
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

APPLICATION OF COMBINED DISCRETE-EVENT SIMULATION AND OPTIMIZATION MODELS IN
SEMICONDUCTOR ENTERPRISE MANUFACTURING SYSTEMS

Gary Godding Karl Kempf
Hessam Sarjoughian

Arizona Center for Integrative Modeling & Simulation Corporate Planning and Logistics Group
Computer Science and Engineering Department Intel Corporation

Arizona State University Chandler AZ, 85226, U.S.A
Tempe, AZ 85281-8809, U.S.A.
 ABSTRACT

It is a common practice to use simulation for validating dif-
ferent types of control and planning algorithms. However,
the science of how to rigorously integrate simulation and
decision models is not well understood and becomes criti-
cally important as the complexity and scale of these mod-
els increase. In our research, we have developed a method-
ology for integrating different types of models using a
Knowledge Interchange Broker (KIB). In this paper we de-
scribe a supply-chain semiconductor application where the
KIB has been used as an integral part of developing and
deploying a commercial Model Predictive Control model
for use in operating a multi-billion dollar supply chain. The
simulation based experiments facilitated developing and
validating the controller design and data automation for a
real-world semiconductor manufacturing system.

1 INTRODUCTION

The mounting complexity and scale of semiconductor
manufacturing supply-chain systems have demanded ad-
vances in contemporary modeling and simulation ap-
proaches, tools, and practices. A key concept for handling
complexity of discrete-part supply-chain systems is to par-
tition them in ways to allow modeling each separately. A
particular requirement of operating these types of supply-
chain systems is to account for interactions among manu-
facturing and decision systems.

To achieve optimal inventory of parts, efficient proc-
essing of manufacturing units and delivery of products to
their destinations in a cost-effective manner, a variety of
process and planning models are needed (Kempf 2004). A
class of semiconductor supply-chain system models have
been developed using Discrete Event System Specification
(DEVS)(Zeigler, Praehofer, and Kim 2000), Model Predic-
tive Control (MPC) (Qin and Badgwell 2003), and Knowl-
edge Interchange Broker (KIB)(Sarjoughian 2006). These
models described in multiple formalisms can be composed
171-4244-1306-0/07/$25.00 ©2007 IEEE
and executed together through the KIB to reveal dynamics
of the supply-chain system parts and their interactions.

The previous models of multi-formalism semiconduc-
tor supply-chain systems have been developed in labora-
tory settings with reduced scale and scope. They were
shown to exhibit behavior consistent with the real-world
systems by carrying out a suite of experiments. Although
these integrated models have been crucial for demonstrat-
ing the viability of KIB for semiconductor supply-chain
networks, their use in industry had not been undertaken
previously.

In this paper we describe a simulation/optimization
testbed developed to enable the specification and testing of
a production MPC model. We show the application of the
systematic integration of DEVS and MPC models using a
KIB model has resulted in an environment that enabled the
specification of a MPC suitable for operation in an actual
semiconductor supply-chain system. The resulting MPC
configuration was deployed in an industrial scale pilot
study to control actual material flow over a period of sev-
eral months. We conclude with an analysis of the role of
KIB in a real world operational setting, the lessons learned,
and future work.

2 BACKGROUND

Simulation and decision science are two distinct disciplines
with many facets of ongoing research across different ap-
plication domains. In the domain of semiconductor manu-
facturing, a variety of approaches have been devised to in-
tegrate discrete event simulation and optimization models.
Among existing works, the most common approach is to
implement ad-hoc interfaces to allow models written in dif-
ferent programming languages to exchange input and out-
put via custom software.

Unlike those ad-hoc techniques, an approach has been
developed where disparate model specifications using dif-
ferent execution algorithms can be rigorously composed
using the Knowledge Interchange Broker (KIB). The con-
29

Godding, Sarjoughian, and Kempf
cept behind this approach is to match model semantics and
enable execution interoperability through the KIB (Figure
1). This concept has been applied for the class of Discrete
Event System Specification (DEVS) integrated with Reac-
tive Action Packages (Sarjoughian and Huang 2005), Lin-
ear Optimization (Godding, Sarjoughian, and Kempf
2004), and more recently Model Predictive Control (MPC)
(Huang and Sarjoughian 2006).

In the case of DEVS and MPC, the Knowledge Inter-
change Broker accounts for specificities of the DEVS and
MPC structural specification and dynamical behaviors. The
KIBDEVS/MPC model specification accounts for combining
the DEVS and MPC models and thus ensures the correct-
ness of their integrated structures and behaviors. The
KIBDEVS/MPC execution algorithm accounts for the com-
bined execution of the DEVS simulator and the MPC
solver in such a way that it can correctly execute the DEVS
and MPC model specifications. Separating model compos-
ability and execution interoperability is found to be key for
modeling of complex interactions among models that are
described in disparate modeling formalisms. The interac-
tions account for simple and complex data transformations
and synchronous execution of DEVS and MPC models.

execution interoperability

Model

Specification

DEVS

Execution

Algorithm

MPC

Execution

Algorithm

Model

Specification

Model

Specification

Execution

Algorithm

KIBDEVS/MPC

model composability

Figure 1: Integration of DEVS and MPC models with KIB

3 PROBLEM DESCRIPTION

The MPC must be tested before it can be put into produc-
tion. This is to assure correct operation and avoid un-
planned disruption to the business. We have developed de-
tailed and realistic simulations of the manufacturing lines.
How to integrate these DES models with production con-
trollers is the challenge.

First, the I/O for the two models is very different. The
control model requires an initial state to be populated into
one set of variables and the results to be read from another
whereas the DES reads and writes data via event messages.
Second, the granularity of data sent between the models is
generally very different. In semiconductor planning /
manufacturing types of problems, manufacturing systems
17
create data in discrete batches of lots over small time inter-
vals (hourly asynchronous), whereas the decision models
generally needs an aggregated view of the data over longer
intervals (days/weeks) of time. Third, coordination of exe-
cution between the two models must be addressed. We
must consider when to run the control model in respect to
the simulation and vise versa. This requires the synchroni-
zation of solver runs and simulation events.

The above requirements suggests that the integration
methodology must enable the mapping of different types of
data structures, provide aggregation/disaggregation data
transformation capabilities, and enable a flexible synchro-
nization capability. These are the capabilities afforded by
the KIB approach and exemplified below.

3.1 Example Problem

Figure 2 shows a semiconductor manufacturing topology
consisting of two fabrication factories, two assembly ware-
houses, and two semiconductor assembly test (AT) sites
being controlled by a wafer shipping decision system. The
factories can ship their products to the two assembly ware-
houses. Material from the warehouses can be released into
semiconductor assembly test. When and how much product
being released from the assembly warehouses is deter-
mined by starts schedules from the associated assembly
test site.

Figure 2 – Example Problem

A controller is connected to make decisions on routing
material leaving the fabrication factories. The objective of
the controller is to keep the warehouse inventory within
upper and lower control limits. Input states to the controller
are product that was shipped, warehouse inventory levels,
forecasted builds of the fabrication plants, and forecasted
starts from the assembly test sites. The output of the con-
troller are commands that dictate the quantity of each
product to be shipped from a given fabrication factory to
the assembly test warehouses.

This example problem has several sources of stochas-
tic behavior. The fabrication and assembly processes have

Wafer Shipping Decision System

What warehouse to send products from the factories

Control

Manufacturing

Factories

Warehouses

Instructions

State

Material Flow

Assembly

Warehouse 2

Assembly

Warehouse 1

Fabrication

Plant 2

Fabrication

Plant 1

Shipping

Assembly

Ship 1

Ship 2

Ship 3

Ship 4

AT1

AT2

Wafer Shipping Decision System

What warehouse to send products from the factories

Control

Manufacturing

Factories

Warehouses

Instructions

State

Material Flow

Assembly

Warehouse 2

Assembly

Warehouse 1

Fabrication

Plant 2

Fabrication

Plant 1

Shipping

Assembly

Ship 1

Ship 2

Ship 3

Ship 4

AT1

AT2
30

Godding, Sarjoughian, and Kempf
stochasticity in the throughput time and yield. This intro-
duces error in the forecasted supply and starts schedules
seen by the controller. The shipping has variability in tran-
sit times to different world geographies. This causes sto-
chastic arrival times of material to the assembly ware-
houses. And finally, the boxes of lots leaving the
fabrication plant are variable in size due to yield differ-
ences. Lot sizes are not adjusted prior to shipping so the
quantity of material shipped to a material warehouse may
be different than what was requested by the controller. For
example, the controller may instruct 200 units be sent,
however, if there are 3 lots of quantity 90, all 3 lots would
be sent resulting in an actual ship quantity of 270. The
third lot would not be split to match the actual requested
quantity.

The material in the manufacturing system exhibit for-
ward flow, however their dynamics are implicitly con-
trolled through feedback effects via the controller (decision
system). The decision system uses feedback from historical
events and current state to generate instruction on what to
do in the near future. Combination of feed-forward and
feedback flows creates complex dynamics in the individual
manufacturing and decision systems and across the supply-
chain system.

The types of studies we want to carry out are to find
the right data feeds, data granularity, and control frequency
to effectively keep the warehouse levels within desired
limits. This implies the simulation environment needs to
support experimentation with data interfaces to the control-
ler at different synchronization frequencies. Two types of
questions we could answer would be the granularity of
forecast data (e.g. weekly and daily) and how often do we
need to rerun the control (daily, shiftly, or hourly).

Using our multi-formalism modeling approach, this
problem is separated into three different models. The con-
troller is modeled and implemented using MPC. The
manufacturing topology is modeled using DEVS. The data
and control integration is modeled using the KIB.

3.2 Integration Example

We will work through an integration example based on the
model in Figure 2 using MPC and DEVS. The MPC will
send instructions to the DEVS simulation based on state
values it has received from the simulation. The integration
requires modeling of instructions going to the fabrication
plants and all required state messages back to the MPC.
How to coordinate the execution of the MPC and DEVS
simulation also needs to be modeled.

3.2.1 Manufacturing Integration Data

The fabrication plant processes material in batches or lots.
Each lot has a quantity and product name. The output
states for factory ships and warehouse inventory are de-
173
fined in terms of collections of lots. The lot has a unique
name and a quantity of one type of product. A structure for
a lot is defined as:

Lot Structure
 Name: Unique identifier
 ProductName: String
 Quantity: Integer

The data for the supply forecast is specified as a vector
of material currently in the factory. The factory can be di-
vided into a number of ‘buckets’. For example, the factory
could be divided into two buckets, material in the front and
back halves of the factory. The controller can use this vec-
tor to predict supply.

The demand forecast is a vector giving the controller a
view into the future orders. This vector is specified in time
units. In the real world this vector would be supplied by the
assembly test sites as future starts schedules. In the simula-
tion it is generated from a distribution.

3.2.2 Controller Integration Data

Assume the controller outputs a matrix of quantities for
each factory that specifies how much to release of each
product and where it should be shipped. For the model
shown in Figure 2 there would be two output matrices, one
for each factory.

 An example of how this matrix could look is shown
below (1). The matrix is a 3 n vector that specifies a
product number, a destination warehouse number, and a
quantity where n is the number of product and destination
combinations.

n

n

n

QQ

DD

PP

...

...

...

1

1

1

 (1)

The product number is mapped to one of the products
built by the factory. The destination number specifies
which warehouse the material should be shipped to, and
the quantity specifies how much.

3.2.3 Data Transforms

The control model requires data to be input in terms of
units. For some types of data such as factory shipments, the
quantity of product that leaves must be aggregated over a
controller interval. For example, if the controller interval is
one day, the quantities from all lots that left the factory in
the previous day would be aggregated into a single value
for input into the controller on the start of the current day.
The value is calculated as shown in equation (2):

Product
Destination

Quantity
1

Godding, Sarjoughian, and Kempf

tdpLotsOutlot

quantitylotdpf
,,

),((2)

where p products, d destinations, previousCon-
trolTime < t currentControlTime.

If the controller interval is daily and the manufacturing
model runs hourly, the controller instructions need to be
disaggregated. For the mapping of the controller release to
the simulation, lets assume that the value needs to be di-
vided equally over each of the simulation time intervals.
For example, if the simulation is running at an hourly
granularity and the controller is generating instructions
once a day, the controller instruction would be divided by
24. In general, the disaggregation could be more complex,
but for illustration this simplified algorithm will be used.
The equation for the equally divided disaggregation is:

sf

cf
crdpg qdp ,,),((3)

where g(p,d) is factory release quantity for product p going
to destination d, cr is controller release quantity, cf is con-
troller frequency, and sf is simulation frequency.

3.2.4 Mapping between Vectors and Events

We must now consider how the data and control will trans-
ferred between the two formalisms. For the discrete event
simulation we must read and write events to a running
simulation. For the controller, we must populate input vari-
ables, initiate a solver run, and then read the output vari-
ables.

Suppose the simulation is running at hourly granular-
ity and the controller is generating instructions once a day
using the format shown in (1). Next lets assume the con-
troller outputs a matrix of quantities specifying how much
to release of each product and where it should be shipped
for factory 1 as shown below:

 Factory1Ships =

50010001000
121
211

 (4)

The controller output instruction needs to be mapped to
simulation input events. The simulation input events have
the following structure:

ReleaseEvent(
 SimulationPort,
 Data(product, destination, quantity))

The simulation port specifies where the event should
be directed to. The data has three elements, what product
17
this event is for, what destination warehouse the product
should be shipped, and the quantity to ship.

To accomplish the mapping and transform we need to
first consider which entity the controller output matrix is
for. Since the name of the matrix is Factory1Ships, we
can assume it is for factory1. This must be explicitly
mapped in the KIB integration model. The controller out-
put matrices with name Factory1Ships will be mapped to
DES events going to the release input port for factory one.
Next, each column of the matrix needs to be transformed
into simulation input events. Each matrix element [column
i, row j] is a positive scalar value (e.g., Factory1Ships
[0,2]=1000). We will work through the first column in ma-
trix (4). This column shows that 1000 units of product 1
should be sent to warehouse 1. Lets assume that both the
controller and simulation use the same number scheme for
products and destinations. Since the controller is running
once a day and the simulator running hourly, we will need
to generate 24 simulation events for each hour of the simu-
lation on that day. The quantity will need to be transformed
using equation (3). The transformed quantity value for the
first column in (4) would be 1000 * 1/24. The simulation
data event values in the 24 generated events would be:
data(1,1,1000/24). The mapping between structures would
look like:

ReleaseEvent(FactoryOneReleasePort,

Data(Factory1Ships[0,0],

 Factory1Ships[1,0],

 g(Factory1Ships[0,0],

 Fatory1Ships(1,0])))

Pictorially, the mapping of data between the two mod-
els is shown in Figure 3. Read and writes of the data are
happening between the simulation event structures and the
controller matrices across different time scales. In addition,
the data is being transformed to match the semantics of the
target model.

Interval 1

Interval2

Simulation

Events

Discrete Event

Simulation

f(p,d)

g(p,d)

MPC

Controller

ct

Days Hours

ct + 1 st + 24

stInterval 1

Interval2

Simulation

Events

Discrete Event

Simulation

f(p,d)

g(p,d)

MPC

Controller

ct

Days Hours

ct + 1 st + 24

st

Figure 3. Transforms over Different Time Scales
32

ghian, and Kempf
Godding, Sarjou

3.2.5 Data and Time Synchronization

For the experiments, we require that the models can be
configured to run in multiples from the other. For example,
we could have the simulation run every hour and have the
controller to run every simulation interval, or it could run
once every 8 hours, 12 hours, etc…

When we change the synchronization frequency it will
impact when to send the data between the models and the
aggregation/disaggregation data transformations. For ex-
ample, when running the controller daily and simulation
hourly, the quantity of die in all the lots that have left the
factory in the last 24 hours on each control cycle need to be
added. If we were to change the frequency to control once
a shift (8 hours), then we would only need to sum the die
over the last shift. Conversely for the factory release com-
mands, in the daily control cycle, 24 events would need to
be sent. In the shiftly control scenario, only 8 events sent
per control cycle.

4 KIB APPROACH

To integrate the models we use a Knowledge Interchange
Broker (KIB). The KIB provides a methodological way to
integrate multi-formalism models. The KIB enables the
modeling of data transforms, mapping of data elements,
and the specification of control. Figure 4 shows the con-
ceptual view of a KIB model applied to the model shown
in Figure 2.

Figure 4. Composition of DEVS and MPC with KIB

The KIB allows the data integration to be modeled in-
dependently from the other models. In the case where we
want to design a controller, it enables the experimentation
of running a controller against an established detailed
simulation. When changing controller interfaces to read
different abstraction of the data, we can change the KIB
model independently of the simulation model.

DEVSKIB

Orders
Variables

Supply
Variables

Ships
Variables

Inventory
Control

Variables

MPC

AT1 Orders

AT2 orders

Predictive
Models

Dependent
variables

Inventory
Control
Limits

f1
Fabrication

F2

Assembly

Warehouse2
W1 Inventory

W2 Inventory

F1 Supply

F2 Supply

F2 Ship Cmd

F1 Ship Cmd

Fabrication

F1

Assembly

Warehouse1

Ships 2

Ships 1

Independent
variables

Event DataVariable Data

g1

f2

f3

f4

Event

Coordination

Solver

Coordination

Control

Function

Ship 1 Ship 3

Ship 4

AT1 AT2

Ships 4

Ships 3

Ship 2

DEVSKIB

Orders
Variables

Supply
Variables

Ships
Variables

Inventory
Control

Variables

MPC

AT1 Orders

AT2 orders

Predictive
Models

Dependent
variables

Inventory
Control
Limits

f1
Fabrication

F2

Assembly

Warehouse2
W1 Inventory

W2 Inventory

F1 Supply

F2 Supply

F2 Ship Cmd

F1 Ship Cmd

Fabrication

F1

Assembly

Warehouse1

Ships 2

Ships 1

Independent
variables

Event DataVariable Data

g1

f2

f3

f4

Event

Coordination

Solver

Coordination

Control

Function

Ship 1 Ship 3

Ship 4

AT1 AT2

Ships 4

Ships 3

Ship 2
17
4.1 KIB Mapping and Transforms

The KIB must support both the mappings of fields within
data structures and transformation of the data. The data in
an array entry may need to be mapped to a record field, but
the array data may also may need to be transformed to a
different abstraction.

The general requirements for mapping between the
source and target transforms in our supply network prob-
lem are:

Multiple source data structures can be mapped to the
same target structure. An example would be arrays
from two different sources need to be mapped to sin-
gle target set structure.
One source structure can have multiple targets. Exam-
ple is when elements of a source set need to be
mapped to multiple target variables.
Different fields of a source structure may map to dif-
ferent target structures
Multiple mappings and transforms must be configur-
able on the same data.

In the following two sections we will describe the
mappings and transformations needed to implement our
DEVS/MPC simulation test environment.

4.1.1 Mappings

This section lists the data mappings that had to be provided
by the KIB configuration modeling language.
 UnorderedSetToArray: This mapping copies an un-
ordered set of tuples to an ordered array. One of the data
fields in the set has to be specified as an index field. The
transform uses the index data values to do the ordering.

ArrayToUnorderedSet: An array of values is copied
to a set of unordered tuples. The array index value can be
copied to a set tuple field. If the array is part of structure,
the other fields of the structure will be copied to one of the
set tuple fields. For example, if you have a structure that
contains field for product name and another field that con-
tains an array of n values, a set can be created with n tuples
where each tuple contains the product name, one of the ar-
ray values, and the index for that array value. The starting
value for the index can be specified.

ArrayValueToVariable: This mapping copies a spe-
cific array value to a single variable. The array index needs
to be specified. Also, if the array is part of a structure, a
key field with its matching data value can be specified. An
example is would be a structure that contains a product
name and an array of values. You could specify that array
entry 3 of productX be written to this variable.

VariableToArrayValue: This mapping copies a vari-
able value to a specific array entry. An index number needs
33

Godding, Sarjoughian, and Kempf
to be specified. Also, a key entry can be specified for ar-
rays that are part of a structure.
 SetFieldValueToVariable: This mapping copies a
specific field value to a single variable. A key field needs
be specified to determine which set tuple to use. For exam-
ple, if you have a set of tuples where each contains a prod-
uct name and quantity, you can specify that the quantity for
productX be copied to this variable.
 VariableToSetFieldValue: This transform copies a
variable to specific field in a set tuple. The field name in
the tuple needs to be specified, along with a key value.
 Copy: The values of the fields from one model is cop-
ied into variable in the other model. The names do not need
to match, just the data type. For example, integers can only
be copied to integer fields.
 Copy Exactly: The structure and data is copied to
identical structure in other model. Names of variable and
their values are maintained.

4.1.2 Transformations

This section lists the data transformations that had to be
provided by the KIB modeling language.

FloatToInteger: This transforms the data value from
float to integer. A rounding algorithm of floor, ceiling, or
round must be specified.

IntegerToFloat: Converts an integer value to a float.
AssignValue: Assigns a value that is configured in the

KIB model to a data field. This is a static value that cannot
change during the execution.

Aggregations (Mean, Median, Min, Max, Sum): All
these transforms aggregate multiple values into a single
value. The aggregation can be for all values in the current
time period, or for all values in multiple time periods.
Also, if data values are in arrays, the aggregation can re-
turn an array where the entries in the returned array are ag-
gregated from multiple arrays.

Disaggregation: Different types of disaggregation can
be supported. A general purpose disaggregation is to divide
the source value into equal target values. The design of the
KIB enables extensions for customized disaggregation al-
gorithms.

Scale: Multiplication or division operations can be
specified to scale the data values.

4.1.3 KIB Control Modeling

The KIB is required to support a synchronization model
that enables the controller to run in multiples of the simula-
tion. Experiments were designed with daily, shiftly, and
hourly control against a simulation that could run at hourly
granularity. The KIB configuration model allowed the exe-
cution of either model to run in multiples of the other.

To provide this capability, the KIB had to coordinate
the timing of simulation input/output events with the solver
17
execution. It also needed to execute aggrega-
tion/disaggregation transforms across the correct time in-
tervals. The ability to adjust the aggregation/disaggregation
of data based on execution frequency is a key enabler of
experimentation at different control frequencies. For ex-
ample, if you want to try daily control against hourly data,
you must aggregate all events that occurred over last 24
hours of logical simulation time.. If you then want to try
shiftly (8 hour shifts) control, then you must only aggre-
gate over the last 8 hours for logical simulation time.

5 PILOT EXPERIMENT

The real world supply network topology is shown in Figure
5. This topology is an extension to the model shown in
Figure 2. For simplicity, shipping components are depicted
as arrows. This topology has 3 factories, 27 shipping lanes,
9 warehouses, and 9 assembly sites. Each of the fabrication
plants can produce up to 15 different products.

Fabrication 1

Fabrication 2

Fabrication 3

WH1

WH3

WH4

WH5

WH6

WH7

WH8

WH9

WH2

AT1

AT2

AT3

AT4

AT5

AT6

AT7

AT9

AT8

Worldwide

Shipping

Fabrication 1

Fabrication 2

Fabrication 3

WH1

WH3

WH4

WH5

WH6

WH7

WH8

WH9

WH2

AT1

AT2

AT3

AT4

AT5

AT6

AT7

AT9

AT8

Worldwide

Shipping

Figure 5. Real world topology

The MPC was implemented using the Honeywell
Profit SuiteTM set of applications. The DES had been de-
veloped using the DEVSJAVA simulation environment.

The MPC controller design required a different model
instance for each product built from the fabrication plants.
This resulted in 15 different product controllers that needed
to run concurrently. The product controllers were coordi-
nated using a dynamic, real-time optimizer. This optimizer
34

Godding, Sarjoughian, and Kempf
provided both dynamic coordination and steady-state opti-
mization to the underlying 15 control applications.

A separate simulation model was connected to each of
the 15 product controllers resulting in a distributed simula-
tion. That is, each of the fifteen controllers had a desig-
nated simulation model. Each simulation matched the to-
pology shown in Figure 5 but had different stochastic
distributions configured to match each of the products
characteristics for the supply and demand forecast vectors.

The KIB had to coordinate the execution of the 15 dif-
ferent simulations, 15 different controllers, and one dy-
namic, real-time optimizer. It also needed to map and
transform the data between each of the simulation and con-
troller models.

5.1 Controller Development Approach

The goal of the simulation environment was to enable the
development and validation of the controller prior to put-
ting it in production. Although this kind of simulation-
based design is common practice, the use of the KIB en-
abled experiments and engineering of the complex interac-
tions between discrete manufacturing processes and con-
troller. A two step iterative process was devised (Figure 6).

Figure 6. Simulation Iterations vs. Real World

First, the KIB model generated data that was directly
read and written into the controllers variables. Second, the
KIB model was revised to generate data the same way as
the enterprise data systems. The production data automa-
tion toolkits would be developed against simulated data
feeds.

The real world components section of Figure 6 shows
the physical systems we needed to work with. There is the
physical supply network, the corporate data systems that
capture current states and information about the physical
systems, some data automation software to transform the
data into the format required by the controller, and the ac-
tual controller system.

Simulation of

physical

supply network

KIB data

transformation

models

Data

Automation

toolkits

Controller

Simulation of

physical

supply network

KIB data

transformation

models

Physical

supply network

Corporate Data

Systems

Data

Automation

toolkits

Controller

Controller

Real world components

Simulation environment iteration 2

Simulation environment iteration 1

Simulation of

physical

supply network

KIB data

transformation

models

Data

Automation

toolkits

Controller

Simulation of

physical

supply network

KIB data

transformation

models

Physical

supply network

Corporate Data

Systems

Data

Automation

toolkits

Controller

Controller

Real world components

Simulation environment iteration 2

Simulation environment iteration 1
1

The first iteration of experiments supported the devel-
opment of the controller. Realistic stochastic simulations
were run and validated against historical data. The control-
ler was then developed and integrated with these simula-
tions using the KIB. This stage of simulation supported the
development of the controller and its required data inter-
faces. Base issues were worked out such as scalability and
controller design.

In iteration two the KIB was changed to output data to
the controller in a format that matches the corporate data
systems. The production data automation toolkits were de-
veloped during this iteration. The same simulation of the
physical models were used, however, the KIB data output
to the MPC was different. This enabled testing and devel-
opment of the production data automation toolkits for the
controller.

After the two iterations of development, the controller
and associated data automation toolkits were put into the
production configuration.

5.1.1 Findings

On the first simulation/controller runs, it was found there
would be scalability issues with the controller design and
the simulation. Although each of the models ran OK in
standalone mode, the integration highlighted invalid as-
sumptions each had made about the other system. The con-
troller had to be changed into a hierarchical design where
separate instances controlled each product. Performance
tuning had to be performed on the simulation to manage
the large numbers of active simulation entities. Changes
also had to be made in the simulation to correctly model
how discrete lots are shipped from the factory. It was
found this was an important behavior to simulate for the
controller. The discrete nature of lot sizing errors had im-
pacts on how the controller needed to be tuned.

In the second iteration, we changed KIB models to ex-
actly reproduce how data is sent and received from the
production data systems. This resulted in development of
the data automation toolkits prior to plugging the controller
into production. The KIB enabled experimentation and re-
finement of the aggregation needed for forecast vectors. It
also highlighted some invalid assumptions on how data is
provided from internal company systems versus subcon-
tractors. The KIB provided a quick and efficient way to do
experimentation with many different types of aggregation
strategies.

5.2 Results

The MPC models and production data automation toolkits
worked as designed on the first run in production. This was
a significant accomplishment since it was the first time
MPC was used in an actual production instance of a dis-
crete semiconductor manufacturing problem.
735

Godding, Sarjoughian, and Kempf
The controller design worked with a daily update to
the shipping signals. The supply and forecast vectors
needed daily granularity for the first few days, and then
could use weekly buckets for the next few weeks. When
the controller was plugged into production, it was able to
keep inventory within limits automatically at all ware-
houses as good as the current manual processes.

The team that developed the controller and simulation
comprised of 3 engineers, two senior control engineers one
software / simulation engineer. Projects of this scale typi-
cally take much more resources. Without the KIB model-
ing approach, the ability to experiment with different con-
trol frequencies and data sources would have been limited
or impossible within the time constraints. Either more time
would have been required for the simulation or less robust
controller put in at start of production.

6 CONCLUSIONS

An important benefit was the combined flexibility and
rapid controller design prototyping enabled with the KIB.
The pilot experiment was carried out concurrent with the
actual control of the production line and thus demonstrated
the impact of the KIB in industrial strength setting. This
approach to simulation-based design is indispensable in
employing new mixed tactical and strategic operation of
multi-billion dollar industries. The KIB enabled much
more experimentation (e.g., validating controller) than
would be normally possible in short time frames.

The KIB also allows for better experiments since it
highlights the integration mismatch between the models.
That is, it explicitly provides visibility to the integration
issues and provides a capability to understand the issues
and methodologically design solutions around them.

7 FUTURE WORK

We plan to extend the existing models onto other product
lines and other segments in the supply network. This adds
complications such as the increased number of planning
product configurations and consideration of complex bills
of material. We also plan to develop more advance aggre-
gation and disaggregation transforms into the KIB. The
advanced functions would be based on more detailed
knowledge of the segments of the supply network domain
being modeled.

ACKNOWLEDGMENTS

We would like to acknowledge Kirk Smith of Intel Corpo-
ration and Duane Morningred of Honeywell Corporation
for their work on the MPC.
173
REFERENCES

Godding, G., H. Sarjoughian, and K. Kempf. 2004. Multi-
formalism modeling approach for semiconductor sup-
ply/demand networks. In Proceedings of Winter Simu-
lation Conference, 232-239. Washington DC, USA.

Huang, D., H. Sarjoughian, D. Rivera, G. Godding, K.
Kempf. 2006. Experiment Analysis of Hybrid Discrete
Event Simulation with Model Predictive Control for
Semiconductor Supply Chain Systems, In Proceedings
of Winter Simulation Conference, 1863-1870. Mon-
terey, CA, USA.

K. Kempf. 2004. Control-Oriented Approaches to Supply
Chain Management in Semiconductor Manufacturing.
Proceeding of the American Control Conference,
4563-4576. Boston, MA, USA.

Qin, S., and T. Badgwell. 2003. A survey of industrial
model predictive control technology. Control Engi-
neering Practice 11 (7): 733-764.

Sarjoughian, H. 2006. “Model Composability”, In Pro-
ceedings of Winter Simulation Conference, 149-158.
Monterey, CA, USA.

Sarjoughian, H., and D. Huang. 2005. A multi-formalism
modeling composition framework: Agent and discrete-
event models. In Proceedings of the 9th IEEE Interna-
tional Symposium on Distributed Simulation and Real
Time Applications, 249-256. Montreal, Canada.

Zeigler, B., H. Praehofer, and T. Kim. 2000. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. 2nd ed.
Academic Press.

AUTHOR BIOGRAPHIES

GARY W. GODDING is a Technologist at Intel Corpora-
tion and a PhD candidate in the Computer Science and En-
gineering department at ASU. He can be contacted at
<gary.godding@intel.com>.

HESSAM S. SARJOUGHIAN is an assistant professor of
Computer Science and Engineering at ASU. He can be
contacted at <sarjoughian@asu.edu>.

KARL G. KEMPF is Director of Decision Technologies
at Intel Corporation and Adjunct Professor at ASU. He can
be contacted at <karl.g.kempf@intel.com>.
6

