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ABSTRACT

We formulate and evaluate distribution-free statistical pro-
cess control (SPC) charts for monitoring an autocorrelated
process when a training data set is used to estimate the
marginal mean and variance of the process as well as its
variance parameter (i.e., the sum of covariances at all lags).
We adapt variance-estimation techniques from the simulation
literature for automated use in DFTC-VE, a distribution-
free tabular CUSUM chart for rapidly detecting shifts in the
mean of an autocorrelated process. Extensive experimenta-
tion shows that our variance-estimation techniques do not
seriously degrade the performance of DFTC-VE compared
with its performance using exact knowledge of the variance
parameter; moreover, the performance of DFTC-VE com-
pares favorably with that of other competing distribution-free
SPC charts.

1 INTRODUCTION

Statistical process control (SPC) charts are often used to
monitor key performance measures of production processes,
such as the process mean, and to detect any irregularities
represented by gradual or sudden shifts in those quantities.
In this article, we let ARL0 denote the in-control average
run length—that is, the expected number of observations
taken from the monitored process when it is in control
(and thus yields the desired value of the selected perfor-
mance characteristic) before a false out-of-control alarm is
raised. Similarly, let ARL1 denote the average run length
associated with a specific out-of-control condition—that is,
the expected number of observations taken from the mon-
itored process before a true out-of-control alarm is raised
when the selected performance characteristic of the process
deviates from the in-control value by a specific amount.
Among several SPC charts that yield a user-selected value
of ARL0, we prefer the chart that yields the smallest values

of ARL1 for a range of relevant out-of-control conditions.
However, it is rarely the case that the exact distribution
of the monitored process is known to the user of an SPC
chart, and there is always the risk of simply assuming a
wrong distribution. Beyond the problem of the monitored
process having an unknown distribution (which is some-
times markedly nonnormal), in many SPC applications it is
simply incorrect to assume that successive observations of
the monitored process are independent. Therefore we seek
to develop a distribution-free SPC chart for correlated data.
Moreover, when developing distribution-free SPC charts,
we must use one or more parameters of the monitored pro-
cess to determine the control limits that yield the desired
ARL0. We formulate DFTC-VE, a distribution-free tabular
CUSUM chart in which the variance parameter and the
chart’s control limits are computed from a training data set
automatically—that is, without the need for any intervention
by the user.

We assume that the Phase I process {Xi : i = 1, . . . ,n} is
covariance stationary with µ ≡ E[Xi] and σ2 ≡ E

[
(Xi−µ)2

]
respectively denoting the marginal mean and variance of
the process. The usual sample mean and variance of the
training data set,

µ̂ = X(n) = n−1
n

∑
i=1

Xi (1)

and

σ̂
2 = S2

n = (n−1)−1
n

∑
i=1

(Xi− µ̂)2, (2)

are used to estimate µ and σ2, respectively.
By a certain abuse of notation that should cause no

confusion, we will always use µ and σ2 to denote the
marginal mean and variance of the data set (either in Phase
I or Phase II) that is currently under discussion. Thus in both
Phase I and Phase II, we write the in-control condition as
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µ = µ0, where is µ0 is the desired value of the process mean.
To obtain concrete results, we assume that σ̂2 converges to
σ2 fast enough as the size n of the training data set grows so
that σ̂2 is a sufficiently accurate estimator of σ2; moreover,
we assume that a shift in the process mean in Phase II is
not accompanied by a change in the value of the marginal
variance.

For the DFTC-VE chart, we will also need an estimator
of the variance parameter

Ω
2 ≡ lim

n→∞
nVar

[
X(n)

]
=

∞

∑
`=−∞

Cov(Xi,Xi+`) (3)

based on the training data set. As for the marginal variance,
we assume that a shift in the process mean in Phase II is
not accompanied by a change in the value of the variance
parameter (3).

2 VARIANCE ESTIMATORS

2.1 Standardized Time Series Overlapping
Area Estimator

Alexopoulos et al. (2007a) show that the so-called standard-
ized time series (STS) overlapping area estimator for Ω2

outperforms a number of other variance estimators in terms
of bias and variance; therefore we chose to incorporate this
variance estimator into a version of DFTC-VE. First, we
form n−m+1 overlapping batches from the training data,
each of size m, so that the ith batch consists of the ob-
servations {Xi+ j : j = 0, . . . ,m−1} for i = 1, . . . ,n−m+1.
Although the sample-size-to-batch-size ratio b ≡ n/m is
fixed, we let the batch size m increase so that the overall
sample size n = bm also increases; and all this data must
be taken from the training data set to compute the STS
estimator of Ω2. The sample mean of the ith overlapping
batch with (intermediate) batch size j is denoted by

XO
i ( j)≡ 1

j

j−1

∑
`=0

Xi+` for i = 1, . . . ,n−m+1 and j = 1, . . . ,m.

Finally, the overlapping STS area estimator for Ω2 is
defined by

AO( f ;b,m)≡ 1
n−m+1

n−m+1

∑
i=1

[
ZO

i ( f ;m)
]2

, (4)

where for a prespecified, continuously differentiable weight
function f (·) defined on [0,1], we let for i = 1, . . . ,n−m+1

ZO
i ( f ;m) ≡ 1

m3/2

m

∑
j=1

f
( j

m

)
j
[

XO
i (m)−XO

i ( j)
]

(5)

Other weight functions and even other STS estimators
for Ω2 are available for use; our selection here has been
based on the comparatively good analytical and empirical
performance of the overlapping area estimator (Alexopoulos
et al. 2007a). The remaining unresolved problem is the
selection of the batch size m, which affects the bias and
variance of the STS estimator (4) as well as the convergence
of (4) to its limiting distribution—which is approximately a
scaled chi-squared distribution with mean Ω2 as explained
in Alexopoulos et al. (2007b).

For use with DFTC-VE, we propose an automated
batch-size determination algorithm that uses the same se-
quential procedure as in Lada and Wilson (2006, 2007) and
Lada et al. (2008); but instead of using nonoverlapping
batch means as the basic data items to be tested for inde-
pendence and normality, we use the weighted “STS-area”
statistics similar to (5) that are computed from nonoverlap-
ping batches in the training data set. For i = 1, . . . ,b, the ith
nonoverlapping batch of size m in the training data set is
{X(i−1)m+ j : j = 1, . . . ,m}; and we seek a sufficiently large
value of m so that the corresponding weighted “STS-area”
statistics {Zi( f ;m) : i = 1, . . . ,b} computed from (6) and (7)
below approximately constitute a random sample from a
normal distribution. Such a batch size m is large enough
to ensure approximate convergence of the final overlapping
area estimator AO( f ;b,m) to its appropriate limiting dis-
tribution; see Alexopoulos et al. (2007a, 2007b) for the
explicit asymptotic distribution and the scaled chi-squared
approximation to the asymptotic distribution. A formal
statement of our batch-size determination algorithm for the
STS overlapping area estimator is given below.

Remark 1 Using the final batch size m delivered by
the algorithm given above, we see that the quantity ZO

i ( f ;m)
in (5) is the signed area under the standardized time series
defined on the ith overlapping batch {Xi+ j : j = 0, . . . ,m−1}
of size m taken from the entire training data set so that we
take i = 1, . . . ,n−m+1.

Remark 2 To ensure sufficiently small bias as well
as adequate convergence of the STS estimator to its limiting
distribution, the final batch size delivered by the algorithm
above is usually taken to be three times the batch size
required to pass the independence test in step [3] and the
normality test in step [5]. This inflation of the final batch
size also improves the adequacy of the Brownian-motion
approximation to the behavior of the CUSUM statistics
used by the J&B and the DFTC charts. If the size of the
training data set, n, is not large enough to ensure that the{

ZO
i ( f ;m) : i = 1, . . . ,n′

}
pass both the independence test in

step [3] and the normality in step [5], then we take the final
batch size m← bn/20c, which ensures that b = n/m≥ 20.
This design for the batch-size algorithm ensures that no
matter how the algorithm terminates, the final STS variance
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Batch-Size Algorithm for the STS Overlapping Area Estimator of Ω2

[1] Take an initial sample of size n′← 4,096 from the training data set of size n← 10,000; and divide the initial
sample into b← 256 adjacent nonoverlapping batches of size m← 16. Set the randomness test size αran← 0.20.
Set the initial normality test size αnor(1)← 0.05, the normality test parameter τ ← 0.184206, and the normality
test iteration counter k← 1.

[2] Compute the following statistics from the b nonoverlapping batches of the current batch size m:

X i( j)≡ 1
j

j

∑
`=1

Xm(i−1)+` for i = 1, . . . ,b and j = 1, . . . ,m, (6)

Zi( f ;m)≡ 1
m3/2

m

∑
j=1

f
( j

m

)
j
[

X i(m)−X i( j)
]

for i = 1, . . . ,b. (7)

[3] Apply the von Neumann test for independence (von Neumann 1941) to the {Zi( f ;m) : i = 1, . . . ,b} using the
significance level αran. If the randomness test is passed, then go to step [5]; otherwise, go to step [4].

[4] Increase the batch size m and update the overall sample size n′ according to m←
⌊√

2m
⌋

and n′← bm, respectively.

(a) If n′ > n, then return the final batch size m← bn/20c and stop.

(b) Otherwise, obtain the required additional observations from the training data set and go to step [2].
[5] Apply the Shapiro-Wilk normality test (Shapiro and Wilk 1965) to the current set of statistics (7) using the

significance level αnor(k)← αnor(1)exp[−τ(k−1)2]. If the normality test is passed with the current batch size m,
then return the final batch size m← 3m and stop; otherwise go to step [6].

[6] Increase the normality test iteration counter k, batch size m, and overall sample size n′ according to k← k + 1,
m←

⌊√
2m
⌋
, and n′← bm, respectively.

(a) If n′ > n, then return the final batch size m = bn/20c and stop.

(b) Otherwise, obtain the required additional observations from the training data set; recompute the nonoverlapping
batch statistics (6) and (7) and go to step [5].

estimator AO( f ;b,m) in (4) has approximately a scaled chi-
squared distribution with at least 48 degrees of freedom.
(Alexopoulos et al. 2007b).

2.2 “Quick-and-Dirty” Autoregressive Variance
Estimator (QDARVE)

We also use the “Quick-and-Dirty” Autoregressive Variance
Estimator (QDARVE), which is based on results of Steiger et
al. (2005), Lada and Wilson (2007), and Lada et al. (2008),
and which is simpler to obtain and easier to automate than
the STS variance estimators. If we can find a sufficiently
large batch size m such that the nonoverlapping batch means{

X i(m) : i = 1, . . . ,b
}

computed from the training data set
are adequately modeled by an AR(1) process,

X i(m) = µ +ϕ
X(m)

[
X i−1(m)−µ

]
+ εi(m) (8)

for i = 1,2, . . ., then the variance parameter, Ω2
X(m) ≡

∑
∞
l=−∞

Cov
[

X i(m),X i+l(m)
]
, of the AR(1) process in (8)

is given by

Ω
2
X(m) = Ω

2/m = Var
[

X(m)
][1+ϕ

X(m)

1−ϕ
X(m)

]
. (9)

As detailed below, the key idea underlying QDARVE is to do
the following: (i) determine a batch size m sufficiently large
to ensure the approximate validity of the AR(1) model (8) of
the nonoverlapping batch means

{
X i(m)

}
computed from

the training data set; (ii) compute approximately unbiased
estimators of Var

[
X(m)

]
and ϕ

X(m) from the training data
set; and (iii) insert these estimators into (9) to obtain a
simplified, intuitively appealing estimator of the variance
parameter Ω2 for the original (unbatched) process.

In developing and testing the DFTC chart, Kim et al.
(2007) find that in practice the adequacy of the Brownian
motion approximation to the behavior of the CUSUM on
which DFTC is based requires a lag-one correlation of at
most 0.5 in the time series of basic data items used to compute
that CUSUM. To compensate for the additional uncertainty
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QDARVE Algorithm for Estimating Ω2

[1] Choose the initial batch size m, where m = 1 by default. Choose the initial batch count b≥ bmin, where bmin = 1024
by default. Take the initial sample of size n′ = mb from the training data set of size n, where n = 10,000 by default.
Also set the size of the test for acceptable lag-one correlation in the batch means and the upper bound ζ on the
lag-one correlation in (16) as follows: αcor← 0.01 and ζ ← 0.4, respectively.

[2] Calculate the sample statistics for
{

X i(m) : i = 1, . . . ,b
}

, the current set of b nonoverlapping batch means based
on batch size m,

X(m,b)≡ b−1
b

∑
i=1

X i(m), S2(m,b)≡ (b−1)−1
b

∑
i=1

[
X i(m)−X(m,b)

]2
,

ρ̂X(m)(m,b)≡ (b−1)−1
b−1

∑
i=1

[
X i(m)−X(m,b)

][
X i+1(m)−X(m,b)

]/
S2(m,b),

ϕ̂X(m) ≡ 2ρ̂X(m)(m,b)−
[
ρ̂

(1)
X(m)

(m,b/2)+ ρ̂
(2)
X(m)

(m,b/2)
]/

2,


(10)

where ρ̂X(m)(m,b) denotes the standard lag-one sample correlation between the batch means based on b nonoverlapping

batches each of size m; and we let ρ̂
(1)
X(m)(m,b/2) and ρ̂

(2)
X(m)(m,b/2) respectively denote similar estimators of the

lag-one correlation between the batch means based on the first and last b/2 nonoverlapping batches each of size m.
[3] If ϕ̂

X(m) ≤ sin
[

sin−1(ζ )− z1−αcor

/√
b
]

(where z1−αcor = Φ−1(1− αcor) = 2.33), then go to step [4]; else estimate
the required batch size as follows:

ψ ←
⌈

ln
{

sin
[

sin−1(ζ )− z1−αcor

/√
b
]}/

ln
[

ϕ̂
X(m)

]⌉
and m← dmid{1.1,ψ,2}me,

where mid{u,v,w} denotes the median of the real numbers u,v,w; retrieve additional data from the training data
set and update n′ if necessary to ensure that b← bn′/mc satisfies b≥ bmin; and go to step [2].

[4] Compute the estimator of the variance parameter for the batch means,

Ω̂
2
X(m) = S2(m,b)

[
b−1

b−Ĉ(m,b)

][
1+ ϕ̂

X(m)

1− ϕ̂
X(m)

]
, (11)

where

Ĉ(m,b) =
1+ ϕ̂

X(m)

1− ϕ̂
X(m)

−
2ϕ̂

X(m)

[
1− ϕ̂ b

X(m)

]
b
[
1− ϕ̂

X(m)

]2 ; (12)

and deliver the final estimator of the variance parameter for the original process,

Ω̂
2 = mΩ̂

2
X(m). (13)

introduced by estimation of the variance parameter, in the
formulation of QDARVE we impose the more-stringent
upper bound

ϕ
X(m) = Corr

[
X i(m),X i+1(m)

]
≤ 0.4 (16)

on the basic data items used to compute the CUSUM on
which DFTC-VE is based—that is, we require a sufficiently

large batch size m so that the nonoverlapping batch means
computed from the training data set satisfy (16) with proba-
bility close to one. For additional considerations justifying
(16), see p. 77 of Bagshaw and Johnson (1975). Steiger et
al. (2005), Lada and Wilson (2007), and Lada et al. (2008)
find that if the batch size m is sufficiently large to ensure
that ϕ

X(m) ≤ 0.8, then their variance estimators similar to
QDARVE are sufficiently stable in practice to yield highly
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DFTC-VE: Distribution-Free Tabular CUSUM Chart with Variance Estimation

1. Compute µ̂ , σ̂2, and Ω̂2 from the Phase I data set.
2. Set K = kσ̂ ; choose the desired value of the two-sided ARL0; and calculate H, the solution to the equation

Ω̂2

2K2

{
exp

[
2K(H +1.166Ω̂)

Ω̂2

]
−1− 2K(H +1.166Ω̂)

Ω̂2

}
= 2ARL0. (14)

3. For j = 1,2, . . . , use the jth observation Yj from the Phase II data set to update the CUSUMs

S±( j)≡

{
0, if j = 0,

max
{

0, S±( j−1)± (Yj−µ0)−K
}
, if j = 1,2, . . . .

}
, (15)

and raise an out-of-control alarm if S+( j)≥ H or S−( j)≥ H.

reliable and accurate confidence-interval estimators of the
steady-state mean. On the basis of all these considerations,
we concluded that if we take the batch size large enough to
satisfy (16) with probability close to one, then we should be
able to use QDARVE effectively in distribution-free SPC
charts requiring an estimator of the variance parameter.

When the lag-one correlation between individual (un-
batched, raw) observations is greater than 0.4, Kim et al.
(2007) recommend the use of batching in Phase II as well as
in Phase I to ensure that the lag-one correlation in the data to
be monitored does not exceed 0.4; and thus in Phase II, we
use the batch size m determined in Phase I so as to satisfy
(16) with probability close to one. A formal statement of
the algorithm for computing QDARVE is given below.

Remark 3 Taking bmin = 1024 and αcor = 0.01 is
based on the computational experience of Steiger et al.
(2005) with ASAP3 and Lada and Wilson (2007) and Lada
et al. (2008) with SBatch.

Remark 4 The formula for ϕ̂X(m) in the third line
of (10) is the jackknifed estimator of ϕX(m) and thus has

bias of the form O(b−2), whereas the standard correlation
estimator ρ̂X(m)(m,b) has bias of the form O(b−1). This
property coupled with the requirement b ≥ bmin = 1024
ensures that ϕ̂X(m) is an approximately unbiased estimator
of ϕX(m).

Remark 5 The final variance estimator (13) follows
from (9), Remark 4, and the property

S2(m,b)

[
b−1

b−Ĉ(m,b)

]
is an (approximately) unbiased

estimator of Var
[

X(m)
]
. (17)

See Lee et al. (2008) for a derivation of (17).

3 DFTC-VE: DISTRIBUTION-FREE
TABULAR CUSUM CHART WITH
VARIANCE ESTIMATION

Using the estimators (1), (2), (4), and (13), we modify the
DFTC chart of Kim et al. (2007) to incorporate automated
parameter estimation based on a training data set.

Remark 6 For the choice of the reference parameter
value, Kim et al. (2007) recommend k = 0.1. A search
method (such as the bisection algorithm) can be used to
solve (14).

4 EXPERIMENTS

In our first set of experiments, we compare the performance
of the following distribution-free SPC charts in terms of their
average run lengths: (i) the DFTC-VE chart using Phase I
and II; and (ii) the DFTC chart using Phase II only based
on exact knowledge of the required process parameters as
in Kim et al. (2007). In our second set of experiments,
we study how the DFTC-VE chart performs in comparison
with other distribution-free SPC charts—namely, the R&W
Shewhart chart and the J&B CUSUM chart—to which we
added Phase I estimation of the required process parameters.

The R&W Shewhart Chart with Estimated Variance:
From the Phase I data set, determine the batch
size m to be used in Phase II such that the
nonoverlapping batch means are approximately
normal with lag-one autocorrelation at most 0.1.
Choose the desired value of ARL0 and find zON
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such that

m
1−Φ(zON)+Φ(−zON)

= ARL0.

Then raise an out-of-control alarm after observation
i = jm in Phase II if the batch mean from the jth
nonoverlapping batch of size m in Phase II satisfies

∣∣Y j(m)−µ0
∣∣≥ zON ·

√
V̂ar
[

X(m)
]
,

where V̂ar
[

X(m)
]
, the estimated variance of the

batch means, is computed from the Phase I data
set as in the first line of (10).

The J&B Chart with Estimated Variance Parameter:
Compute for j = 1,2, . . . ,

S±( j) = max
{

S±( j−1)± (Yj−µ0),0
}

with S±(0) = 0. Choose the desired value of the
two-sided ARL0, and set

H =
√

2ARL0V (·),

where V (·) is the estimated variance parameter
based on batch size m and computed from the
Phase I data set. We use two such estimators: the
STS variance estimator V A given by (4); and the
quick-and-dirty autoregressive variance estimator
V Q given by (13). Raise an out-of-control alarm
after the jth observation in Phase II if S+( j)≥H
or S−( j)≥ H.

We considered stationary exponential autoregressive
processes of order 1 (that is, EAR(1) processes) that have
i.i.d. exponential (nonnormal) marginals. We refer read-
ers to Lee et al. (2008) for experimental results of other
test processes, including stationary AR(1) process and the
queue-waiting-time process in a steady-state M/M/1 queu-
ing system. For each distribution-free chart, we took the
desired value of 10,000 for the two-sided ARL0; and we
performed 4,000 independent replications of each chart for
the in-control condition and for a range of out-of-control
conditions. On each replication of each SPC chart, the train-
ing data set had marginal mean µ = µ0, the in-control mean;
and the working data set had marginal mean µ = µ0 +θσ ,
where the shift θ in mean for each out-of-control condition
was expressed in standard deviations of the monitored pro-
cess. The resulting estimated ARLs are summarized below
for each test process.

Throughout this section, we use m1 and m2 to denote
the batch sizes used in Phase I and Phase II, respectively.
Note that a new set of Phase I data is obtained on each
replication; and thus our batch-size determination algorithms

deliver a different batch size on each replication. Over 4,000
independent replications of each SPC chart applied to each
test process, we computed m1 and m2, the average batch
sizes used in Phase I and Phase II, respectively. On each
replication of the R&W chart applied to a test process, in
Phase I we set the batch size m1 just large enough so that
the sample estimator of the lag-one autocorrelation of the
batch means was at most 0.1 as suggested by Runger and
Willemain (1995); and then in Phase II we took m2 = m1. For
the CUSUM-type charts (J&B and DFTC-VE), the batch-
size determination algorithm varied depending on which
variance estimators were used. On each replication of an
SPC chart using the STS variance estimator, in Phase I we
used the final batch size m1 delivered by the algorithm in
Section 2.1; and in Phase II we used the batch size m2 = 1 so
as to compensate for the substantial computational overhead
associated with the STS batch-size determination algorithm
used in Phase I. Thus the SPC charts with the STS variance
estimator always used raw (unbatched) observations in Phase
II. On each replication of an SPC chart with QDARVE, in
Phase I we used the final batch size m1 delivered by the
QDARVE batch-size determination algorithm in Section 2.2
to ensure that (16) was satisfied with high probability; and
then in Phase II we took m2 = m1.

4.1 EAR(1) Process

The EAR(1) process is defined by

Yi =

{
(µ−1/λ )+ϕY [Yi−1− (µ−1/λ )], w.p. ϕY ,

(µ−1/λ )+ϕY [Yi−1− (µ−1/λ )]+ εi, w.p. 1−ϕY ,

}
(18)

for i = 1,2, . . . and where 0 < ϕ
Y

< 1 and the {εi} are i.i.d.
exponential with mean 1/λ = σ so that the {Yi} have mean
µ and variance σ2 = 1/λ 2. To ensure the stationarity of
the EAR(1) process, we sampled Y0 from an exponential
distribution with mean 1/λ .

For the Shewhart-type R&W chart, we employed the
batch-size determination scheme as discussed earlier in Sec-
tion (4). Since the marginal distribution of the EAR(1)
process is not normal, one needs batch sizes which yield
both small enough lag-one correlation and approximately
normal batch means. Consequently, the corresponding val-
ues of ARL0 based on the batch sizes large enough to ensure
lag-one autocorrelation of batch means at most 0.1 did not
even approximately attain the target level of 10,000; and
hence the performance of the R&W chart in terms of the
values of ARL1 could not be validated.

The use of variance estimators in the EAR(1) process did
not seriously degrade the performance of the DFTC chart;
and because the R&W chart failed to attain the desired
value of ARL0, the DFTC-VE charts were most effective
in detecting all sizes of shifts at all levels of the correlation
coefficient ϕ

Y
. As Table 1 shows, the “pull-down” effects

were again obtained for the DFTC-VE chart based on the
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Table 1: Two-sided ARLs in terms of number of raw observations for an EAR(1) process.

ϕY Shift R&W J&B DFTC-VE DFTC
θ Area QDARVE Area QDARVE Phase II

m1 = 4 m1 = 92 m1 = 1 m1 = 90 m1 = 1
m2 = 4 m2 = 1 m2 = 1 m2 = 1 m2 = 1 m2 = 1

0.25 0 823 8820 8864 10486 9837 10557
0.25 430 726 729 283 288 279
0.5 247 367 366 112 112 112

0.75 139 244 245 70 70 70
1 80 183 184 51 50 51

1.5 29 122 122 32 32 32
2 11 92 92 24 24 24

2.5 5 73 74 19 19 19
3 4 61 61 16 16 16
4 4 46 46 12 12 12

m1 = 8 m1 = 98 m1 = 2 m1 = 98 m1 = 1
m2 = 8 m2 = 1 m2 = 2 m2 = 1 m2 = 1 m2 = 1

0.5 0 1449 8918 9816 10480 13385 11497
0.25 737 968 1032 458 516 451
0.5 385 489 520 179 223 183

0.75 204 326 345 112 142 113
1 104 244 258 80 103 81

1.5 36 163 172 51 67 52
2 14 122 129 38 50 38

2.5 9 98 103 30 40 30
3 8 81 86 25 33 25
4 8 61 65 19 25 19

m1 = 19 m1 = 201 m1 = 8 m1 = 201 m1 = 5
m2 = 19 m2 = 1 m2 = 8 m2 = 1 m2 = 5 m2 = 1

0.7 0 2826 8941 9535 10973 11331 12062
0.25 1214 1339 1406 748 955 735
0.5 564 668 705 301 434 305

0.75 284 444 470 184 282 187
1 141 331 353 132 207 135

1.5 45 221 235 84 137 86
2 22 166 177 61 102 63

2.5 19 132 143 49 82 50
3 19 110 120 40 68 41
4 19 83 91 30 52 31

m1 = 58 m1 = 496 m1 = 29 m1 = 496 m1 = 22
m2 = 58 m2 = 1 m2 = 29 m2 = 1 m2 = 22 m2 = 1

0.9 0 4685 9121 10202 11897 9782 12930
0.25 2267 2475 2650 1941 2262 1842

0.5 1094 1246 1311 761 1088 779
0.75 560 822 865 468 714 484

1 312 610 653 331 530 349
1.5 109 404 437 212 351 224

2 62 304 331 155 264 165
2.5 58 241 268 122 213 130

3 58 201 225 101 179 108
4 58 151 172 75 136 80

STS variance estimator V A, yielding closer conformance to
the desired value of ARL0 than that of the DFTC chart and
often yielding smaller values of ARL1. The use of batching
in Phase II increased the values of ARL1, especially for
high values of ϕ

Y
; but nevertheless variance estimation did

not seem to degrade the performance of the distribution-

free CUSUM-type charts compared with the DFTC chart
in terms of the values of ARL1.

As pointed out earlier in this section, the R&W chart
delivered substantially smaller values of ARL0 than the
target value; and this anomalous behavior clearly revealed
that the R&W chart cannot be effectively applied to non-
normal processes such as the EAR(1) process. Although
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not presented here, one could have used different batch
sizes in conjunction with the R&W charts; but then the
drop in efficiency of the R&W chart to detect even large
shifts would be inevitable because the basic observations
of this chart are batch means based on large batch sizes.
The DFTC-VE chart is again most effective in detecting all
sizes of the shifts at all values of ϕ

Y
.

5 CONCLUSION

In this article, we developed and evaluated DFTC-VE, a
distribution-free tabular CUSUM chart for autocorrelated
data, which incorporates automated variance estimation from
a training data set. We examined how the variance estima-
tion affected the performance of DFTC-VE in comparison
with that of its predecessor DFTC, which requires exact
knowledge of the relevant process parameters. Moreover,
we compared the performance of DFTC-VE with that of
other distribution-free SPC charts. When used in conjunc-
tion with all the distribution-free charts considered in this
article, the proposed variance-estimation procedures did not
cause dramatic performance degradation in comparison with
the corresponding chart performance using exact knowledge
of the relevant process parameters. Also, among the differ-
ent distribution-free charts considered, we observed that the
DFTC-VE chart incorporating the STS variance estimator
in (4) performed very well; however, the improved perfor-
mance came at the expense of additional algorithmic and
computational complexity. The QDARVE estimator—which
is much easier to understand, implement, and apply—also
performed well in conjunction with the DFTC chart.

For this study, we assumed that the out-of-control con-
dition only involved a shift in the process mean, with no
other changes in the performance characteristics of the mon-
itored process. While the shift detection in the mean of a
process is certainly of major interest, various other measures
of importance should be included for monitoring study in
conjunction with the DFTC chart. This is the subject of
ongoing research.
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