility. Their problem involved the design of a 
signal quality survey, which is a large outdoor operation 
requiring five types of crews: a layout crew, a recording 
crew, a signal crew, a packing crew, and a transport crew. 
These projects take place over a large geographical area 
and require anywhere from 20 to 1000 people, and capital 
equipment valued in the tens of millions of dollars. Butler, 
Morrice, and Mullarkey defined four alternatives (i.e., 
configurations) for analysis. Each of the four alternatives 
was defined by resource levels on two dimensions: the 
number of source crews and the number of units of re-
ceiving equipment. The utility function used in the crite-
rion model was defined as a function of ten performance 
measures: survey cost, survey duration, productivity for 
each of four crew types, and worker satisfaction for each 
of four crew types. Of the five crew types, only the re-
cording crew was not included as one of the performance 
measures since this type of crew did not bottleneck pro-
duction. Productivity and worker satisfaction were each 
defined as functions of utilization. 

One of the difficult methodological aspects of Butler, 
Morrice, and Mullarkey’s work involved the fact that only 
an estimate of expected utility (for any specific alternative 
configuration) could be obtained through experimentation 
with the simulation model. Therefore, one can never be 
absolutely positive that the alternative which maximizes 
expected utility is selected. Hence, the criterion model 
used might be stated as: 

Maximize Expected Utility subject to: the constraint  
that the probability of correct selection is greater  
than or equal to P*, whenever the difference in the  
expected utility values for the best and second best  
alternatives is greater than or equal to *.
17
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Correct selection means that the alternative which 
gives the largest expected utility is selected. P* and *

must be input by the decision maker for this criterion 
model. P* is typically set at a value of .9 or .95.  

One of the difficulties associated with the use of the 
above criterion model is that * should have some inher-
ent meaning to the decision maker. Since the difference in 
the expected utilities for two alternatives would have no 
inherent meaning to a decision maker, like, for example, 
the difference in expected daily production rate, or the 
difference in expected cost, the use of the above criterion 
model becomes problematic in nature.  

Butler, Morrice, and Mullarkey (2001) suggest a two-
step approach in the determination of *. The first step in-
volves defining j

* for each of the various individual at-
tributes (performance measures) of the utility function. 
Since there are ten attributes in their problem, ten differ-
ent values for “indifference amounts”: 1

*, 2
*,…, 10

*

must be provided by the decision maker. Then, in the sec-
ond step, * is defined as a weighted combination of these 
individual indifference amounts. See Butler, Morrice, and 
Mullarkey (2001) for additional details. 

Anderson, Evans, and Biles (2006) applied simula-
tion and criterion models to the design of a logistics sys-
tem involving barge operations for the delivery of petro-
leum products. The criterion model used was a single 
attribute utility function with the attribute of total solution 
cost. This total solution cost was the sum of three differ-
ent costs: penalty cost (resulting from backorders), vari-
able transportation cost, and inventory holding costs. A 
scatter search algorithm was employed to perform the op-
timization. 

Lee et al (2004) present an approach to ranking and 
selection in the presence of multiple objectives in which 
no explicit criterion model is used. Their paper addresses 
the problem of determining the number of replications re-
quired for each alternative in order to find the set of non-
dominated outcomes. A non-dominated outcome might be 
loosely defined as one in which each performance meas-
ure value is at least as good as the associated performance 
measure value for any other outcome associated with a 
feasible alternative, and better on at least one performance 
measure value. Once this set is determined, a decision 
maker, or a group of decision makers, could select a best-
compromise alternative through the use of an implicit cri-
terion model. Such an approach would be especially use-
ful when there are many decision makers involved in the 
process. 

Finally, consider the optimization software package, 
OptQuest (Schwetman 2000), which is an optimization 
“add-in” for several simulation packages.. OptQuest im-
plicitly employs a criterion model which can be described 
as maximizing or minimizing a performance measure val-
ue, subject to three types of constraints: first, constraints 
related to placing upper and lower bounds on control va-
16
riable values; second, constraints on functions of control 
variables (e.g., the sum of capacities over all resources 
must be less than or equal to 10); and, third, constraints 
related to the placing of upper and or lower bounds on 
performance measure values. Note that the various alter-
natives are defined in this case in terms of the values as-
signed to the control variables. OptQuest allows two basic 
approaches to set the precision of the output. The user 
may just specify a particular number of replications for 
each alternative simulated, or the user may specify a par-
ticular half-width for the 95% confidence interval associ-
ated with whatever performance measure is being maxi-
mized or minimized. The system will make the required 
number of replications to achieve this precision. Note that 
the precision for the other performance measures (not 
considered in the objective function) are only considered 
in an implicit fashion. 

3 DETERMINATION OF A CRITERION MODEL 

As noted in the Introduction, there are two basic steps as-
sociated with the determination of a criterion model to be 
used in conjunction with a simulation model. The first 
step is the determination of the attributes (or performance 
measures) for the criterion model. The second step is the 
determination of how the attributes should be combined 
into a criterion model. 

3.1 Determination of Attributes 

Attributes basically refer to the important performance 
measures for making decisions about the system. The at-
tributes could refer to expected values/mean values (e.g., 
mean flowtime for all patients processed in the emergency 
room, mean utilization of a machine, mean number of 
customers in a queue, etc.), proportions or fractions (e.g., 
the proportion of patients who wait longer than 1 hour for 
service in an emergency room, the proportion of arrivals 
to the drive-through in a fast food restaurant which balk 
because there are too many customers in line), maximum 
or minimum values for some quantity (i.e., the maximum 
number of parts in inventory over the run of the simula-
tion model; the maximum amount of time, over all cus-
tomers, that a restaurant patron has to wait for service) or 
others.  

3.1.1 Hierarchies of Objectives and Attributes 

Keeney (1992) notes that the attributes chosen for a value 
model (what we have termed a criterion model) should 
reflect the values of the decision maker(s) with respect to 
the system under study. The objectives and attributes for a 
decision problem typically form a hierarchy, with the ma-
jor (or strategic) objectives towards the top of the hierar-
chy, and the tactical/operational objectives towards the 
18
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bottom of the hierarchy. At the very lowest level of the 
hierarchy should be the attributes for the system/decision 
problem. These attributes should provide a measure for 
how well the lowest level objectives (as well as the strate-
gic objectives) are achieved. Examples of such hierarchies 
are given in Evans and Fairbairn (1989) for planning de-
cisions at NASA, and Cambron and Evans (1991) for lay-
out design problems. 

Manheim and Hall (1967) suggest two related ap-
proaches that can be used in the development of a hierar-
chy from the top down: specification and means-end. In 
the specification approach, one specifies or categorizes
the various ways of doing something. In the means-end 
approach, one relates the means by which something is 
achieved.  

For example, consider a situation in which an analyst 
wants to develop a simulation model to be used in the de-
velopment of a schedule for the personnel of a fast food 
restaurant. (See Karwhat (1991) and Love and Hoey 
(1990) for applications of OR/simulation in restaurants). 
A schedule might imply an assignment of each of the res-
taurant’s employees to a particular set of time periods 
during the week, as well as a type of task to perform (e.g., 
order-pay and pick-up counter). The top level objective 
might be something that is typically strategic, yet nebu-
lous in nature: 

  “Optimize the well-being of all persons asso  
  ciated with the restaurant.” 

To expand on this initial, strategic, objective, the de-
cision maker(s) would answer the question:  

  “What is the means by which we can opti  
  mize the well being of all persons associated  
  with the restaurant?” 

The answers to this question would give us a set of 
lower level objectives, as follows: 

  “Optimize the well being of the restaurant’s   
  customers.” 
  “Optimize the well being of the restaurant’s   
  employees.” 
  “Optimize the well being of the restaurant’s   
  owners” 

Note that these three objectives would also corre-
spond to the “categorization” approach to specifying 
lower level objectives; i.e., the various categories of 
stakeholders (all persons associated with the restaurant) 
could be specified as customers, employees, and owners. 

Now, in the development of the hierarchy, an analyst 
must remember to only include objectives and attributes 
which can be affected by the decision in question. For ex-
16
ample, in the problem mentioned above, in which the de-
cision has to do with the best schedule for the restaurant 
personnel, attributes related to maximizing the satisfac-
tion of the restaurant’s customers should not address the 
quality of the food, since the quality of the food will not 
be affected by the restaurant personnel schedule (accept 
possibly in some extreme sense). However, attributes re-
lated to customer waiting time/flow time could be (and 
probably should be) included, since these would be af-
fected by the schedule chosen for restaurant personnel. 

Returning to our hierarchy, consider the second ob-
jective at the second level of our hierarchy: optimize the 
well being of the restaurant’s employees. The means by 
which this could be achieved could be stated in several 
different ways (keeping in mind that means must relate to 
the working schedule for the employee). For example, this 
means might be stated as any of the following: 

1. Maximize the number of employees who get 
their first choice for a  working schedule. 

2. Maximize the number of employees who receive 
one of their first three choices for a schedule. 

On the other hand, the decision maker might prefer to 
give more weight to employees with more seniority, as a 
reward for those employees.  

Consider the third objective at the second level of the 
hierarchy: “optimize the well-being of the restaurant’s 
customers”. As with the objective relating to the restau-
rant’s employees, one could think of several means by 
which this could be accomplished. For example, the fol-
lowing objectives might be stated: 

1. Minimize the fraction of customers who must 
wait longer than 5 minutes to place their order. 

2. Minimize the average amount of time that a cus-
tomer must wait prior to placing his or her order. 

3. Minimize the average amount of time that a cus-
tomer must wait prior to receiving his or her or-
der. 

The last (or lowest) level of the hierarchy will consist 
of the attributes for the criterion model, typically one at-
tribute for each lowest level objective. Normally, assum-
ing the lowest level objectives are well defined, associa-
tion of an attribute with an objective is fairly 
straightforward. For example, if the objective is to “mi-
nimize the fraction of customers who must wait longer 
than 5 minutes to place their order”, then an obvious at-
tribute is “the fraction of customers who must wait longer 
than five minutes to place their order”. 
19
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3.1.2 Categorization of Attributes 

Attributes can be categorized along two distinct dimen-
sions: natural or constructed, and proxy or nonproxy. That 
is any attribute will be one of four types: natural-proxy, 
natural-nonproxy, constructed-proxy, and constructed-
nonproxy. 

Natural attributes are typically quantitative in nature, 
and can normally be easily defined when the associated 
objective is well-defined. Examples would be attributes 
such as those mentioned above: “the fraction of customers 
who must wait longer than five minutes to place their or-
der”, or “the cost in dollars for a particular employee 
schedule”. Also, when the hierarchy is fairly detailed in 
nature (i.e., expanded about as much as possible), then 
normally the attributes associated with the lowest level 
objectives will be natural attributes. 

Constructed attributes (called subjective attributes by 
many authors) are typically associated with more nebu-
lous objectives. These more nebulous objectives often 
correspond to those objectives that are strategic (called 
fundamental objectives by Keeney 1992) in nature, and 
are therefore found at a higher level in the hierarchy. One 
might also consider these as subjective, or qualitative, in 
nature, in that one associates a subjective scale with these 
attributes. Examples of such attributes would be: “the 
overall satisfaction of our employees with their working 
schedules, measured on a subjective scale of 1 to 5”, or 
“the efficiency of our production operation, measured on 
a scale of 1 to 5”. One should usually associate a phrase 
with each number in a subjective scale for a constructed 
attribute. For example, with the constructed attribute: em-
ployee satisfaction above, one might associate the phrase: 
“extremely satisfied” with the number 5, and the phrase: 
“extremely dissatisfied” with the number 1. 

The major difficulty with a constructed attribute is 
that its evaluation is subjective in nature. For example, for 
one qualified decision maker (e.g., an owner or manager 
of the restaurant) a set of weekly working schedules (one 
schedule for each employee) could correspond to a set for 
which he/she (the decision maker) would say the employ-
ees would be extremely satisfied with. For another, but 
equally qualified, decision maker, this set of schedules 
might translate into moderate satisfaction of the employ-
ees. See Keeney (1992) for additional discussion of con-
structed attributes. 

Since outputs from a simulation model are quantita-
tive in nature, any attributes computed directly from 
simulation model outputs will be natural attributes, not 
constructed attributes. Of course one could employ con-
structed attributes in conjunction with a simulation model 
by just having a decision maker analyze the output of a 
model for a specific alternative, and render a subjective 
evaluation with respect to a constructed attribute. This 
may be appropriate if there are many attributes required to 
16
measure the performance of a system, as in the case when 
a manufacturing system produces hundreds of different 
part types (Evans, Biles, and Alexander 1992). However, 
such an approach may preclude the use of any sophisti-
cated optimization procedure in the search for an optimal 
solution.  

A proxy attribute is one which represents an indirect
measure for an associated objective (Keeney 1992). For 
example, the satisfaction of a restaurant employee with 
his or her working schedule might be indirectly measured 
by the percentage of time he or she arrives to work on 
time. As another example, a proxy attribute associated 
with optimizing the effectiveness of an ambulance service 
would be the average response time for the service. The 
advantage of a proxy attribute is that such an attribute is 
often more easily evaluated than a more direct measure 
for any specific objective. The disadvantage of using a 
proxy attribute is that, by definition, it is only an indirect 
measure of an objective (i.e., the relationship between the 
value of the proxy attribute and the achievement of the 
associated objective may not be known with certainty). 
See Keeney, page 103 (1992) for additional discussion 
concerning the use of a proxy attribute for a means objec-
tive (a lower level objective) vs. use of a proxy attribute 
for a fundamental objective.  

Proxy attributes can be very useful in the construc-
tion of criterion models to be used with a simulation mod-
el. In the example noted above, measuring the satisfaction 
of a restaurant’s customers could be accomplished with 
the proxy attribute: the fraction of customers who must 
wait longer than five minutes to place their order. The 
value for such an attribute could be easily computed by a 
simulation model. Of course, in order to prove useful, the 
decision maker must have an intimate knowledge of the 
relationship between a customer’s waiting time and his or 
her satisfaction. In this case, the decision maker would 
have to know that most customers would have a threshold 
waiting time of five minutes. (Note how this threshold 
waiting time could change depending on the country in 
which the restaurant is located).  

Finally, Keeney and Raiffa (1993) suggest that a set 
of attributes for a decision problem satisfy several charac-
teristics, labeled as completeness, operability, decom-
posability, lack of redundancy, and minimum size. 

3.2 Combining the Attributes into a Criterion 
Model 

The key concept associated with combining of attributes 
into a criterion model has to do with representing the pre-
ference structure of the decision maker(s) in an accurate 
fashion. Hence, the criterion model must account for the 
tradeoffs among the various pairs of attributes as well as 
the uncertainty (and inherent risk) in the values for the at-
tributes as estimated from the simulation model.  
20



Evans and Alexander 
A general form for a criterion model can be stated as 
follows: 

Maximize/Minimize f (X1, X2, …, Xn)| gi (X1, X2, …, 
 Xn) , , or = Bi, for i = 1,…, n),  

where f is the objective function, gi are constraint 
 functions, Bi are constants, and the X1, X2, …, Xn are 
 the attributes of the problem.  

Examples of objective functions include the follow-
ing: expected value of a multi-attribute utility function, a 
multi-attribute value function (see Chapter 3 of Keeney 
and Raiffa 1993), an attribute value (i.e., Xi, for a particu-
lar i), and the probability that the value for attribute i is 
greater than or equal to a particular number Pr (Xi  .9). 

Examples of constraints include the following: the 
probability that Xi is greater than or equal some constant 
is less than or equal to a specific probability (e.g., the 
probability that the waiting time of a customer at our fast 
food restaurant is greater than or equal to 5 minutes 
should be less than or equal to .05), and the expected val-
ue of an attribute should be greater than or equal to some 
constant (e.g., the expected utilization of our average 
worker should be greater than or equal to .8). 

One important factor to keep in mind, related to 
whether to consider an attribute in a criterion model 
through the use of a constraint or through the use of an 
objective function, is that once a constraint is satisfied, no 
increased value can be attained by the improvement of the 
attribute value associated with the constraint. This fact 
was illustrated through some of the examples discussed in 
Section 2 above. Hence, if an attribute is of particular im-
portance, and there is no “natural constraint” with which 
it is associated, then it may be best to include it within an 
objective function. 

A multi-attribute utility function, by definition, is the 
most accurate representation of a decision maker’s prefer-
ence structure (see Chapter 16 of Clemen 1996). That is, a 
utility function (which is specific for a decision maker) is 
defined by the fact that the expected value of the utility 
function for a probabilistic outcome is greater than the 
expected value for the utility function for a different 
probabilistic outcome if and only if the decision maker 
prefers the first probabilistic outcome to the second. The 
major difficulty with the use of a utility function has to do 
with its assessment, or determination, especially when the 
number of attributes is large (e.g., greater than three or 
four). One reason for this difficulty has to do with the fact 
that, in order to accomplish the assessment, the decision 
maker(s) must answer questions concerning rank-
ings/tradeoffs over probability distributions over the out-
come space. These questions can be very difficult to an-
swer. See Clemen (1996) for additional discussion 
concerning the assessment of multi-attribute utility func-
tions. 
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In some sense, however, a multi-attribute utility func-
tion represents a very natural component of a criterion 
model for use in a simulation study, since the output from 
a simulation model is probabilistic in nature. However, as 
noted by Butler, Morrice, and Mullarkey (2001) and as 
mentioned earlier, when using expected utility as a por-
tion of a criterion model, one must be concerned with the 
fact that only an estimate of expected utility can be at-
tained for any particular alternative. The precision of the 
estimate can be improved with more replications, but it 
still remains an estimate. One could use an approach such 
as that described by Butler, Morrice, and Mullarkey (2001) 
or one could employ a less sophisticated approach, in-
volving a specification that the confidence interval for ex-
pected utility be of a certain width. In many cases, it may 
be appropriate to assess a utility function over only a few 
of the most important attributes, while restricting the val-
ues of the other attributes through the use of constraints. 
This would alleviate the problem of assessment when 
many attributes are involved. 

4 A CASE STUDY INVOLVING A 
DISTRIBUTION SYSTEM 

As noted by Standridge and Marvel (2006), lean concepts 
are applicable to supply chains and distribution systems as 
well as manufacturing systems. The case study described 
here involves a distribution system for parts used in as-
sembling signs. This system is composed of approxi-
mately 100 active vendors which distribute approximately 
5,000 stock keeping units (SKUs) to one distribution cen-
ter (DC) and 19 branch warehouses located throughout 
the continental United States. The various SKUs are 
grouped into product lines. The DC followed a regular 
shipping schedule to each of the branch warehouses.  

Customers of the system purchase parts on a daily 
basis at the branch warehouses and the DC (i.e., the DC 
also acted as a branch warehouse). The branch ware-
houses replenish their inventories by ordering stock either 
from a vendor or from the DC, while the DC always or-
ders its stock directly from a vendor. The main decisions 
of interest had to do with whether the branch warehouses 
should order stock directly from a vendor or through the 
DC; these decisions could vary by product line and 
branch warehouse.  

The branch warehouses use different ordering poli-
cies depending on whether they order from the DC or the 
vendor. When a branch warehouse ordered its stock for a 
product line from the DC, an (s, S) policy was followed—
that is, when an inventory level reached the reorder point, 
s, for any SKU in the product line, an order was placed to 
the DC for the ‘order up to S’ amount. The values of s and 
S could vary by SKU and were dependent on parameters 
such as forecast demand and lead time from the DC as de-
termined from the DC’s shipping schedule. 
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When a branch warehouse orders stock for any SKU 
for a product line directly from a vendor, a “class me-
thod” is used in setting the ordering policy. With this me-
thod, whenever the inventory for a SKU falls below a par-
ticular reorder point, an order is placed with the vendor 
for a prescribed order quantity. In most cases, a vendor 
has a minimum order quantity required for a product line; 
in these situations, a branch warehouse would sometimes 
add SKUs to the order that had inventory levels above 
their respective reorder points to meet the vendor mini-
mum—i.e., the branch warehouse in question would have 
to make a decision as to whether to add additional SKUs 
to an order, or let a particular SKU (or SKUs) fall even 
further below their reorder points. The values set for the 
reorder points and reorder quantities for a particular SKU 
depended upon the projected demand and lead time for 
that SKU from the vendor. A safety factor was used in 
many cases when the demand and/or the lead time were 
highly volatile. The demand at the DC for any particular 
SKU in a product line was dependent on which branch 
warehouses had to be supplied that product line by the DC. 

A simulation model, using the Arena software pack-
age (Kelton, Sadowski, and Sturrock 2007) was built to 
represent the distribution system. Several different types 
of control variables can be input to the model; however, 
the main type investigated in this case study, as men-
tioned earlier, involved whether each branch orders a 
product line directly from the vendor, or through the DC. 
These are represented as zero-one variables, where Xj = 0 
means that branch j orders a product line directly from the 
vendor for that product line, and Xj = 1 means that branch 
j orders the product line through the DC.  

Various performance measure values are output by 
the model, including sales dollars, lost sales (which occur 
when there is a demand for a SKU and there is zero in-
ventory available to supply that demand), shipping 
charges, inventory carrying charges, and cost of purchas-
ing SKUs from the vendor. However, the two main per-
formance measures of interest were lost sales (denoted as 
X1) and inventory carrying charges (denoted as X2) for 
the entire system.  

Also, in order to keep this case study brief in nature, 
only one product line, consisting of 27 different SKUs, is 
considered. This gives us an optimization problem involv-
ing 19 zero-one decision variables; hence, considering all 
possible combinations of 19 zeros and ones, there are 2 to 
the 19th power possible solutions to this problem. 

Runs of the model were set up for a one-year dura-
tion, with a warm up period of 90 days. The current pol-
icy used by the distribution system (called the “Author-
ized Replenishment Plan”) for this product line involved 
having all 19 branches ordering the product line through 
the DC, except for branches 5, 8, and 13.  Running this 
policy through the simulation model resulted in values of 
X1 = Lost Sales of $21,001 and X2 = System Inventory 
1

Carrying Charges of $85,776 over the 275 days for which 
data was collected for the model. 

The management of the distribution system was in-
terested in achieving a leaner system — that is, one in 
which inventory levels were reduced — but not at the ex-
pense of increasing lost sales an inordinate amount. A 
simple criterion model was used in order to achieve a 
leaner system:  
 Minimize X1 = Lost Sales,   
 subject to X2 (System Inventory Carrying Charges)  C,  
where C was to be determined. 

The OptQuest optimization tool was used with the 
above criterion model, in order to choose the “best set of 
values” for the 19 zero-one control variables. Initially, C 
was set at a value of $80,000, which led to an optimal so-
lution which gave values for Lost Sales of $11,144 and 
System Inventory Carrying Charges of $72,196, an im-
provement of both performance measure values.  

Following this initial optimization, the constraint on 
system inventory carrying charges was tightened, by set-
ting C at respective values of $60,000, $50,000, $40,000, 
and $30,000; solving these optimization problems led to 
the following sets of performance measure values: 

1. Lost Sales = $11,694, Inv. CC = $57,726.  
2. Lost Sales = $18,973, Inv. CC = $49,727. 
3. Lost Sales = $33,689, Inv. CC = $38,745.  
4. Lost Sales = $93,156, Inv. CC = $28,644.   
Outcomes 3 and 4 above were viewed as unaccept-

able in terms of lost sales, while either the first or second 
outcomes were viewed as acceptable. Each of these poli-
cies allowed for a leaner system in terms of inventory car-
rying charges, but not at the expense of increased lost 
sales.

5 SUMMARY 

Lean principles require the identification of current and 
ideal states and the identification of the policy that will 
lead to an ideal state. An ideal state can be defined in 
terms of values for various performance measures associ-
ated with a system. Since typically, tradeoffs need to be 
made between various performance measures, an ideal 
state as initially defined may not be attainable. 

Using principles as procedures from the area of mul-
ti-objective decision analysis, an appropriate criterion 
model can be identified which, when used with an optimi-
zation procedure and simulation model, will allow for the 
identification of an ideal system state along with a policy 
that will lead to that ideal state. 
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