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ABSTRACT

We study a stochastic optimization problem that has its
roots in financial portfolio design. The problem has a
specified deterministic objective function and constraints on
the conditional value-at-risk of the portfolio. Approximate
optimal solutions to this problem are usually obtained by
solving a sample-average approximation. We derive bounds
on the gap in the objective value between the true optimal
and an approximate solution so obtained. We show that
under certain regularity conditions the approximate optimal
value converges to the true optimal at the canonical rate
O(n~'/?), where n represents the sample size. The constants
in the expression are explicitly defined.

1 INTRODUCTION

Financial markets have seen an explosive growth in the
number of investment vehicles available, each of which
comes with its own risk-to-reward tradeoff. As the industry
gathers more knowledge and experience with various exotic
investment opportunities, it has become increasingly clear
that a portfolio manager must actively seek to assess and
manage the risk inherent in a portfolio. Of particular interest
is the fact that though each option’s risk on returns might be
easy to determine, the nature of the joint risk or volatility
in a diverse portfolio is relatively less understood.

This article concerns itself with a portfolio manager’s
task of designing a portfolio by allocating all or part of
a budget over a fixed set of high-return but also high-risk
assets. Let random variables {&,.k =1,...,d} represent
the change in value of investment vehicle k over a fixed
time interval. Denote by x € R how the marginal dollar
is divided amongst the d investments. Then, we concern
ourselves with the stochastic program

mxax{c’x | xexnX%and R(g(&,x)<b}, (1)
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where the R-constraints are risk-based. The allocation x is

scaled to that of a nominal dollar, and so x € Xoé{ DS
IRi, Y i xx < 1}, a subset of the non-negative orthant IRi.
The set X C IR? is a convex polytope that represents any
additional (deterministic) constraints on the chosen alloca-
tion. The cost coefficients ¢ are known and deterministic
and can be thought of as the total revenue from a portfolio
with allocation x.

The function g defines a random outcome that depends
both on the choice of x and an independent random variable
& inspace RY. It represents a notion of loss experienced with
decisions x and the change & in values of underlying random
variables. The function R is said to be the (deterministic)
risk inherent in the loss measure g for a particular choice of x.
‘We shall limit this article to the case when the function g has
a one-dimensional linear functional form g(&,x) = —&"x.

The stochastic program thus seeks to find the maximum
revenue portfolio allocation from a set of feasible allocations
where no x results in a risk of more than b. Markowitz
(1952), who laid the foundation to the portfolio optimiza-
tion and management theory, considered the mean-variance
relation as representative of the risk-returns tradeoff. Since
then various measures of risk have been studied in this
framework. J P Morgan’s RiskMetrics™ (1996) was an
important advocate for the use of the value-at-risk measure
in financial portfolio management. The VaR Vg (-) at level 8
is the lowest potential loss that may occur with probability
1 —f, and is thus is a natural candidate as a risk measure.
It is indeed widely used in the industry.

The VaR measure has been known to exhibit behavior
that might run counter to expectations, which limits their
effectiveness to special conditions. Artzner et al. (1999)
argue that risk measures should satisfy the following con-
ditions in order to be coherent: they should be translation
invariant, sub-additive, positive homogeneous and mono-
tone in the random variable. The VaR measure fails, for
instance, the sub-additivity test.

The risk measure R we consider is the conditional value-
at-risk (CVaR) at level 3, denoted as Cg(-). The CVaR risk



measure, defined in terms of the VaR risk measure Vﬁ(-),
and has garnered a lot of attention recently. (Definitions for
both are given in Section 2.) The CVaR Cg(+) represents the
average loss experienced given that the loss is greater than
Vg (-). Pflug (2000) and Acerbi and Tasche (2002) show that
the CVaR measure is coherent. Coherent measures possess
strong functional properties that make them more amenable
to use in a wide variety of applications, and are now widely
accepted in the academic community.

The problem of estimating CVaR measures Cg(Y) for
a random variable Y is of interest in itself, and it is par-
ticularly so as a rare-event estimation problem (Juneja and
Shahabuddin 2007, provide a good review). This is be-
cause the estimation requires generating samples from a
low-probability set when f is close to 1, as is typical in
practice. The estimation of VaR has been well studied un-
der this framework: for instance, Glasserman et al. (2000)
provide a general variance-reduction framework to estimate
VaR for light-tailed distributions, while Glasserman et al.
(2002) look at the estimation problem for heavy-tailed Y.
Focus is now beginning to shift to the CVaR measure, which
awaits a similar thorough treatment.

Rockafellar and Uryasev (2000) introduce a different
estimator that is perhaps more suited for optimization ap-
plications like (1). An approximation problem constructed
using their estimator usually results in a convex or even a
linear program (Rockafellar and Uryasev 2002), and thus
leads to efficient implementations for large-scale problems
of the type (1).

Problem (1) is a member of the general class of stochas-
tic problems that include a constraint involving an expec-
tation which, in general, can not be written down in closed
form. The simulation literature provides a diverse set of
tools to tackle such stochastic convex problems. A standard
approach called sample average approximation estimates
the expectation of the random function via samples of the
underlying random variable and then constructs a constraint
that approximates the true CVaR constraint in (1). One usu-
ally expects the solution to the approximated problem to
be approximately close to the true optimal. In Section 3,
we provide a bound on the relative optimality gap between
the approximation solution generated by a sample-average
algorithm and a true optimal of (1). For a sufficiently large
sample size n, the solution found has an objective value
within O(n~/?) of the optimal. Wang and Ahmed (2007)
provide bounds of the same order on the quality of sample-
average approximation solutions to general convex problems
with stochastic constraints. Their results are derived using
large deviations theory and require R(g(&,x)) to satisfy cer-
tain conditions, which do hold in the case we study. We
derive bounds with similar rates of convergence, but we
provide a geometric argument using the coherence proper-
ties of Cg(x). In our case, the constant in the expression is
defined in a manner that can be calculated analytically in
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some cases, or estimated. Moreover, the constant does not
include the r.h.s. b in its definition.

The rest of the article is laid out thus: Section 2 pro-
vides the mathematical background on the problem we are
interested in. Section 3 describes the main result of this
paper, and Section 4 discusses some directions these results
can be extended in and/or utilized.

2 THE OPTIMIZATION PROBLEM

The B-VaR Vg(Y) of a random variable Y is the (1 —f§)-th
quantile of Y, and is defined as

>

Vs(Y) = Fy'(1—B) = inf

{P(Y>y)<1-B}.
yeR

The conditional value-at-risk Cg(Y) of a random variable
Y with a continuous distribution is

Cp(Y) = E[Y|Y > Vg(Y)).

In problem (1), we are interested in the CVaR Cg(g(&,x))
of a portfolio with the allocation x, and we treat only
the case g(&,x) E'x here. We shall use the shorthand
Cp(x) for Cg(—E&'x). The CVaR of a random variable
with non-continuous distributions is harder to define. The
continuous-distribution requirement on &’x is usually not
overly restrictive. In general, the linear functional &'x has
a continuous distribution if even one of the components of
& have a continuous distribution. Henderson (2007) note
that the distribution function of the convolution £’x can
be obtained by conditioning on a component & that has a
continuous distribution with a density, which leads to an
expression for convolution £’x’s density.

Function Cg(Y) is sub-additive, positive homogeneous,
translation invariant and monotone in Y. The first two
properties, in particular, imply that Cg(Y) is convex in Y.
Since our choice of g is linear in x, Cg (x) is also sub-additive
and concave in x, and the feasible region carved out by
the CVaR constraint, a level-set, is convex. The stochastic
program (1) can thus be rewritten as a convex optimization
problem:

max c'x st Cg(x)<b, x ex'nx. )

Random variables {&, k = 1,...,d} represent the
change in real value of the assets under consideration over
the fixed decision time-period. Let u represent the mean
and X the correlation structure of &. In this exercise, one
would typically consider only those investments that have
an expected net positive growth outcome E&;, = 1y, > 0. To
avoid trivialities, we additionally assume the &, to satisfy

Assumption 1 There exists a positive constant 0

such that Cg(§) > 6 >0, Vk=1,...,d.
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This implies that each asset considered is expected
to net us a positive return ;, but it is accompanied with
distribution tails that are fat enough to result in a risk of a
positive loss at the 8 risk-tolerance level. This assumption
is reasonable in most cases since instruments that violate it
typically do not result in positive real returns. Instruments
such as Treasury-bills that are traditionally considered “safe”
or relatively risk-free are typically expected to only track
inflation in value. From formulation (2) we see that an
optimal allocation x* might not sum to 1, and the rest of
the marginal dollar is assumed to be invested in such safe
instruments.

The program (2) is a convex problem, and thus large in-
stances could potentially be solved efficiently. The principle
difficulty lies in the fact that the Cg(-) constraints cannot be
written down in an explicit form given the distribution of &.
One approach to overcoming this difficulty is to construct a
sample approximation of the original problem (2), in which
the CVaR constraint is replaced with an estimate that is
constructed based on samples of the random variable &.
The sample average approximation of the problem (2) is
of the general form:

maxc'x st

Cp(x) <b, xeX'nX, 3)
where C'ﬁ (-) is an estimator of Cg(-) constructed from
samples of &. The approximation éﬁ (Y) can be provided
using a canonical estimator of the expected value of the
random variable Y|Y > V(Y), because by definition Cg(Y)
is the expected value of a random variable that follows the
same distribution as Y to the right of the (fixed) point V5 (Y).

Rockafellar and Uryasev (2000) propose a new sample-
average based estimator to the function Cg(x):

. 1 '
min {oc i /yde 'x—a] " pe (Y)dy-}
This estimator has been designed with optimization in mind,
and is convex in x for our choice of a linear g. The sample
average approximation problem (3) is then a convex program.
The results we derive in Section 3 shall assume that
the estimator éﬁ (x) satisfies the following conditions:
Assumption 2 2a.  The estimator C‘ﬁ (Y) of
Cp(Y) is consistent and satisfies a central limit
theorem of form:

A

Vn(Cp(Y) = Cp(Y)) = oN(0,1) (4

2 is the variance associated with the es-

where ¢
timation,
The estimator Cg(x) of Cg(x) is positive homoge-

neous in x, and

2b.
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2c¢.  Let o(x) be the CLT (4) variance for random

variable E'x and set @ﬁ{e ERL| YL 0 =1}.
Then, the supremum supg.q O (0) exists.

Set @ is the collection of allocations where the entire
nominal dollar is invested in the d assets under consideration,
and thus is one of the faces of the boundary of set X°.

These assumptions are not overly restrictive, and rea-
sonable estimators are expected to satisfy this condi-
tion. Lemma 1 shows that the canonical estimator complies.
Let {&:i=1,...,N} be N i.i.d. samples of £, and {é(’i>x}
be a non-decreasing ordering of the &/x values. Then, the
canonical estimator of Cg(x) at point x is

GWE Y g )
p N—[NB] i=[NB] @™
Lemma 1 The estimator (5) satisfies Assumption 2.

Proof: For notational convenience, let Y(x) = —&’x, and

we shall drop the argument x of Y(x) when the context
makes the meaning clear. Note that E[Y(x)] = pu'x and
Var[ Y(x) ] = x’Ex. The set being optimized over is compact,
so it will be sufficient to show that the variance of the random
variables {Y(0)|Y(0) > V5(8)} are bounded above to prove
2c. The variance can be written as

E[Y?|Y > Vg(0)] — E*[Y|Y > V5(6)]
E[Y?)B - &2
{Var[ Y |+ E*[Y]} B — 8% = B{x'Ex+ (u'x)*} — 6°.

IN

The first inequality uses Assumption 1. The upper bound is
a quadratic in x, which attains a finite maximum within the
compact set ®. Thus, the variance term in assumption 2a
is finite and assumption 2c is satisfied. Assumption 2b is
true because of the linear form of (5) and the fact that the
ordering in (5) does not change if x is scaled by a positive
value.O

The Rockafellar and Uryasev (2000) estimator can be
verified to satisfy Assumption 2b. It is not immediately
clear that it obeys a limit theorem such as (4), though we
suspect that this is the case.

3 OPTIMALITY GAP

The central limit theorem (4) obeyed by the CVaR estimator
C'B (x) ultimately leads us to our central result Theorem 1,
which demonstrates that the optimal objective value c'%
output for the approximation problem (3) is within a rel-
ative gap of O(n~'/2) of the optimal objective value ¢'x*
of the original problem (2) for sufficiently large n. The
convergence rate is as we should expect given the CLT (4),
but interestingly the limit does not depend on b. Let ¢(-)



represent the distribution function of the standard normal
distribution N(0,1) and x* be an optimal solution to the
original problem (2).

Theorem 1 The objective value ¢'x;;, of the optimal
solution returned for the n-sample approximation prob-
lem (3) (with a sufficiently large n) satisfies

a) ex {144/ () +0(b)}

clxr- {1 + \/gtpfl(p)}_l

with probability p. The constant M is defined in Lemma 2,
and is independent of parameters c or b in (3).

The inequalities should be interpreted in the same sense
as when used in deriving standard confidence intervals for
sampling-based estimators.

We shall provide a set of preliminary results that will
in turn lead to the proof of Theorem 1. In the proof we
show that the feasible set created by the sample average
approximation problem, convex or not, is contained within
a scaled-up version of the convex feasible set of the original
problem (2). In turn, the approximation feasible set contains
a scaled-down version of the original convex set. The scaling
parameters are bounded by O(n~'/?) terms, which gives
us Theorem 1. The idea is demonstrated for the R? case
in Figure 1.

We start with the ratio of the variance 62(x) and the
square of the estimator Cg(x), otherwise known as the
coefficient of variation of the random variable &'x|E'x >

S
cdx, <

b) dxi >

Vﬁ(x).
Lemma 2 Define
Mémax{@ 1 0 €0}
e C3(0) '

M exists and is finite.

Proof: The function Cg(x) is concave in its argument x, and
hence Cg(8) > Y, A4Cp(er) > 8. Here the A; constitute a
convex combination, and e, represent the unit vector with
one in the th component, and we also use Assumption 1.
Thus, the term 1/Cg(8) is bounded above by the constant
1/ 52. This, combined with Assumption 2c, gives the result.
|

The constant M depends on the distribution of £ in (2).
In many cases, M can be explicitly evaluated; for instance
when & are multi-variate normally distributed as N(u, o),
explicit expressions for 6(0) and Cg(6) can be written
down and shown to be quadratic functions of x, and the
optimal value over ® can then be determined. At first
glance the fact that M does not use ¢ or b in its definition
seems remarkable, but this is to be expected given the strong
positive scaling property of Cg(-).
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We need some more notation to state our next result.
Let Q represent the intersection of the convex set defined by
the CVaR constraint in (2) with the non-negative orthant RY,

ie. Q2 {Cp(x) <b, xe€ R%}, and Q, correspondingly
its approximating set constructed by C’ﬁ (x) in (3). The set Q,
need not necessarily be convex. We denote the boundary
of a set A by dA. For an x € dQ, let 0(x) = x/||x||;
and 7(x) = ||x||1. (The l-norm of x is ||x||1 = Xy |xk|.)
Denote by P,(x) the point in d€, that lies along 6(x).
Let and 7, (x) = ||P,(x)||1. Figure 1 pictorially depicts these
definitions.

Figure 1: The sets Q, ©,, Qr and Qp in RR2.

For each x € 0Q,

7{1%—V@j¢%P)}_lﬁfnﬁf{l“vqj¢%P)}_i

with probability p.

Lemma 3

Proof: The function Cg(x) and its estimator CB (x) (as

defined in (5)) are both positive homogeneous in x € RY.
We have that for any x € Q,

|Cp(x) — Cp ()]

7ICp(6) —Cp(0)]

QN
S

(6)

The first equation uses the homogeneity of the functions
(Assumption 2b). The second inequality holds for a proba-
bility p following the standard confidence-interval derivation
using the CLT (4).

For an x in the boundary €, the constraint Cg(x) < b is
tight. Thus \C'ﬁ (x) —Cg(x)| = |C‘5 (x) — b|. Moreover from
the definition of P, and 7, C'ﬁ (x) = féﬁ(e) =7b/F,. In



other words,

Lol = it -b)
1( b \ o8
< 3 (am) SR o)
< VM—-o7'(p)

with probability p. The second inequality uses (6), while the
last uses Lemma 2. The last inequality can be refashioned
to give the relation required in the statement of the lemma.
a

For a set S and a scalar a, let aS = {ax|x € S}. Lemma 3
leads to the following corollary:
Corollary 2 For n sufficiently large,

—1

9-{1+\/7¢—1(p)}
—1

Q-{l—\/%‘(p)} ®)

Proof: We shall prove the upper bound and the lower bound
follows similarly. For any x € Q,, we need to show that
x € Q. Write x = r(x)0 where 0 is a unit vector from ©.
Consider the ray {r6, r > 0} along 6. As before, let 7 rep-
resent the r-value that defines the ray-part contained within
Q (i.e., 7=max,{r0 € Q} and 70 € dQ), and similarly 7,
and 7y for Q, and Qg respectively. From Lemma 3 we
have that (w.p. p) 7, < K7 for some constant K independent
of 6. Moreover, 7y = K7. Thus, r(x) <7y and x € Q.
This holds for any 8 € ® and thus any x € Q,, and this
establishes a). O

1>

-

Qp

A

N

Qu

with probability p.

We now have all the results we need and shall proceed to
prove Theorem 1.

Proof of Theorem 1: We prove part a) here; the other
part follows in a similar fashion. The feasible region of the
original problem (2) is given by QN (X?NX). Similarly,
Q,N(X°NX) defines the feasible set of the approximation
problem (3). The literature on convex bodies (closed, com-
pact, convex sets; cf. Schneider 1993) tells us that if (7)
holds, then so does

(Q,N(X°NX)) C (QuN(X°NX)). )
Let x* be an optimal solution to (2). Now, for any scalar
constant a > 0, ¢/ (ax*) > ¢'(ax), Vx € (QNX°NX), ie.,
ax* is also optimal for objective ¢’x over x € a (QNX°NX).
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Combining this with (9), we have that

—1
*-{1— ¢‘<p)}
*.{ ol

n
The final expression uses the expansion for (1 —x)~! when
0 <x < 1, which is true for sufficiently large n. O

M

n

x

)

IA

ct ('xﬂ

L

x

Remark 1 The arguments in this section primarily
use the coherence properties of Cg (+) as described by Artzner
et al. (1999), and so these results presumably hold if Cg(-)
is interchanged with other coherent measures.

Remark 2 This article treats only the case of a
linear uni-dimensional function g(&,x) E'x. The re-
sults above can be generalized to multi-dimensional linear
settings. Non-linear functions that satisfy certain proper-
ties might also be good candidates: for instance, functions
that are convex and positive homogeneous, or Lipschitz
COntinuous.

4 FUTURE DIRECTIONS

The constant M that appears in the rate relation in Theo-
rem 1 depends on the CVaR estimator used via the CLT (4).
This leads to the natural suggestion that an estimator can
be designed such that it has a lower value of M, or even
minimizes it, which will in turn lead to better estimation of
the true optimal value for the same sample size n. Finding
such an estimator falls under the general purview of variance
reduction, with the added twist that the M is defined as the
maximum coefficient-of-variation. Whether this demands
special attention when constructing variance-reduction es-
timators over applying standard techniques is not clear, but
the question definitely merits further investigation.
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