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ABSTRACT

Planning, scheduling and effective management of con-
tingencies are crucial for the successful management of
construction projects. In this paper we explore a mathe-
matical representation of construction processes that can
be used to infer alternative futures of a project as it un-
folds. The representation has its foundations in temporal
constraint networks. We present algorithms that can traverse
the network in time, reason about the constraints driving a
construction project, and present the combinatorial possibil-
ities of futures that can emerge from one or more constraint
violations during project implementation. The algorithms
will aid construction managers to anticipate and react to
crisis scenarios as they evolve in time. Our broader goal is
to use the contingency information and the user responses
to reveal the cognitive strategies used by humans to manage
complex crisis scenarios.

1 INTRODUCTION

Planning, scheduling and effective management of con-
tingencies are crucial for the successful management of
construction projects. In this research effort the fundamen-
tal questions we have explored are: Can we build a system
that will allow construction managers to anticipate and mit-
igate crisis scenarios dynamically during the execution of
a construction project? Can such a system supplement the
diverse body of discrete event simulations in construction?
Finally, can it be used to complement human judgment and
decision-making rather than automate the decision process
- thus promising adaptive human-machine cognition in con-
struction decision-making?

In this paper we explore a mathematical representation
of construction processes that can be used to infer alterna-
tive futures of a project as it unfolds. The representation
has its foundations in temporal constraint networks that can
be used to represent and reason about constraints driving a
construction project, and the combinatorial possibilities of
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futures that can emerge from one or more constraint viola-
tions during project implementation. We present algorithms
that can traverse the network in time, as well as query prob-
abilities of alternative futures and calculate associated risks.
The algorithms will aid construction managers to anticipate
and react to crisis scenarios as they evolve in time. In
particular, with our representation and algorithms we can
predict contingencies and calculate the likelihood and effect
of contingencies during the implementation of a construc-
tion project. Our broader goal is to use the contingency
information and the user responses to reveal the cognitive
strategies used by humans to manage complex crisis sce-
narios. Our representation is sufficiently general to apply to
existing Discrete Event Simulations (Hajjar and AbouRizk
2002, Martinez and Ioannou 1999) and the data collected
can be used for post simulation visualizations (Kamat and
Martinez 2001).

2 BACKGROUND

In this section, we briefly discuss two points of departure
for this research: construction planning and simulation in
civil engineering; and temporal reasoning and contingency
planning in artificial intelligence.

2.1 Construction Simulations

The study of uncertainty in construction has predominantly
involved estimating cost overruns and schedule delays in
projects and estimating input parameters in simulating con-
struction operations and processes. In both of these areas
uncertainty is characterized by statistical distributions that
describe the underlying variability. Risk is defined as a
result of uncertainty, referring to a lack of predictability
about structure, outcomes, or consequences during plan-
ning (Hertz and Thomas 1983) . Risk analysis thus involves
estimating the probabilities needed as input data for the
evaluation of decision alternatives.

Traditionally contingency is budgeted into construc-
tion cost estimates as a fixed percentage of the total cost
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(Mak and Picken 2000), based on previous experience with
similar projects. Among other deterministic approaches,
contingencies are calculated based on the risk associated
with individual activities. Such approaches are limited in
quantifying the degree of confidence associated with the con-
tingencies identified. Touran (2003) explored probabilistic
methods of assessing and allocating contingencies to con-
struction projects. His premise was that the events causing
delays and budget impacts during construction projects occur
randomly according to a Poisson process. This assumption
applies for independent events because Poisson processes
require event arrivals to be independent and non-overlapping
such as arriving change-orders. It can be applied during
the early stages of project development and provides a
probabilistic alternative to predicting contingencies more
accurately than the deterministic approaches. In addition,
the approach accounts only for events that are independent
and does not take into account dependent events that occur
due to cascading constraint violations during the project
implementation.

Research in construction simulations has produced
general purpose platforms such as Simphony (Hajjar and
AbouRizk 2002) and STROBOSCOPE (Martinez and Ioan-
nou 1999) that have been very useful in modeling construc-
tion processes and operations. They emphasize optimizing
resource use and allocation. Simphony has been applied
to simulating projects that are repetitive in nature, specifi-
cally tunneling construction projects (Hajjar and AbouRizk
1999). Such simulation systems have primarily focused
on using statistical approaches to quantifying uncertainty
associated with different model inputs and parameters to
increase the accuracy of simulation output. A Bayesian
method to update the input penetration rates of a tunnel
boring machine was used in a Simphony simulation of a
tunneling operation (Chung, Mohammed, and AbouRizk
2004). Similarly, STROBOSCOPE allows statistical distri-
butions to be incorporated in the model to reflect variations
in simulation input parameters (Lee and Arditi 2006).

The Simplified Discrete Event Simulation Approach
(SDESA) enables modeling concurrent interruptions such
as random equipment failures or prescheduled worker break
times (Lu and Chan 2004). When these events are included
in the simulation, activity end times can be predicted more
accurately.

The approach in this paper is to explore uncertain-
ties arising from the underlying structure of the construc-
tion management domain. Construction management do-
main structure representation captures relationships between
processes and events, using semantics that provides the abil-
ity to automatically reason and infer about different project
outcomes. One such research effort uses belief networks
to model relationships between construction processes and
events to calculate the risks arising from the combined inter-
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actions between the identified variables (McCabe, AbouR-
izk, and Goebel 1998, Nasir, McCabe, and Hartono 2003).

This work builds on the approach that uses tempo-
ral semantics (Mukherjee and Rojas 2003) to reason about
construction activities and unexpected events resulting from
constraint violations. This research extends the existing tem-
poral semantics to represent activity schedule information,
project constraints and associated variable information using
an unified temporal constraint network. The network pro-
vides a platform to query different project futures resulting
from violations of individual or combined constraints. Un-
certainty associated with a particular future is its probability
of occurrence conditional to what has already transpired.
The system is dynamic because the network is constantly
updated to reflect recent decisions taken by managers. In
this paper we develop the ability to anticipate possible fu-
tures resulting from the defined constraints. We have limited
the scope of this paper to predominantly focus on tempo-
ral constraints, though this approach can also be used to
represent resource constraints.

2.2 Temporal Reasoning and Contingency Planning

Simple Temporal Networks (STNs) (Dechter, Meiri, and Pearl
1991) and their associated polynomial time algorithms are
widely used in temporal reasoning. An STN includes nodes
which represent events and edges between pairs of nodes
which represent temporal constraints between events. The
temporal constraints have a form such as 2 ≤ x2− x1 ≤ 5
meaning that the duration [x1,x2] between time points x1
and x2 can be between 2 to 5 time units. Deadlines are
represented by posing constraints between the starting time
(T0) and the desired time point. A shortest path algorithm
is used to check if the temporal constraints are consistent.
In construction domains, we need to explicitly represent
the reasons for the variability of durations. We also need
to reason about about the past, current, and future status
of the world. Therefore we have developed and used an
extension to STNs as explained in Section 3.2.

Contingency planners are systems that can compose
plans with branches. The contingency branches are created
automatically by reasoning about the setting in which the
plans will be operated. In one setting, it is assumed that
contingencies might arise, but execution time constraints
will not allow the detection of these contingencies. There-
fore, conformant plans, i.e., plans that contain steps to avoid
or handle contingencies in advance of execution time are
prepared (Bertoli, Cimatti, and Roveri 2001, Hyafil and
Bacchus 2003, Hoffmann and Brafman 2005). The second
setting includes full-observability planners which assume
that every component of a state including contingencies will
be detectable during execution (Boutilier, Dean, and Hanks
1999). Therefore, the plans contain steps that can handle
every possible contingency upon its detection during execu-
tion. The third type includes partial-observability planners
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which constitute the middle ground: some contingencies
are detectable, while others are not (Draper, Hanks, and
Weld 1994, Majercik and Littman 1999, Bonet and Geffner
2000, Hansen and Feng 2000). Therefore, the plans contain
steps suitable for the type of contingency.

It is important to note that contingency planners model
only contingencies arising from unknowns at the initial
state and the contingencies that result from executing plan
steps. One notable exception is described in (Blythe 1994)
where external events are modeled explicitly and Bayesian
belief networks are used to compute the probability of
plan failures. Another important note is that contingency
planners do not reason about which contingencies should be
planned for. The exceptions are (Onder and Pollack 1999)
where the system can reason about which failure points are
more important to consider, and (Meuleau and Smith 2003)
where the number of contingency branches are limited for
cognitive and computational simplicity.

The research in this paper builds on contingency plan-
ning by first shifting the focus from automatically construct-
ing contingency plans to identifying possible contingencies
and presenting them to construction managers for effective
decision making. Second, our framework allows the record-
ing of manager responses and this helps in understanding
the cognitive models underlying human decision making
under crisis situations.

3 REPRESENTATION

The representation developed in this paper builds on previ-
ous work (Mukherjee and Rojas 2003) on representing and
reasoning about construction information. The construction
management domain is conceptualized as a planning and
constraint satisfaction problem. The project plan and sched-
ule are developed in keeping with the constraints and the
objective of minimizing the total project duration and cost.
The constraints are resource constraints and /or temporal
constraints. The former allocates resources (material, labor
and equipment) to activities and the latter define relation-
ships between the activities in time and space. A violation
of one or more of these constraints can result in crisis
scenarios. Events are defined as constraint violations, that
may result from external happenings such as bad weather
or from consequences of previous decisions that result in
issues such as space conflicts between labor crews. We
define each of the terms below.

3.1 Definitions and Assumptions

The input to the simulator is a project schedule that was
prepared by a construction manager and consists of project
activities and project constraints. Formally, an as-planned
schedule is defined by a set of activities, A1,A2, . . . ,Ak, and
a set of constraints C1,C2, . . . ,Cn. Each activity Ai has a
beginning point Ai,b and an ending point Ai,e. A constraint
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relates two time points and associates penalties with various
degrees of delay. As an example consider a constraint of
the following form:
0 : 1≤ A1,e−A1,b ≤ 5
1 : 6≤ A1,e−A1,b ≤ 10
∞ : 11≤ A1,e−A1,b

The above constraints mean that no penalty is incurred if
activity A1 takes up to 5 days, a penalty of 1 is incurred if
A1 takes between 6 to 10 days, and the project will fail if A1
takes longer than 10 days. When only a single time interval
is associated with an activity, we write only the constraint
and no associated penalties are written. In such a case, the
penalty is zero if the constraint is satisfied, and the project
fails it the constraint is violated. Each activity is assumed
to take at least one unit of time. Thus, for each activity
Ai, 1 ≤ Ai,e−Ai,b is an implicit constraint. Theoretically,
each of the k2 time point pairs has an associated constraint.
In practice, most of these constraints are null and only the
activities that depend on each other have constraints.

The environment emulates activities, events and
processes pertaining to construction projects. It is char-
acterized by a set of entities, each of which describes a
unique aspect of the environment. For example, weather
and production rate are entities in the environment. An
activity is an emulation of a real life construction operation
and is represented by an interval which has the same length
as its duration. Activity intervals are dynamic in nature,
as activity durations may change during the construction
process.

The values of the variables associated with an activity
constitute a vector denoted by ~Vi. In addition to activity
specific variables regarded as “local” variables, we define a
vector of “global” variables to represent the conditions that
apply to every activity. As an example consider a simple
environment with local variables pertaining to productivity
(vi,1) and labor status (vi,2), and global variable weather
(vg,3). Assume that decking (A1) and hoisting(A2) are the
activities. Then a snapshot of the environment is as follows:

~V1 = [100% , working ] (1)
~V2 = [ 0% , on-strike ] (2)
~Vg = [ rain ] (3)

An event may result from external happenings or as
consequences of previous internal decisions that affects
the environment. An event E is represented as a triple
< Eprec,Ee f f ,Eprob >. Eprec is a set of variable values that
enable the occurrence of the event. Ee f f is the set of the
effects the event has on the environment. The set of vari-
ables affected by an event can be different from the variables
included in the preconditions. Eprob refers to the probability
of event occurrence given that the enabling preconditions
are satisfied. For example, a drop in labor productivity due
3
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to adverse weather can be represented as:
Eprec = {weather = snow, location = outdoor}, (4)
Ee f f = {productivity = 50%}, (5)

Eprob = 0.75 (6)

An event occurrence at any point of time is a reassignment to
the vector ~Vi. Events can occur across one or more activities
resulting in reassignment to the vectors corresponding to
each of the activities.

3.2 The Traversal Algorithm

We represent the simulated world as a Temporal Network
with Activities and Events (TONÂE) which is an extension
of temporal constraint networks (Dechter, Meiri, and Pearl
1991). The inputs to the system are an as-planned schedule
and a list of events that can occur. At the initialization
phase, the as-planned schedule is converted into the TONÂE
representation. In particular, the beginning and ending time
points of each activity are represented as activity nodes
(shown as circles in Figure 1). The temporal constraints
are represented as labels on the edges connecting activity
nodes. For example, in Figure 1, the link between A1,b
and A1,e shows that activity 1 takes 2 units of time. The
link between A1,e and and A2,b shows that activity 2 should
start right after activity 1 ends. For clarity of exposition,
we have shown only singleton constraints in the example.
Our implementation can handle interval constraints and
multiple constraints with associated penalties as described
in the previous section.

2,eA

T 0

A2,b

2

0

A1,b A1,e

2

A3,b A3,e

2

Figure 1: The as-planned project.

After the initial TONÂE is constructed, the simulation
starts and changes the graph at every time tick. The main
process is shown in Figure 2.

The heart of the process is the ADVANCETIME method
which is shown in Figure 3. ADVANCETIME advances and
keeps track of the state of the simulation using the concept
of present nodes. At each time point, every activity that is
ready to run is assigned a present node. A present node is
2044
Require: An as-planned schedule APS, (activities and con-
straints);
event information E-SET (set of events)

Ensure: A complete simulation of the construction envi-
ronment.

1: WORK-G ← INITIALIZEGRAPH(APS).
2: while the project has not terminated do
3: WORK-G ← ADVANCETIME(WORK-G,E-SET).
4: end while
5: return project statistics

Figure 2: The main traversal algorithm.

shown as a triangle in Figure 4, and keeps all the information
related to a running or finished activity. The values of all
the variables specific to an activity are stored within this
node. The link from an activity beginning node to a present
node shows how much time has passed since the beginning
of the activity. The link from a present node to an activity
ending node shows duration of the remainder of the activity.
For instance, in Figure 4, the links from A1,b and A3,b into
their respective present nodes are both zero because both
activities have started at the present time (T0). In Figure 5
the present nodes are at time T1. The link between A1,b and
Y1 is labeled 1 to reflect the fact that activity A1 started 1
time unit ago.

Require: WORK-G, a TONÂE;
event information E-SET (set of events)

Ensure: A simulation step of the construction environment.
1: for each running activity ai in WORK-G do
2: E-SETi ← PIMGENERATE(ai, E-SET,“traverse”)
3: for event e in E-SETi do
4: Create beginning and ending nodes for e and link

them to the present node of ai, i.e., to Yi.
5: end for
6: end for
7: WORK-G ← COMPUTEEVENTEFFECTS(WORK-G).
8: WORK-G ← CALCREMAININGDURATION(WORK-G).

9: for each running activity ai in WORK-G do
10: REMOVEENDINGEVENTS(WORK-G, ai)
11: end for
12: WORK-G ← INCREMENTY(WORK-G).
13: return WORK-G

Figure 3: The ADVANCETIME algorithm.

The third and final type of node in a TONÂE is an
event node which is shown as a square. Similar to activities,
each event has a beginning point, an ending point, and a
duration. An event such as snow is a global event and affects
all the activities. An event such as a labor strike is local
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Figure 4: Project initialization at time T0.
and affects a single activity. While simulating the passage
of time, all the events that affect a particular activity are
identified and inserted into the TONÂE. This is performed
by calling the PIMGENERATE method shown in step 2 of
Figure 3. The basic function of PIMGENERATE is to use the
event descriptions to identify which external events might
affect the running activities. For example, snow affects
outdoor activities but not indoor activities. Recall that each
event in E-SET has an associated probability of occurrence.
The “traverse” parameter causes PIMGENERATE to sample
from this probability to determine if an eligible event will
actually occur. Each event that will occur is inserted into
the TONÂE as shown in lines 3 through 5 of Figure 3. In
this paper, our focus is to automatically infer and present
possible crisis scenarios to the user. Therefore, we leave
the details on how to compute event probabilities and on
how to compute the combined effects of several events on
the same variable outside the scope of this paper. We have
implemented simple modules for PIMGENERATE, COM-
PUTEEVENTEFFECTS, and CALCREMAININGDURATION
(the latter two are explained below.)

Once all the events are recorded in the TONÂE, their
combined effects on the project activities must be computed.
For example one event might cause 50% drop in productivity,
while another causes 25%. Determining the exact rate of
productivity requires domain knowledge an is handled by
COMPUTEEVENTEFFECTS in line 7 of Figure 3. When
the combined effects are resolved, the new values of the
variables are recorded in the present node of each activity.
2045
Figure 5: Project status at time T1.
The next task is to determine the effect of the new variables
on the activity durations. For example, a drop in productivity
increases the duration of an activity proportionally. The exact
proportions are again domain dependent and are handled
by the CALCREMAININGDURATION method in line 8 of
Figure 3. For example Figure 1 shows that the as-planned
duration of activity A3 is 2. After the insertion of event
E2 in Figure 4 the duration increases to 4, and after the
insertion of event E3 in Figure 5 the duration increases to
5 ( 5 comes from 1 + 4, the addition of the labels of the
links from A3,b to Y3 and from Y3 to A3,e).

The effects of extended durations are computed and the
user is alerted if there are constraint violations. The next
step is to advance the state of the simulation to the next
time step. This is done in steps 9 through 12 of Figure 3.
First, the effects of the events that are ending at the current
time point are removed. Next, the present nodes and their
associated links are updated to reflect the passage of time.

In the next section we describe the querying algorithm
which computes the possible event combinations at a given
instance.

3.3 The Querying Algorithm

The query algorithm (Figure 6) can be viewed as a depth-
first exploration of the possible futures of a project. In lines
1 through 3, PIMGENERATE is called using the “query”



Anderson, Onder and Mukherjee
parameter so that it returns all the possible events rather
than a sampled set of events that will occur. In line 4, a
Cartesian product of all the events are taken.
Require: WORK-G, a TONÂE;

event information E-SET (set of events);
θ probability of the status shown in WORK-G occurring

Ensure: A set of possible project outcomes.
1: for each running activity ai in WORK-G do
2: E-SETi ← PIMGENERATE(ai, E-SET,“query”)
3: end for
4: E-COMB ← GENERATESUBSETS(∪ E-SETi)
5: for event-combination ec in E-COMB do
6: for event e in ec do
7: Create beginning and ending nodes for e and link

them to the present node of ai, i.e., to Yi.
8: end for
9: WORK-G← COMPUTEEVENTEFFECTS(WORK-G).

10: WORK-G ← CALCREMAININGDURATION(WORK-
G).

11: for each running activity ai in WORK-G do
12: REMOVEENDINGEVENTS(WORK-G, ai)
13: end for
14: if the project ended then
15: return project statistics
16: else
17: WORK-G ← INCREMENTY(WORK-G).
18: QUERY (WORK-G, E-SET, θ ×probability(ec))
19: end if
20: end for

Figure 6: The QUERY algorithm.

Each element of the resulting Cartesian product repre-
sents a possible future of the project. For example, assume
that event E1 with probability 0.2 can affect activity A1, and
events E2 and E3 can affect activity A2 with probabilities 0.3
and 0.6, respectively, and the events are independent. Then
there are 8 possible event combinations with the following
probabilities: { {<none, none, none>, 0.8× 0.7× 0.4},
{< E1 , none, none>, 0.2×0.7×0.4}, {< E1,E2 , none>,
0.2×0.3×0.4}, . . . , {< E1,E2,E3 >, 0.2×0.3×0.6} }. In
the remainder of the query algorithm, steps similar to the
traversal algorithm are taken for each event combination
(the loop at line 5). After the state of the simulation is
advanced, the algorithm is called recursively to consider the
possible events in the next time step (line 18).

It is important to note that there are an exponential
number of possible events at each time step. Our current
work focuses on using Monte Carlo techniques that limit
the number of possible futures shown to the user.

As expected, the above approach to querying produces
an exponential number of possible project futures. To limit
the number, we have implemented a combination of the
traversal algorithm and Monte Carlo sampling. In this
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technique, a single element of the aforementioned Cartesian
product is sampled based on its probability of occurence.
This sampled future is recursively queried, which results
in a future being sampled for the first sampled future.
This recursion continues until the query determines that the
project has either been completed or has failed. At this
point, we have sampled a single, linear, threadlike future
of the current time point in the simulation. This process is
repeated N number of times, and the result of each iteration
corresponds to a complete sample. The result is a collection
of N most statistically probable futures which can then be
analyzed for completion times and other information to be
reported to the user.

4 CASE STUDY: STRUCTURAL STEEL
ERECTION

In this section we will analyze schedule information from
a case study involving the construction of a steel frame
building. The information for the case study compiled and
documented (Daccarett and Mrozowski 2005) the construc-
tion process of the structural steel frame including detailing,
fabrication and erection. In this paper we specifically focus
on temporal relationships between activities. We briefly
discuss how the traversal and querying algorithms can be
applied to analyze problems such as the construction of a
structural steel frame office building.

4.1 Project Description

The case study described involved the construction of a
structural steel framed office building in 2003. The building
has four stories, has 80,000 square feet of built area, weighs
approximately 400 tons of structural steel or about 10 pounds
per square foot. Fabrication and erection cost $9 per square
foot. A total of 964 pre-fabricated structural steel members
were used in the construction. The standard bay size in the
building is 30 feet by 30 feet and there are 3 bays along
the width and 7 bays along the length of the building. For
this case study we used the schedule shown in Figure 7 and
the construction plan used in constructing this project.

During the planning stages the steel frame was divided
into 6 sequences as illustrated in Figure 9. Sequences
represent the order in which a zone or section of the frame
will be erected and were designed to improve efficiency of
the erection process. The project was planned so that the
construction operation involved in the sequences could be
completed in parallel. Hence, while the erection crew was
hoisting sequence 2 the decking crew could place the metal
deck on the sequence 1 that had already been completed.
This deck on sequence 1 in turn provided a work platform
when the crew were hoisting sequence 3 above sequence
1. This reduced the fall distances and helped in satisfying
work-site safety regulations because fall distances greater
than 25 feet or two floors require separate fall protection
on site (OSHA 1996).
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Figure 7: Case Study: Project schedule
Figure 8: Case Study: Building steel frame
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Figure 9: Case Study: Building steel frame
Figure 10 shows the completed hoisting activity for
sequence 3. Sequences 3 and 4 consisted of 365 pieces of
steel while sequences 1 and 2 consisted of 166 pieces of
steel. This is a hoisting rate of about 36-40 pieces a day.

Seven people formed the erection crew used for this
project. The crew consisted of one foreman, two iron
workers hooking steel, two iron workers connecting steel,
a crane operator, and an oiler. In order for the crews to
be completely utilized it was important to minimize crew
idle time. This meant that the hoisting crew would move
from hoisting sequence to sequence with minimum time in
between and would be followed in pursuit by the bolting
and connection and decking crews.

In the next section we show how this narrative can be
expressed using our system.
4.2 Constraint Information

In this section we will define the constraints that govern a
very simple representation of this project using our proposed
representation scheme. We will also explore how we can
reason about events and possible futures given the identified
constraints and our reasoning algorithms. Our primary
information sources while studying this case study were
the documented schedule information and the documented
plans and project site photographs, some of which have
been illustrated in Figures 8, 7, 9, and 10.

Based on the project narrative in the previous section
we abstract the steel erection construction process to consist
of construction of the six identified sequences. Erection of
each sequence in turn consists of the following activities:
• Hoisting
• Bolting and Detail work
• Decking
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Figure 10: Case Study: After completion of sequence 3

Each of these activities need to be completed to erect a
sequence. For the ith sequence each of these activities can
be represented as < Hi,b,Hi,e >,< Bi,b,Bi,e >,< Di,b,Di,e >.
Hence, according to our representation, as per the schedule
information we can write the temporal constraint relation-
ships for hoisting sequence 1 as:

0 : 1≤ H1,e−H1,b ≤ 2
k∗ : 2+ k = H1,e−H1,b (7)
0 : 6≤ B1,e−B1,b ≤ 7

k∗ : 7+ k = B1,e−B1,b (8)
0 : 5≤ D1,e−D1,b ≤ 6

k∗ : 6+ k = D1,e−D1,b (9)

Constraints (7, 8, 9) express information about durations
of each of the activities and the associated penalties when
the activities get delayed. Constraint (7) expresses that the
hoisting activity for sequence one should have a duration of
no more than 2 days to not incur a penalty. For durations
beyond 2 days or when there is a delay of k days, the
activity incurs a penalty which is computed by a function
of k denoted by k∗. This delay represents extra costs due
to longer equipment usage and or longer labor hours.

Similarly we can write the relationships between the
activities that comprise a single sequence as follows:

0 : 0 = B1,b−H1,e

k∗ : k = B1,b−H1,e (10)
0 : 0≤ D1,b−B1,e ≤ 0

k∗ : k = D1,b−B1,e (11)

The temporal constraints (10, 11) describe the relationships
between the activities in the construction of the first hoisting
sequence. Constraint (10) requires that the bolting and the
hoisting activities have a finish to start relationship with a lag
of 0. Similarly constraint (11) ensures that the relationship
between the bolting and decking activities is also finish to
start with lag 0.
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Next we define temporal relationships to describe the
constraint between the construction of different sequences.
The governing constraints that can be identified are:
• Constraint 1 (C1): In order to maintain work-flow

and efficiently utilize equipment lag time between
hoisting activities for sequence i and (i+1) should
be = 0

• Constraint 2 (C2): In order to maintain labor-
flow and efficiently manage crew on site, the lag
time between bolting and connection activities for
sequence i and (i+1) should be = 0

• Constraint 3 (C3): In order to ensure safety and
maintain appropriate fall distance during the hoist-
ing operations, the decking operation for operation
i should start before the hoisting operation for the
sequence (i+2)

if the above equations are considered as hard constraints
then, we can frame them as:

C1→ ∞ : Hi+1,b−Hi,e > 0 (12)
C2→ ∞ : Bi+1,b−Bi,e > 0 (13)
C3→ ∞ : Hi+2,b−Di,b > 0 (14)

Based on the violation of these constraints (7 - 14) events
can be reasoned about. The simulation reasoning mecha-
nism is required to identify violations of one or more of
these constraints and then identify resulting scenarios. For
example, if an activity is delayed, the traversal algorithm
will propagate delays and calculate corresponding penalties.
After that, the query algorithm will check with the different
combinations of constraints C1,C2 and C3 and the resulting
futures.

5 CONCLUSION AND FUTURE WORK

We have presented a formal framework that can aid in
construction decision making by reasoning about possible
crisis situations. We implemented the basic traversal, delay
propagation, and event generation functions. Our current
work involves completing the query methods. This involves
obtaining the possible futures of a project using the TONÂE
representation and converting these results into an appro-
priate graph. For example, a linear schedule (Weber 2005,
Ch. 14) can be constructed to show any differences between
the expected and the simulated project where the simulation
might exhibit buffer violations. This capability is an im-
portant feature of the TONÂE representation because users
can utilize a representation that they are accustomed to, and
view the results of the contingencies encountered.

Our future work involves taking into account the cog-
nitive load of the construction managers, recording the
decision making patterns of experienced and novice con-
struction managers and incorporating the ability to learn and
automatically suggest response plans to crisis scenarios.
8
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