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ABSTRACT

Suppose that one wishes to evaluate the distribution of
profit and loss (P&L) resulting from a dynamic trading
strategy. A straightforward method is to simulate thousands
of paths (i.e., time series) of relevant financial variables
and to track the resulting P&L at every time at which the
trading strategy rebalances its portfolio. In many cases, this
requires numerical computation of portfolio weights at every
rebalancing time on every path, for example, by a nested
simulation performed conditional on market conditions at
that time on that path. Such a two-level simulation could
involve many millions of simulations to compute portfolio
weights, and thus be too computationally expensive to attain
high accuracy. We show that response surface methodology
enables a more efficient simulation procedure: in particular,
it is possible to do far fewer simulations by using kriging to
model portfolio weights as a function of underlying financial
variables.

1 INTRODUCTION

Suppose that one wishes to evaluate the distribution of profit
and loss (P&L) resulting from a dynamic trading strategy.
For example, one may be interested in a strategy that aims to
make a profit by trading stocks and options, or in a hedging
strategy that is intended to reduce the risk associated with
selling over-the-counter derivative securities. One would
like to know the distribution of P&L that results from a
strategy so as to decide whether or not to adopt the strategy,
or which of several rival strategies to implement.

Monte Carlo simulation is an appealing tool to use
for this purpose: given a stochastic model of the market’s
dynamic behavior, one can simulate multiple scenarios for
the market’s behavior, determine the strategy’s P&L in each
scenario, and consider the resulting empirical distribution of
P&L over all scenarios. Because of our interest in dynamic
trading strategies, each scenario takes the form of a time
series, a sequence of snapshots of the market’s state at

successive moments in time, which we will call a path.
Given a path, we need to be able to compute the strategy’s
P&L along the path. This may require computation of the
portfolio weights that the strategy chooses at each time and
the values of financial securities at those times.

For some problems, those computations are easy, in
which case the simulation approach is relatively straight-
forward (§4.1). The motivation for this article is the case
in which substantial computational effort is required to
approximate the portfolio weights or security values, and
the accuracy of the approximations is proportional to the
computational effort expended. This happens frequently
in practice. For example, it happens when the portfolio
weights are hedge ratios for which no formula exists. We
will focus on the use of simulation to compute portfolio
weights and security values, but the framework we propose
in this article is applicable even if they are computed by
other methods such as trees or numerical solution of partial
differential equations.

The absence of formulae for portfolio weights and
security values leads to a two-level simulation procedure
(§4.2) which is used in practice: at the outer level, sim-
ulate paths; at the inner level, use simulation to compute
portfolio weights and security values at every time step on
every path. The inner-level simulation typically involves
simulating many terminal payoffs of relevant securities. We
refer to the Monte Carlo samples used to generate these
payoffs as pricing replications. It may be necessary to
use tens of thousands of pricing replications at every time
step on every path, and thousands of paths, to attain high
accuracy. As there are often dozens to thousands of times
at which the portfolio is rebalanced, the total number of
pricing replications required can be many millions or even
billions. Thus, the disadvantage of this method, which we
call “full simulation,” is that it can be very slow. Our goal
is to create a more efficient simulation procedure.

The central insight is that the full simulation method
described above does too much work in pricing replications.
For example, suppose that the problem involves hedging
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an option on a single stock using that stock and a riskless
money market account (as in §3). When the full simulation
method needs to compute portfolio weights at time step 3
given a stock price of $100, it does so using a full set of
entirely new pricing replications, even if the procedure had
previously computed portfolio weights on a different path in
which the stock price was $100.10 at time step 3. For many
securities—although not for all securities, such as barrier
options, whose value functions can be discontinuous—it
seems that we should be able to use information from
nearby paths to reduce the computational burden. The
same insight underlies the use of regression Monte Carlo
methods in pricing American options (see, e.g., Glasserman
2003, §8.6). Those methods use regression to approximate
the option’s value as a function of underlying state variables,
such as the stock price in our example, for each potential
exercise time separately. In our context, where there may
be many rebalancing times, we expand on this idea by
modeling security values and portfolio weights as functions
of time and other state variables jointly.

We apply response surface methodology to each security
value and portfolio weight that we need to know. Each of
them is modeled as a function of time and state variables. We
call a combination of time and state variables (such as stock
price) a point. Response surface methodology in simulation
works by performing simulations that estimate the response
only at certain design points, and then attempting to infer
the value of the response at other points. Our simulation
procedure based on this idea (§4.3) first performs pricing
replications at perhaps a few hundred design points, then
constructs response surfaces, and finally uses the response
surfaces to approximate portfolio weights and security values
at thousands of points.

In this article, we show that response surface method-
ology can yield a more efficient simulation procedure for
evaluating hedging and trading strategies. The response sur-
face methodology we apply to this problem is kriging and
the experimental design we use for choosing design points
is based on a Latin hypercube, with some modifications
due to the structure of this financial problem. These issues
are discussed in more detail in §4. First we give a formal
statement of the problem and present our notation in §2
and describe a simple example in §3. We present results
of computer experiments in §5 and offer some conclusions
about future research in §6.

2 PROBLEM FORMULATION

Let Π be a random variable representing the strategy’s ter-
minal P&L. We focus on learning the univariate distribution
FΠ of terminal P&L, although our method is also applicable
to studying the joint distribution of P&L at various times.
We do not know FΠ or how to sample from it directly; we
only know how to sample from the distribution of paths:

the outer level of simulation. P&L is some function of
path, but we do not know this function either. P&L is given
by Equation (1) below, but to use it, we need to compute
security values and portfolio weights, which are also not
known as functions of the path. We do know how to estimate
these quantities by an inner level of simulation. One way to
think of the situation is that we can approximately sample
from FΠ, by sampling a path and then doing high-precision
inner-level simulation to approximate the P&L on this path.
Lan, Nelson, and Staum (2007) have discussed a rigor-
ous framework for understanding two-level simulation and
shown how to get confidence intervals from it for functionals
of FΠ. Another recent contribution to two-level simulation
in financial risk analysis is Gordy and Juneja (2008). Here
we will focus on point estimation of the mean and variance
of FΠ, corresponding to evaluation of the strategy’s average
profitability and its risk.

We will use the following notation:

• T : the time horizon over which the strategy is to
be evaluated.

• s: the number of times at which the portfolio can
change.

• t0, t1, . . . , ts: times at which the portfolio is analyzed.
A portfolio is set up at t0 = 0, final P&L is measured
at ts = T , and t1, t2, . . . , ts−1 are the times at which
the portfolio is rebalanced.

• S(t): the state vector of market risk factors at time
t.

• Si = S(ti): condensed notation for the state vector
of market risk factors at time ti.

• Vi: the vector of values of the securities at time ti.
• f: the vector function of security values, so that

the value of security l at time i is Vil = fl(ti,Si).
• θi: the vector of portfolio weights at time ti.
• g: the vector function of portfolio weights, so that

the number of shares of security l in the portfolio
at time i is θil = gl(ti,Si).

• Πi: the cumulative P&L up to time ti.
• k: the number of paths simulated.
• m: the number of replications used in inner-level

simulation at any point.
• A superscript indicates the realization of a random

variable on a particular path: for example, S j
i is the

vector of market risk factors at time ti on path j,
and S j is the jth sample path of the discrete-time
vector Markov process S.

The P&L that occurs over step i, that is, between times
ti−1 and ti, is the sum of the changes in value of the portfolio’s
holdings in each security. The number of shares of each
security remains constant over this time step, so step i’s
contribution to P&L is θ>i−1(Vi−Vi−1). The cumulative

630



Baysal, Nelson and Staum

P&L up to time ti is thus

Πi =
i

∑
i′=1

θ
>
i′−1(Vi′ −Vi′−1). (1)

In mathematical finance, it is standard to consider self-
financing strategies, which have the property that the portfo-
lio’s value does not change when the portfolio is rebalanced:

θ
>
i−1Vi = θ

>
i Vi (2)

for all i = 1,2, . . . ,s. For self-financing strategies, P&L also
equals the change in the portfolio’s value across all steps
to date, which is

Πi = θ
>
i Vi−θ

>
0 V0. (3)

To estimate the P&L of a strategy at times t0 =
0, t1, . . . , ts = T , we simulate a path of market risk factors
S0,S1, . . . ,Ss at each of these times. We need to estimate
security values Vi and portfolio weights θi at each time
i = 0,1, . . . ,s to use Equation (1) to find P&L at each time.
Section 3 describes some simplifications that are possible
in a typical application of hedging a derivative security. We
simulate k paths to get a sample Π1,Π2, . . . ,Πk. Its sample
average is an estimate of the mean terminal P&L, while
its sample standard deviation is an estimate of the standard
deviation of terminal P&L.

Estimation of security values and portfolio weights is
founded on inner-level simulation. We assume that we are
in the typical complete-markets, Markov-process setting in
which each security’s value at any time t is the conditional
expectation of its payoff under the risk-neutral probability
measure given the value of S(t) (see, e.g., Nielsen 1999,
§5.8). For simplicity, we also assume that all securities
have maturity T = ts and are path-independent. In this
case, the inner-level simulation need only sample values
of S(T ) = Ss. Otherwise, the inner-level simulation must
sample state vectors at the maturities of all securities. If
securities are path-dependent, then the inner-level simulation
must sample paths of the state vector observed at all relevant
times.

Consider an inner-level simulation at some point x =
(t∗,S∗) which is a combination of time t∗ and state S∗.
The inner-level simulation samples inner-level replications
S1

s (x),S2
s (x), . . . ,Sm

s (x) from the risk-neutral conditional dis-
tribution of Ss = S(T ) given S(t∗) = S∗. The terminal payoff
function g(T, ·) of all securities at maturity is known. This
allows us to estimate the security value gl(t∗,S∗) at time
t∗ by ∑

m
j=1 gl(T,S j

s(x))/m for each security l (Glasserman
2003, §1.2).

Portfolio weights in hedging strategies often arise as
sensitivities of security values to risk factors. See Glasser-
man (2003, Ch. 7) on Monte Carlo methods for estimating

sensitivities such as delta. In general, the method we describe
can be applied if the portfolio weights can be computed by
some method founded on simulation: for example, if the
portfolio weights arise from a portfolio optimization problem
at each point, then they can be estimated by optimization-
via-simulation, and the method applies.

We give a simple, concrete example of a hedging strat-
egy in this framework in §3. In §4, we describe three
different methods for estimating security values Vi and
portfolio weights θi at each time i = 0,1, . . . ,s.

3 DELTA-HEDGING A EUROPEAN PUT OPTION

Our computational experiments feature the example of delta-
hedging a European put option on a stock under the Black-
Scholes model (see, e.g., Nielsen 1999, Ch. 6 for further
background). Under the Black-Scholes model, the stock
price S is geometric Brownian motion. The securities in
the hedging portfolio include a riskless money-market ac-
count and the underlying stock. Their values at time ti
are respectively Vi1 = erti where r is the interest rate and
Vi2 = Si. The put option (denoted as security 0) is hedged
from the time it is sold until its maturity, when it pays
off Vs0 = f0(T,Ss) = max{K−Ss,0}, where K is the strike
price.

For i = 0,1, . . . ,s−1, the number θi2 of shares of stock
to hold at time ti is set equal to the negative of the first-order
sensitivity ∂Vi0/∂Si of the put option value with respect to
the stock price at that point in time, which is called the delta
of the option. At time ts = T , the option matures and the
hedge is unwound, so θs2 = 0. The number of shares in the
money-market account is set so that the hedging strategy
is self-financing:

θi1 = θi−1,1 +(θi−1,2−θi2)Vi2/Vi1 (4)

for i = 1,2, . . . ,s, based on Equation (2). The initial number
of shares in the money-market account is set so that the
value of the initial portfolio is zero:

θ01 =−(V00 +θ02V02)/V01. (5)

At any time ti, i = 0,1, . . . ,s, there is θi0 = 1 share of the
put option. Because the total initial portfolio value is zero,
the final P&L according to Equation (3) is

Πs = Vs0 +θs1Vs1. (6)

Some simplifications of the general framework for P&L
presented in §2 apply in many examples, including this
one. Suppose that we have a self-financing strategy for
hedging a derivative security until maturity, the derivative
security’s initial value is known, and we are only interested
in terminal P&L. Then we can use Equation (3) and we
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need only compute portfolio weights, not security values.
The reason is that underlying security values (e.g., of the
stock and money market account) are known functions of
the path, and the value of the derivative security (e.g., put
option) is known at the times that we need it. We do not
need to know the derivative security value at intermediate
times, its initial value is given, and its terminal value is
always a known function of the path, such as max{K−Ss,0}
in the example of the European put option. Even though
only the initial and terminal portfolio weight vectors θ0
and θs appear in Equation (3), we do need to know the
portfolio weight vectors at intermediate times too. They are
required to enforce the self-financing condition. For our
put option example, we can use Equation (4) recursively
with Equation (5) as its initial condition, use Vi1 = erti and
Vi2 = Si, plug into Equation (6), and get

Πs = Vs0 +
s

∑
i=1

(θi−1,2−θi2)Sier(T−ti)− (V00 +θ02S0)erT .

This shows that we need to know delta at all steps i =
0,1, . . . ,s−1, to get θi2, but the only option values we need
are V00, the given initial value, and Vs0, which is the payoff
max{K − Ss,0}. We use pathwise derivative estimation
(Glasserman 2003, §7.2) for delta:

θ̂i2 = e−r(T−ti) 1
m

m

∑
j=1

1{S j
s < K}S j

s

S j
i

.

In the particular example we use in our computational
experiments, the stock price follows a geometric Brownian
motion with initial value S0 = $100, drift µ = 8%, and
volatility σ = 15%. The put option has maturity of T = 1
years and strike price K = $110. The interest rate on
the money-market account is r = 5%. There are s = 60
rebalancing times, and ti = iT/s for i = 1,2, . . . ,s.

4 METHODS

In this section, we describe three simulation procedures used
in our experimental results. The procedures differ only in
how they estimate security values and portfolio weights
at times after t0: by using a formula, by using a nested
simulation at every time step on every path, or by using
response surface modeling. We assume that security values
and portfolio weights are known at t0 even in procedures
that do not rely on formulae for them. In practice, even
if security values and portfolio weights at t0 need to be
estimated by simulation, they have usually been estimated
to very high precision; it is only security values and portfolio
weights in hypothetical scenarios at future times that we
can not afford to estimate to high precision.

For similar reasons, we regard the P&L distribution
produced by the formula-based procedure (§ 4.2) as the true
P&L distribution. Even if formulae are not available, the
decision-maker will estimate f(ti,Si) and g(ti,Si) to high
precision when in state Si at time ti. The actual P&L arising
on a path S1,S2, . . . ,Ss will be nearly the P&L assigned to
it by the formula-based procedure, which is the limit of the
P&L assigned to it by the full nested simulation procedure
(§ 4.1) as the number m of inner-level replications goes to
infinity.

4.1 Formula-Based

The example described in §3 is so simple that we actually
do have formulae for the put option’s value and delta as
functions of time and stock price (see, e.g., Nielsen 1999,
§6.6). This means that the security values and portfolio
weights are known as functions of the path. By using
these functions, we can avoid any inner-level simulation
and eliminate all associated statistical error. In general,
these functions are unknown, but using them in this simple
example allows us to study the statistical error associated
with inner-level simulation in one of the following two
methods. The formula-based procedure for sampling P&L
Π

j
i for every step i = 1,2, . . . ,s and on paths j = 1,2, . . . ,k

is as follows.

• for j = 1,2, . . . ,k,

– Π
j
0 = 0

– for i = 1,2, . . . ,s,
∗ sample S j

i from the conditional distribu-
tion of Si given Si−1 = S j

i−1

∗ θ
j

i = g(ti,S j
i ) and V j

i = f(ti,S j
i )

∗ Π
j
i = Π

j
i−1 +(θ j

i−1)
>(V j

i −V j
i−1)

• next j

4.2 Full Nested Simulation

In the absence of formulae for these functions, we require
estimates of security values and portfolio weights at each
of s time steps on each of k paths. One way to get them
is from fully nested simulation: at each of ks points, do
an inner-level simulation to estimate security values and
portfolio weights there. For simplicity, we suppose there
are the same number m of inner-level replications at all
points. The full nested simulation procedure is as follows.

• for j = 1,2, . . . ,k,

– Π
j
0 = 0

– for i = 1,2, . . . ,s,
∗ sample S j

i from the conditional distribu-
tion of Si given Si−1 = S j

i−1
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∗ for h = 1,2, . . . ,m,
· sample Sh

s (ti,S
j
i ) from the conditional

risk-neutral distribution of Ss given
Si = S j

i
∗ using this inner-level simulation, estimate

θ
j

i by θ̂
j

i and V j
i by V̂ j

i

∗ Π
j
i = Π

j
i−1 +(θ̂ j

i−1)
>(V̂ j

i − V̂ j
i−1)

• next j

4.3 Response Surface Modeling

Instead of performing inner-level simulation at each of the
ks points at which we want to know security values and
portfolio weights, this method reads estimates at each of
those points from functions called response surfaces. These
response surfaces are in turn computed as the result of inner-
level simulation, which is performed only at certain design
points. Frye (1998) and Shaw (1998) have also applied
response surface modeling in financial risk analysis. In our
experiments, we use a response surface methodology called
kriging, which chooses the value of a response surface at any
point that is not among the design points by interpolating
among the values observed at design points. Figure 1
shows a response surface for the value of the put option
constructed by kriging based on inner-level simulation, and
the error due to kriging in estimating the response surface
given by the Black-Scholes formula in the example of
§3. On the kriging method and its use in the design and
analysis of computer experiments see, e.g., Fang, Li, and
Sudjianto (2006), Santner, Williams, and Notz (2003), and
Stein (1999).

Figure 1: A response surface estimated by kriging, and its
difference from the Black-Scholes formula, for the price of
the put option in §3.

By choosing a set of n� ks design points, the response
surface modeling method can be faster than full nested
simulation with the same numbers k of paths, s of time
steps, and m of inner-level replications per point. This
speed can come at the price of accuracy in assessing the
distribution of P&L, because the response surface models

of security values and portfolio weights at a point (ti,S∗)
tend not to be as accurate as estimates provided by inner-
level simulation performed conditional on Si = S∗; that is,
interpolating estimates from other points is not as accurate
as simulating at this point. The goal is to trade off a little
bit of accuracy for a lot of speed to get a more efficient
procedure.

Our response surface modeling procedure has three
parts. First, choose a set {x1,x2, . . . ,xn} of design points and
perform inner-level simulation at each of them to estimate
the security values and portfolio weights there. Second,
use kriging to build response surfaces for each component,
separately, of the security value function f and the portfolio
weight function g. Third, compute P&L on each path by
using the response surfaces to provide estimates of security
values and portfolio weights.

The choice of experimental design (the set of design
points) can have a very large impact on the fidelity of the
response surface generated by kriging. In most applications
of kriging, one knows in advance a finite region within
which one wishes to estimate a response. However, in the
financial examples we consider here, this is not so: for
example, asset prices are typically unbounded. We solve
this problem by first simulating all the paths we need, and
then modeling responses over a finite region that contains
all the simulated data. In the example of §3, this region is
contained in the Cartesian product [t0, ts−1]× [Smin,Smax]
where Smin = min{S j

i | j = 1,2, . . . ,k, i = 1,2, . . . ,s} and
Smax = max{S j

i | j = 1,2, . . . ,k, i = 1,2, . . . ,s} are the small-
est and largest observed stock prices. The reason that ts = T
is excluded from response surface modeling is twofold. We
do not need a response surface model at maturity because
security values then are payoffs, which are known func-
tions, and likewise portfolio weights then do not need to be
estimated. There is also a discontinuity at maturity in the
put option’s delta, and hence in g2, the number of shares of
stock to hold: limS↑K g2(T,S) = 1 while limS↓K g2(T,S) = 0.
In general, response surface modeling can encounter severe
problems when the true function is discontinuous.

Latin hypercube designs (see, e.g., Glasserman 2003,
§4.4) have been reported to be more effective in kriging
than uniform grid designs; our experiments confirmed this.
Our experimental design for the example of §3, based on a
Latin hypercube, is constructed as follows.

• Partition [t0, ts−1] and [Smin,Smax] into d intervals
of equal width.

• Sample one point uniformly within each interval.
• Randomly pair the time and stock price values to

get d design points.
• Add the four points (t0,Smin), (t0,Smax), (ts−1,Smin)

and (ts−1,Smax) to the design.
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The last step is important: without the addition of the four
corner points there can be a point (ti,S

j
i ) on some path that

falls outside the convex hull of the Latin hypercube design.
This causes problems because kriging, as an interpolation
method, performs quite badly when it is used to extrapolate
outside the convex hull of design points. An illustration of
this experimental design appears in Figure 2.

Figure 2: An experimental design for the example of §3
with 29 design points. The 4 red squares are corner points
and the 25 blue dots form a Latin hypercube design.

We feed estimated security values and portfolio weights
at the design points to kriging, which constructs response
surfaces by interpolating among them. The interpolated
value at a point x is a weighted average of the values
observed at all design points. The weight a design point
x j receives depends on its distance to x; the basic idea
behind kriging is that nearer design points are more highly
correlated (in a loose sense) with the point of interest, and
so get greater weight. The kriging model requires a choice
of a correlation function that governs how weights diminish
with distance. We used the exponential correlation function.

The response surface modeling procedure is as follows.

• for j = 1,2, . . . ,k,

– for i = 1,2, . . . ,s,

∗ sample S j
i from the conditional distribu-

tion of Si given Si−1 = S j
i−1

– next i

• lay down a design of points x1 = (t∗1 ,S∗1), x2 =
(t∗2 ,S∗2), . . . , xn = (t∗n ,S∗n)

• for j = 1,2, . . . ,n,

– for h = 1,2, . . . ,m,

∗ sample Sh
s (x j) from the conditonal risk-

neutral distribution of Ss given S(t∗j ) = S∗j
– using this inner-level simulation, estimate

θ(x j) by θ̂(x j) and V(x j) by V̂(x j)

• next j
• for each security l,

– build response surfaces f̂l for fl using
V̂l(x1),V̂l(x2), . . . ,V̂l(xn) and ĝl for gl using
θ̂l(x1), θ̂l(x2), . . . , θ̂l(xn)

• next l
• for j = 1,2, . . . ,k,

– Π
j
0 = 0

– for i = 1,2, . . . ,s,
∗ Π

j
i = Π

j
i−1 + (ĝ(ti,S j

i−1)
>(f̂(ti,S j

i ) −
f̂(ti,S j

i−1))
• next j

5 EXPERIMENTS

We performed experiments in MATLAB, implementing krig-
ing with the DACE toolbox and generating Latin hypercube
designs with the lhsdesign function. We used k = 1,000
paths and m = 1,000 inner-level replications in the example
described in §3. Our experimental designs had n = 104 or
n = 404 design points. This means that the full nested simu-
lation procedure required 60 million inner-level replications
while the response surface modeling procedure required only
104,000 or 404,000. Of course, performing kriging takes
time too. However, the relative effort required for inner-level
replications, sampling paths, and performing kriging varies
with the problem and the computing platform. Because we
expect that the time spent on inner-level replications will
dominate unless m is small and the stochastic model of the
market is simple, we ignore the other computational costs.

To assess the accuracy of these simulation procedures,
we ran 100 macro-replications, each an independent run
of the entire procedure, involving independently generated
paths and design points. However, within a single macro-
replication, all procedures used the same paths. This pro-
duced 100 estimates of the mean P&L and the standard
deviation of P&L at each time step, for each procedure:
that is, each of 100 runs produces an estimate of E[Πi] and
an estimate of

√
Var[Πi] for each time step i = 0,1, . . . ,s.

We depict the average and the sample root mean squared
error (RMSE) of these 100 estimates in Figures 3–6. The
error used in computing RMSE is the difference between
one macro-replication’s estimate of E[Πi] or

√
Var[Πi] and

our best estimate of E[Πi] or
√

Var[Πi], which we get
by combining all 100,000 replications generated by the
formula-based procedure.

It is a feature of the financial example, not a problem
with the simulation procedure, that the mean P&L E[Πi] is
decreasing in the time step i for the formula-based procedure
in Figure 3. Because of the option’s convexity, the discrete-
time hedging strategy that is delta-neutral at the beginning
of each time step holds too little stock, on average, between
portfolio rebalancing times. Because the stock’s expected
return exceeds the interest rate, holding too little stock gives
the strategy a negative expected return.
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Figure 3: The average, over 100 macro-replications, of four
simulation methods’ estimates of mean P&L at each time
step.

In Figure 4, even the formula-based procedure yields
an estimate with positive RMSE because of outer-level
sampling error: each macro-replication has a different set
of k = 1,000 paths.

Figure 4: The sample root mean squared error, over 100
macro-replications, of four simulation methods’ estimates
of mean P&L at each time step.

Figures 3 and 4 show that response surface modeling
can introduce substantial bias and variance into estimating
mean P&L, but the problem is ameliorated by using a
moderate number of design points. With n = 104 design
points, kriging tends to generate a response surface with
poor fidelity. Particularly noticeable is the bias just before
maturity, where the put option’s price and delta are badly
behaved functions, as explained in §3. Increasing the number
of design points to n = 404 greatly reduces this bias. With
404 design points, response surface modeling estimates
mean P&L with a fair degree of accuracy, compared to the
standard deviation of P&L portrayed in Figure 5. The bias
and variance introduced by response surface modeling are
much greater at time ts−1 than at time ts = T and at time
t1 than at time t0 = 0 (where P&L is zero by construction).
This happens because the simulation procedure relies on the
response surface for the put option price to produce P&L
at times ts−1 and t1 but not at times ts and t0.

Figure 5: The average, over 100 macro-replications, of four
simulation methods’ estimates of the standard deviation of
P&L at each time step.

Figure 6: The sample root mean squared error, over 100
macro-replications, of four simulation methods’ estimates
of the standard deviation of P&L at each time step.

Figures 5 and 6 show that response surface modeling
with n = 404 design points performs similarly to the other
procedures in estimating the standard deviation of P&L,
except at early times, when it is not as accurate as the
formula-based procedure, but more accurate than full nested
simulation. Again, the jump from time t0 to time t1 in
RMSE of estimates from methods other than the formula-
based method is explained by inner-level sampling error in
estimating the put option value function f0(t1, ·).

Next we focus on the distribution of terminal P&L
generated by each of the simulation methods. We pool the
terminal P&L values on k = 1,000 paths in each of 100
macro-replications to produce a picture of the probability
density of terminal P&L in Figure 7. Table 1 summarizes
the results in Figures 3–6 for P&L at time T = 1 only. It
also shows the standard errors in estimating these quan-
tities with 100 macro-replications. The standard error in
estimating RMSE is calculated by the delta method (see,
e.g., Asmussen and Glynn 2007, §III.3). From the table
we see that the response surface modeling procedure with
n = 404 design points is quite accurate in estimating the
mean and standard deviation of terminal P&L, compared to
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full nested simulation, but it is on the order of 100 times
faster.

Figure 7: Approximate probability density functions of
terminal P&L generated by four simulation methods, based
on 100,000 samples of terminal P&L.

Table 1: The average, standard error (SE) and the root
mean square error (RMSE) statistics of the mean estimates
of terminal P&L.

Mean P&L Std. Dev. of P&L
Method Average RMSE Average RMSE
Formula -0.045 0.023 0.767 0.022
Based (0.002) (0.002) (0.002) (0.001)

Full Nested 0.022 0.070 0.745 0.032
Simulation (0.002) (0.002) (0.002) (0.002)

RSM, n=104 0.040 0.096 1.002 0.249
(0.004) (0.004) (0.008) (0.009)

RSM, n=404 0.022 0.072 0.807 0.054
(0.003) (0.003) (0.004) (0.003)

6 FUTURE RESEARCH

We have found, in exploring one example, that using kriging
to create response surfaces for the price and delta of a put
option enables fast, accurate estimation of the mean and
standard deviation of the terminal P&L of a hedging strategy
for the put option. This suggests that kriging can be an
effective tool for reducing the computational cost of nested
simulations of hedging and trading strategies. However,
the method’s performance needs to be investigated in other
examples, especially examples in which response surfaces
are built over a higher-dimensional space. Kriging in higher
dimensions is more challenging, and the example we used
here has only two dimensions, time and stock price.

There are also possibilities for improving the perfor-
mance of kriging in this setting. It is well-known in kriging
that experimental design has a major impact on performance,
and we found the same in our example, having tried other
designs in computational experiments not reported here.
One could look for designs better than the one illustrated

in Figure 2. Kriging is based on an assumption that the
response surface has a location-invariant correlation struc-
ture: roughly speaking, the values of the response surface
at locations separated by the same distance have the same
degree of similarity regardless of where you look. Figure 1
suggests that this assumption is untrue in our example of a
put option: for example, the put option’s values at(0.8,120)
and (0.8,130) are very similar (nearly zero), but the op-
tion values at (0.8,80) and (0.8,90) are quite different (by
about $10). A transformation of the coordinate system from
time and stock price to some other coordinate system might
make kriging’s spatial correlation modeling assumptions
more nearly true in the transformed space and thus improve
the performance of kriging. We used a basic version of
kriging, in which the response surface is formed simply
by interpolating among observed values. There is also a
theory of kriging that incorporates the modeling of trends
in the response surface, as in regression. For example, one
might model the response surface as a linear function of the
spatial variables plus local deviations from this trend: then
the spatial correlation model applies only to the local devi-
ations. In the literature on design and analysis of computer
experiments, trend modeling is frequently reported not to
work well in practice. However, because we have many
more design points in our examples than are typical in that
literature, it is possible that trend modeling may improve
the performance of kriging here.

Kriging was developed for analyzing the results of de-
terministic experiments, for example, physical experiments
in geology or deterministic computer experiments such as
finite-element codes: if these experiments were to be re-
peated, they would yield the same results, at least roughly.
Kriging interpolates between the values observed at de-
sign points because it assumes that these values are the
truth. This is not so in our framework, in which the val-
ues observed at design points include inner-level sampling
error. Ankenman, Nelson, and Staum (2008) describe a
stochastic kriging procedure which takes account of this
uncertainty when constructing the response surface. The
resulting response surface may work better in our applica-
tion, and the associated analysis may help in constructing
better experimental designs.
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