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ABSTRACT

The technique of control variates requires that the user iden-
tify a set of variates that are correlated with the estimation
variable and whose means are known to the user. We relax
the known mean requirement and instead assume the means
are to be estimated. We argue that this strategy can be
beneficial in parametric studies, analyze the properties of
controlled estimators, and propose a class of generic and
effective controls in a parametric estimation setting. We
discuss the effectiveness of the estimators via analysis and
simulation experiments.

1 INTRODUCTION

To achieve estimation efficiency, Variance Reduction Tech-
niques (VRT) generally bring some auxiliary information
to bear on the estimation problem. The Control Variate
technique (CV) makes this use most explicit: Assume the
simulation objective is to estimate the mean of a random
variable Y ; The CV method relies on one or more auxiliary
random variables called controls and utilizes information
about these variables (their known means) to reduce the
variance of the estimator for E[Y ]. Hence, the CV method
can be viewed as an approach to extract and transfer infor-
mation included in controls where information is construed
broadly.

Once the source of information, i.e., the set of controls,
is identified, the mechanisms for optimal information ex-
traction and transfer are well understood and analyzed (See,
e.g., (Glasserman 2004), (Asmussen and Glynn 2007), (Nel-
son 1990), (Szechtman 2003), (Szechtman 2006), (Laven-
berg and Welch 1981)). On the other hand, while there
are some guidelines and common approaches for identify-
ing/discovering controls, the identification/discovery pro-
cess is fairly ad-hoc and its success depends critically on
the ingenuity of the user.

An effective control, say X , needs to satisfy two re-
quirements (to simplify the discussion we consider a scalar
control):

1. X needs to be correlated with Y (carry some in-
formation about Y ), and

2. E[X ] needs to be available to the user, i.e., known.

The critical barrier to finding effective controls is the second
requirement, namely the requirement of a known mean E[X ].
Users of the CV technique generally have two avenues to
explore for satisfying the second requirement: (i) use some
input (internal) random variable whose mean is given, or (ii)
use an external control X whose mean can be analytically
evaluated. Input random variables often do have some
correlation with simulation output Y but this correlation is
typically not very strong, limiting the effectiveness of such
choices except in rare cases. For a generic simulation project
with an output random variable Y it is often nontrivial to find
a strongly correlated r.v. X whose mean can be evaluated
analytically. This is mainly due to the limited reach of
analytic methods.

A modification of the CV technique called Biased Con-
trol Variate (BCV) reduces the burden of requirement 2 by
allowing for a good approximation of E[X ] when E[X ] can-
not be evaluated analytically (see, e.g., (Schmeiser, Taaffe,
and Wang 2001)). While BCV lowers the requirement
barrier and expands the range of available choices for ef-
fective controls, it nonetheless limits its potential scope by
implicitly assuming an analytic path to arriving at the ap-
proximate value (assumed to be a deterministic quantity).
In (Schmeiser, Taaffe, and Wang 2001) it is pointed out
that some practitioners use simulation to estimate E[X ] but
the paper does not promote this choice and its analysis
implicitly assumes an “analytic” approximation.

Allowing for estimation of E[X ] via simulation dras-
tically enlarges the range of choices of control variates
available to the user. On the other hand, this is a potentially
costly proposal: To obtain a high quality estimate of E[X ]
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may require a large number of samples of X , and hence
a high computational cost. In other words, a constructive
and computational approach to obtaining control variates
introduces the burden/challenge of intelligent management
and justification of computational cost, an issue that requires
careful consideration and analysis. From this perspective
analytic evaluation of E[X ] or its “analytic” approximation
can be viewed as extremely efficient methods of gathering
information about E[X ], methods that, alas, are not available
for many X’s.

In this paper we pursue this direction of investigation.
In other words, we assume that the information about X is
to be computationally gathered and then used for estima-
tion of Y 1. We present two settings where the constructive
approach can be quite effective: (1) In a parametric evalu-
ation/optimization setting where the estimation variable Y
depends on some model parameter (i.e., Y = Y (θ) for some
θ ∈Θ) and the simulation project may require simulations
at many parameters. If one set of controls can be used to
gain simulation efficiency at many parameters, the cost of
estimating the mean of the controls can be viewed as an
initial investment that accrues dividends in efficiency gains
at each estimation instance. In some projects the dividends
can easily justify the initial investment. (2) For estimation
problems where there is a real-time constraint on estimating
E[Y ], the estimation of means of controls can be viewed
as a setup/off-line cost that can lead to significantly better
estimates of E[Y ]. Often this benefit more than justifies the
setup cost.

The second thrust of the paper is to propose a generic
class of control variates in the context of parametric esti-
mation problems. The approach to deriving such control
variates is independent of the specific estimation problem be-
ing considered and is not taxing on user ingenuity. The core
idea of the approach is to use variables at one or more nomi-
nal parameters and possibly their sensitivities as controls for
estimation at neighboring parameters. Namely X1

i = Y (θi),
X2

i = ∂Y
∂θ

(θi), i = 1, · · · ,k when Y = Y (θ) ((Zhao, Borogo-
vac, and Vakili 2007a) and (Borogovac and Vakili 2008) in-
clude some experimental results from computational finance
and computational physics domains respectively; (Borogo-
vac and Vakili 2008) includes a detailed discussion). Under
mild assumptions, these controls are highly correlated with
Y and hence turn out to be very effective controls.

The rest of the paper is organized as follows. Pre-
liminaries are given in Section 2. Section 3 provides an
analysis of variance reduction for cases where the means
of controls are estimated via simulation. Section 4 intro-

1This is similar to bootstrapping (see,e.g., (Shao and Tu 1995)) where
Monte Carlo sampling is used to estimate the variance of a statistics
when an analytic formula for the variance is not available. Results
from the analysis of bootstrap estimator turn out to be relevant to our
discussions to follow.

duces parametric controls. Experimental results are given
in Section 5 and we conclude in Section 6.

2 PRELIMINARIES

We begin with an overview of classical CV and Biased CV.
This section also serves to establish some notation.

2.1 Classical Control Variate (CV)

Consider a probability space (Ω,F ,P). Assume all random
variables are defined on this space and all expectations are
with respect to P. Let L2(Ω,F ,P) (L2(Ω) for simplicity)
denote the set of random variables of finite second moment on
this probability space. In what follows all random variables
are assumed to belong to L2(Ω). Let Y be a random variable
whose mean

J = E[Y ]

is unknown and is to be estimated. In addition, assume
X1, · · · ,Xk are k control variates with known means E[Xi] =
µi. Let X = (X1, · · · ,Xk) and µ = (µ1, · · · ,µk) (all vectors
are assumed to be column vectors irrespective of how they
are presented). The following class of (linear) controlled
estimators of J is considered.

Z = Y −β
′(X−µ)

where β ∈ Rk and ′ denotes transpose. Z is the “corrected”
or controlled estimator of J where the deviations of Xi’s
from their known means are used to “correct” samples of
Y and draw them closer to its mean J and hence reduce
estimator variance.

For fixed β , Z is an unbiased estimator of J. Assuming
a nonsingular ΣX the optimal β is given by

β
∗ = Σ

−1
X ΣXY .

In this case

Var(Z) = (1−R2
XY )Var(Y )

where R2
XY = Σ′XY Σ

−1
X ΣXY . Therefore, (1− R2

XY ) is the
degree of variance reduction that can be achieved if the
optimal controlled estimator is used compared to the crude
MC estimator. It is worth noting that L2(Ω) with the inner
product

< X ,Y >= E[XY ]

is a Hilbert space. The term β ∗′(X−µ) corresponds to the
familiar orthogonal projection of Y on the linear subspace
spanned by X1, · · · ,Xk in the Hilbert space setting. Z is the
innovation term corresponding to the variation/information
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in Y that is not explainable by the control variates (see, e.g.,
(Szechtman 2006)).

In general ΣXY (and possibly ΣX ) is not known a priori.
Therefore, the optimal β is not known a priori and needs
to be estimated. The common estimator for β ∗ is

β̂ = S−1
X SXY

where SX is the sample covariance matrix of X , and SXY
is the vector of sample covariances between Y and the
components of X . The controlled estimator therefore is

Ẑ = Y − β̂
′(X−µ).

For a more thorough discussion classical CV see, e.g.,
(Lavenberg and Welch 1981), (Nelson 1990), (Glasserman
2004).

2.2 Biased Control Variate (BCV)

BCV assumes means of the controls, i.e., µi (i = 1, · · · ,k),
are not known and instead good approximations of them, say,
µ̃i (i = 1, · · · ,k), are available . To simplify the discussion
assume k = 1. Let ε = µ̃ − µ denote the approximation
error. For a fixed β , the BCV estimator is defined as

ZB = Y −β (X− µ̃).

ZB is a biased estimator of µ with bias β (µ̃−µ) = βε and
the mean square error of the estimator is

MSE(ZB) = Var(ZB)+(βε)2.

β may be selected to minimize MSE(ZB) or Var(ZB). In
either case, as in classical CV, optimal β needs to be
estimated from sampled data.

BCV expands the range of available controls at the
cost of introducing some bias. Its use can be justified if the
resulting reduction of variance is large enough to overcome
the incurred bias. In cases where some information about
the bias is available (say a bound on its magnitude) one can
construct confidence intervals for J.

Consider the case where µ̃ is exogenously available
(exogenous to sampled data, say through some analytic
approximation approach). In other words, assume obtaining
more samples does not affect the approximation error ε .
(Schmeiser, Taaffe, and Wang 2001) provides an insightful
analysis of this case and show that when

n <
σ2

X
ε2

(n is the number of i.i.d.samples) the variance reduction
is significant enough to justify incurring the bias. Note

that this threshold does not depend on the correlation ρXY .
In other words, as long at the bias is significantly smaller
than the variance of the control, it pays to control the
crude MC estimator. As n increases the variance of the
control decreases while its bias remains unchanged. After
the threshold provided above the disadvantages of the bias
overwhelms the advantage of controlling the crude MC
estimator.

3 ESTIMATED CONTROL VARIATE (ECV)

In this section we assume that the mean of the control is
estimated via simulation. This approach is not new. It is
known and utilized by some simulation practitioners (see,
e.g., (Schmeiser, Taaffe, and Wang 2001)). We advocate
lifting/promoting this approach from an ad-hoc method used
by practitioners to an estimation approach worth general
consideration and study and one that, as we argue, can be
quite effective in some estimation problems.

We consider the following setting. To simplify the
discussion we assume a single control X is used. Assume
N samples (N “large”) are drawn from the probability space
Ω according to probability measure P and µ̂ , the estimate
of µ , is calculated as the sample average

µ̂ =
1
N

N

∑
i=1

X(ωi).

Fixing ΩDB = {ω1, · · · ,ωN}, µ̂ can be viewed as the expected
value of the random variable X restricted to ΩDB with respect
to the uniform measure on this discrete probability space (all
subsets are measurable). We refer to ΩDB as the database
and denote the restrictions of random variables to ΩDB by
subscript DB. For example, XDB is the restriction of X to
the database. We have

µ̂ = E[XDB]

where expectation is with respect to the uniform measure on
ΩDB. Alternatively, let PDB denote the empirical measure
associated with samples ω1, · · · ,ωN (ΩDB for short). Then

µ̂ = EDB[X ]

where EDB denotes expectation with respect to PDB.

3.1 Two implementations

In the following we consider two implementations of the
ECV approach. In both cases we assume ΩDB is generated
and µ̂ is evaluated.

Figure 1 gives the schematic of the first implementation
of ECV and shows how individual controlled samples are
generated. Note that step 1 of the algorithm corresponds
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1. Generate ω according to probability measure PDB
2. Evaluate XDB = X(ω) and YDB = Y (ω)
3. Set

ZE1 = YDB +β (XDB− µ̂)

Figure 1: Implementation 1 of ECV

to sampling uniformly from the existing database ΩDB
(equivalently sampling from Ω according to the empirical
measure PDB). In this case, E[XDB] = µ̂ , i.e., the control
variate is unbiased. However, E[YDB] is in general different
from the quantity we aim to estimate, i.e., J = E[Y ] and
the controlled estimator ZE1 is a biased estimator of J with
bias ε1 = E[Y ]−EDB[Y ].

1. Generate ω according to probability measure P
2. Evaluate X = X(ω) and Y = Y (ω)
3. Set

ZE2 = Y +β (X− µ̂)

Figure 2: Implementation 2 of ECV

Figure 2 gives the schematic of the second implemen-
tation of ECV and again shows how individual controlled
samples are generated. In this case step 1 of the algorithm
corresponds to sampling from the original space Ω accord-
ing to the original probability measure P. In this case,
Y is an unbiased estimator of J, however E[X − µ̂] 6= 0,
leading to a biased controlled estimator ZE2 with bias
ε2 = β (E[X ]−EDB[X ]) = β (µ− µ̂).

We make the following observations about the first
implementation. Similar assertions can be made about the
second.

• The first implementation of ECV can be viewed as
the application of the classical control variate for
random variables restricted to ΩDB. The estimation
variable is YDB and the control XDB. In this case,
the mean of the control, XDB, is exactly evaluated
via a “brute force” approach by taking a weighted
average of all values that XDB adopts.

• The controlled estimator is biased in both im-
plementations. The bias in the case of the first
implementation is due to the fact that controlled
estimator is used to estimate the mean of an approx-
imation, YDB, to the estimation variable Y . More

specifically,

ε1 = E[ZE1]− J = EDB[Y ]−E[Y ]

• The bias ε1 is zero on average (averaged over all
databases), i.e. E[ε1] = 0. Moreover, given the
strong law of large numbers, for all databases, the
bias is “small” for “large” N. In addition, we have

√
N

ε1

σYDB

⇒ N(0,1)

Therefore, the bias is of order 1/
√

N and it can be
reduced by increasing N, i.e. increasing the size of
the database ΩDB. From the above a probabilistic
assessment of the magnitude of the bias is readily
available.

P(|ε1|< c
σY√

N
)≈ 1−2Φ(c)

where Φ is the cumulative distribution of the stan-
dard normal and we consider the approximation
σYDB ≈ σY .

• Assume n samples are drawn from ΩDB and let
ZE1(n) be the sample average of n controlled sam-
ples. Then

E[(ZE1(n)− J)2] =
σ2

Y
n

(1−ρ
2)+

σ2
Y

N

Note that the above expectation is taken over all
possible ΩDB and the identity reflects the average
performance of the first implementation of ECV.
At the cost of introducing a squared bias term
that on average is about σ2

Y /N one can potentially
arrive at control variates with higher correlation
ρ . The above identity provides the basis for the
assessment of the tradeoff.

• Given that a probabilistic assessment of the bias
term can be obtained, we can construct confidence
intervals for J.

4 A GENERIC CLASS OF CONTROLS

As mentioned earlier, a main motivation for using the ECV
approach is to enlarge the range of effective controls that can
be utilized. Furthermore, given that there are no barriers to
approximating the mean of the controls except consideration
of computational cost, one hopes to be able to develop a
generic approach for selecting effective control variates.
We describe an attempt in this direction in the setting of
parametric simulation/estimation as described below.
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Assume the “estimation variable” Y =Y (θ) depends on
some parameter θ ∈Θ. Consider the following two classes
of estimation problems:

• Problem A. The estimation problem needs to be
repeatedly solved for different values of θ ∈Θ.

• Problem B. The estimation problem needs to be
solved for some values of θ ∈Θ. These values are
not known in advance. Once a parameter value,
say θ becomes known, there are real-time compu-
tational/time constraints for obtaining an estimate
of J(θ) = E[Y (θ)].

For fixed ω ∈Ω, Y (ω,θ) is a function of θ . Therefore,
assuming the same random input ω is used to generate
samples of Y (θ) at different θ , Y (θ) can be viewed as
a random real-valued function on Θ. Under some mild
continuity assumptions on the sample functions (continuity
in θ ) one expects Y (θ1) Y (θ2) to be correlated when θ1
and θ2 are close. This motivates using Xi = Y (θi) for some
select values of θi ∈Θ, i = 1, · · · ,k as controls.

If, in addition, the sample functions are differentiable
with respect to θ , it is possible to efficiently estimate sample
path derivatives, and these estimates are unbiased, one may
include Xi1 = ∂Y

∂θ
(θi) as additional set of controls.

We make the following observations

• Let Y = Y (θ0). It is possible to show that under
mild assumptions, one can find X =Y (θ) correlated
with Y and with correlation as close to 1 as desired
by letting θ approach θ0.

• The above approach is most effective in cases
where correlation relatively persists for θ reason-
ably far from θ0. The experimental results section
of the paper includes some examples where the
effectiveness of such controls is examined.

• We expect that the selections of the number of
controls and their location to be problem dependent.
Further study is needed to come up with some
guidelines for this selection problem.

• Once the controls are selected, as in the previous
section, two implementations are possible. In one
case the database ΩDB (or enough information
about it to allow resampling) is maintained and
all sampling correspond to resampling from the
database. In the second, once means of controls
are estimated, the database is discarded.

We now give a brief discussion of the computational cost
of the approach. Generating a database and/or estimating the
means of the controls correspond to an initial “setup” cost. To
assess the cost, let C be the computational cost of generating
a sample of Y (θi), i.e. generating Y (ω;θi), i = 1, · · · ,k. To
simplify, we assume this cost is the same for all θi and ω .

Then the set-up cost of generating the database and obtaining
averages of the controls is approximately N× k×C. Let
V RR(θ) denote the variance reduction ratio at θ , i.e., the
ratio of the variance of an uncontrolled sample and that of
a controlled sample at θ . Then, the statistical error of a
controlled estimator based on n samples is the same as that
of n×V RR(θ) samples of an uncontrolled estimator. (We
assume that for large N, the induced biased of the approach
is small and can be disregarded). Thus, the ratios of the
computational costs of the two estimators (to arrive at the
same statistical accuracy) is (n×V RR(θ)×C)/(n×C) =
V RR(θ). Therefore, V RR(·) can serve as a measure of
benefit of the approach.

For problem A above, if the total number of instances
is sufficiently large, then the set-up cost becomes negligible
and the approach is worthwhile. For problem B, the setup
cost can be viewed as an off-line cost enabling potentially
significant efficiency gains in the critical task of real-time
estimation. Typically, the “cost” of delay in such real-time
estimation problems is high and not merely computational,
justifying a large computational effort off-line. We expect
that the approach, if applicable to a real-time setting, is
almost always worthwhile.

5 DATABASE MONTE CARLO (DBMC)

The method described in this paper, which specifically uti-
lizes control variates, is a special case of a broader estimation
strategy, named DataBase Monte Carlo (DBMC). The over-
arching idea of DBMC is that computational effort invested
in one estimation problem may lead to more precise or
computationally efficient estimators for related problems.
As discussed above, and demonstrated in our numerical
examples below, the control variate method can be a con-
venient and effective way to translate information from one
problem to the other, but it is certainly not the only way,
or necessarily the most advantageous. For example, other
well known variance reduction methods are used for that
purpose in (Zhao, Zhou, and Vakili 2006, Zhao, Borogovac,
and Vakili 2007b, Zhao, Borogovac, and Vakili 2007a).

6 NUMERICAL EXAMPLES

6.1 Simple functions

To illustrate the implementation and give results, first we
looked at estimation of the mean of random variables based
on simple functions, which we denote Y (θ) = g(θ ,U), and
which have the derivative Y ′(θ) = dg(θ ,U)

dθ
. As described

above, we use a nominal parameter value θ0, where we
“collect” the control variate samples Y (θ0,Ui), i = 1, . . . ,N,
for use in estimation of E[Y (θ)] =

∫ 1
0 g(θ ,u)du on an interval

of the parameter space Θ = [θmin,θmax].
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Figures 3 and 4 show the squared correlation of the
control variate at θ0 with the estimation variables over a
range of θ for estimating the means E[g(θ ,U)] for two
simple functions g(θ ,U) = eθU and g(θ ,U) = sin(θU),
respectively. Squared correlations are used for presentation
purposes instead of the equivalent variance reduction ratios
(recall that for control variates V RR = (1−R2)−1, thus R2

values close to 1 are desirable). In both cases, the correlations
obtained by using Y (θ0) as the control imply significant
variance reduction for a subset of the parameter space Θ

(solid curve), but can still be greatly improved by using the
derivative Y ′(θ0) = dg(θ0,U)

dθ
as the second control (dashed

curve). For convenience, corresponding VRR values for
estimation of E[eθU ] at a few selected θ values are given
in Table 1.

Figure 3: The squared correlation measuring the utility of
control variates obtained by DBMC for estimation E[Y (θ)]
for g(θ ,U) = eθU . The nominal θ0 = 3

Figure 4: The squared correlation measuring the utility of
control variates obtained by DBMC for estimation E[Y (θ)]
for g(θ ,U) = sin(θU). The nominal θ0 = 3

Table 1: The values of the V RR statistic for selected points,
corresponding to squared correlations in Figure 3.

Control \ θ 1 2 3.2 6
Y (θ0) 18 79 2.2E3 14
Y (θ0)&Y ′(θ0) 660 1.17E4 8.8E6 320

6.2 Asian option

We also illustrate how the algorithm can be used to estimate
the price of financial options by describing their application
to the valuation of an arithmetic Asian option on a Geometric
Brownian model. There is no closed-form solution for the
price of this option and simulation is a solution method of
choice.

Specifically, the stock price is modeled as a GBM:

dSt

St
= µdt +σdWt

where Wt is a Brownian motion. Given a discretized path,
S0 = {St0 ,St1 ,St2 , · · · ,Stm = ST}, the present value of the
payoff of the Asian call option is given by

CT = e−µT [S̄−K]+, S̄ =
1
m

m

∑
i=1

Sti

We are interested in estimation of the option price (of
the discretized process), given by E[CT ] at a range of drift
parameter µ and volatility parameter σ . We can also make
use of the pathwise derivatives

dCT

dµ
= e−µT I{S̄ > K}

{
1
m

m

∑
i=1

∆tiSti −T [S̄−K]+
}

where ∆ti = ti− ti−1, and

dCT

dσ
= e−µT I{S̄ > K} 1

m

m

∑
i=1

dSti
dσ

where, for all t:

dSt

dσ
=

St

σ

(
log
(

St

S0

)
− (µ +

σ2

2
)t
)

.

Note that we do not require unbiasedness of the path
derivative in the sense that E[ dCT

dµ
] = dE[CT ]

dµ
or E[ dCT

dσ
] =

dE[CT ]
dσ

which would be necessary in problems where the
objective is estimation of price sensitivities Rho and Vega
(although that unbiasedness condition is satisfied for the
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Asian option by the path derivatives above (Glasserman
2004)). For use as a control variate in the estimation of
the price, we only need the values of the path derivative
for each sampled path, and their mean values E[ dCT

dµ
] and

E[ dCT
dσ

], which we estimate precisely by utilizing all the
paths in the database.

The following parameters were considered: S0 = 100,
K = 90, T = .25, m = 60. The nominal values of the drift
and volatility parameters were µ0 = 0.1, and σ0 = 0.3, at
which a database of 100,000 GBM paths was generated, and
on each of those paths, we evaluated the Asian option price
CT , and the pathwise derivatives dCT

dµ
and dCT

dσ
. Those results

were saved, as well as a random number generator seed for
each of the paths, which were then used to estimate at other
parameter values via the CV procedure described above.
Figures 5 and 6 show the VRR results for estimators using
Y (θ0) (solid curve) as well as Y (θ0) together with Y ′(θ0)
(dashed curve) as control variates. For selected parameter
values marked in the plots, the values are shown in Tables
2 and 3.

Figure 5: The V RR statistic measuring the efficiency of
estimation of Asian option value over a range of drift rates
µ when using a CV-DBMC estimator. Using the pathwise
Rho, calculated at the nominal value µ0, as an additional
control adds efficiency beyond what is provided by only
using the nominal path option value Y (µ0).

Table 2: The values of the V RR statistic for selected points,
as shown in Figure 5.

Control \ µ 0.05 0.11 0.2 0.4
Y (µ0) 3.2E3 8.4E4 9.5E2 1.6E2
Y (µ0)&Y ′(µ0) 9.1E4 8.5E6 1.3E4 7.0E2

Figure 6: The V RR statistic measuring the efficiency of
estimation of Asian option value over a range of volatilities
σ when using a CV-DBMC estimator. Using the pathwise
Vega, calculated at the nominal value σ0, as an additional
control adds efficiency beyond what is provided by only
using the nominal path option value Y (σ0).

Table 3: The values of the V RR statistic for selected points,
as shown in Figure 6.

Control \ σ 0.2 0.25 0.31 0.45
Y (σ0) 69 2.4E2 6.7E3 49
Y (σ0)&Y ′(σ0) 2.4E2 1.8E3 1.7E5 1.4E2

7 CONCLUSIONS

We have implemented a strategy for obtaining effective
control variates in parametric studies. The strategy is quite
problem independent and generic, as it can wrap around
many different types of simulations. The controls obtained
are usually quite effective in some neighborhood of the
nominal parameter, as shown in our numerical examples,
although the size of that neighborhood depends on the
functional form of the estimation problem with respect
to the parameter. Addressing that issue is an interesting
problem for future research.

Another demonstrated advantage of the approach is the
ability to straightforwardly obtain multiple control variates.
In our numerical examples we found the pathwise derivatives
to be quite effective as additional controls.

The up-front computational cost of generating the nec-
essary database can be significant, and we have noted that
it is only justified if either sufficiently many estimation
problem instances benefit from that database, or if it is
used in a real-time estimation setting. Additionally, the
controls obtained incur some bias, but the magnitude of
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that bias is under the practitioner’s control when deciding
the size of the database, and a probabilistic bound on the
bias is straightforwardly assessed. The cost-benefit analysis
provided illustrates the tradeoffs involved.
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