

DEFERRED VS. IMMEDIATE MODIFICATION OF SIMULATION STATE IN A PARALLEL DISCRETE
EVENT SIMULATOR USING THREADED WORKER POOLS

David W. Mutschler

Bldg 2185, Suite 2160-B4
22347 Cedar Point Rd

Naval Air Systems Command (NAVAIR)
Patuxent River, MD 20670, USA

ABSTRACT

The Joint Integrated Mission Model (JIMM) is a real-time
legacy battlefield simulator employed in detailed analyses
and virtual exercises. To leverage more processors to im-
prove real-time execution, a worker pool of threads opti-
mistically executes events in parallel but avoids cascading
rollback by executing only one future event per simulated
object. Safeguards for maintenance of simulation state are
programmed explicitly and either deferred or immediate
modification of state variables could be employed in case
of event rollback. In the beginning of the main paralleliza-
tion effort, deferred modification was used where simula-
tion state is updated only when the event can be completed
safely. However, after successful implementation, it was
determined to be impractical. Later, all safeguard pro-
gramming employed immediate modification where origi-
nal state is restored in case of rollback. This paper dis-
cusses these techniques for parallel execution of events in
JIMM from initial efforts through later code maintenance.

1 JOINT INTEGRATED MISSION MODEL

The Joint Integrated Mission Model (JIMM) is a general-
purpose (Nalepka, Gump, & Kurker 2001) real-time dis-
crete event simulator primarily used for forces modeling
and simulation. It is employed as the main threat environ-
ment for Naval Air Systems Command (NAVAIR) Air
Combat Environment Test & Evaluation Facility
(ACETEF) test and training exercises (Mutschler 2007a).
It was also employed for requirements generation by the
Joint Strike Fighter (JSF) program office. Other uses in-
clude directed energy weapon modeling (Mutschler
2007b), weather modeling (Kelly et al. 2004), communica-
tion modeling (Chapman and Mutschler 2006), radar mod-
eling (Worsham 2002), modeling of swarms of intelligence
automata (Niland et al. 2005), air defense systems (Du-
quette, Nalepka, and Luczak 2004), and human behavior
modeling (Hoagland et al. 2001), (Long et al. 2006).

1.1 Parallelization

JIMM is a legacy model with roots extending as far back
as 1968 (JMMO 2008). It has its own simulation language
to allow complex interactions as well as a graphical user
interface for quick scenario development (Mutschler
2005a). However, despite its already efficient operation,
there was still a desire to leverage multiple processors to
execute larger and more complex test scenarios in
ACETEF and other facilities while still meeting real-time
deadlines. Hence, modifying JIMM to employ parallel
processing was approved and funded by the Common High
Performance Computer (HPC) Software Support Initiative
as project #7 of Forces Modeling and Simulation (FMS #7)
Computational Technology Area (CTA).

1.2 Using Worker Pools

JIMM is a real-time legacy model and is expected to oper-
ate in both single processor and multi-processor (high per-
formance computing) environments. Therefore, perform-
ance in serial operation could not be severely impacted by
the availability of parallel operation. In addition, shared
memory symmetric multiprocessors (SMPs) were very
common in ACETEF and other test facilities.

Hence, threads were chosen as the means for paralleli-
zation. They permitted separate thread processing for I/O
and event execution. This would improve both serial and
parallel operation. Threads also have very low overhead
and can be used in the SMP environment.

There were other reasons for using threads. First,
JIMM is a product currently in use where full releases are
usually provided to the user community two or more times
per year. Use of threads for I/O processing could be pro-
vided to the community earlier as a more immediate bene-
fit of the parallel operation. Also, there was a significant
fear of cancellation of the parallelization effort. Providing

1055 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Mutschler

results earlier would reduce loss should that cancellation
occur.

JIMM is also used in real-time environments where
steady simulation progress is the major requirement. This
was thought to preclude approaches where rollback of si-
mulation state could cause intermediate delays in simulator
output. In addition, events in JIMM are computationally
small and there was a major concern with communication
overhead, even in a shared memory threaded processing
environment. Lastly, there was a desire for totally repeat-
able operation to facilitate analysis and allow utilization of
the extensive test programs already available (Gibson and
Chapman 2001).

Furthermore, new events in JIMM can be scheduled
for the same simulation time as their parent events. This
was thought to preclude conservative parallelization ap-
proaches where a minimum non-zero simulation time be-
tween an event and successive events affecting the same
simulation object is required. This left optimistic ap-
proaches where events occurring in future simulation time
are calculated assuming little chance that their inputs
would change (Fujimoto 1999). However, to ensure steady
progress, significant rollback common to some optimistic
approaches had to be avoided. Hence, future processing of
parallel events was limited to one future event per simula-
tion object.

For these reasons as well, a general worker pool ap-
proach (also known as “scatter and gather (SAG)” or “sin-
gle process multiple data (SPMD)”) was used instead an
approach where different threads execute events simulta-
neously and communicate simulation state through mes-
sages. First, the worker pool approach is applicable within
the SMP environment. Second, overall simulation state is
saved at a single processing point once an event is finished
processing. Total ordering of output, regardless of the
number of processors can then be achieved permitting
ready use of available test capability. There is no commu-
nication overhead. Lastly, the worker pool also ensures
that one event currently being processed is the earliest
event and would never be rolled back, thereby ensuring
minimum forward progress.

Synchronization overhead was still a major concern.
However, events in JIMM are well structured and affected
simulation objects are identified before event execution.
This would simplify detection for the need for rollback af-
ter event execution. Also, JIMM scenarios are character-
ized by a large number of simulated entities. This would
alleviate overhead from rollback processing as well as the
limit from processing only one future event per simulation
object. Lastly, significant work could be put into reducing
processing bottlenecks.

1.3 Parallel Operation

The general architecture divides thread execution into three
parts: upper and lower critical regions that are protected
by a single common mutual exclusion operation (“mutex”)
so that only one thread can execute within them and the
last part where multiple threads can execute events in par-
allel (Mutschler 2005b).

After simulation start and until simulation end, threads
simultaneously execute in a loop. After simulation start,
the threads set a single mutex to ensure safe serial opera-
tion and enter the upper critical region (UCR) where they
obtain events. They exit the UCR, unset the mutex, and
process the events in parallel. After processing is finished,
the threads again set the mutex and enter the lower critical
region (LCR) where the safety of final event processing is
determined. New events are queued. Lastly, output and
state maintenance are arranged for later processing in par-
allel before executing a different event. The threads then
enter the UCR without unsetting or resetting the mutex and
the loop begins anew.

Figure 1: JIMM Architecture with Four Threads

In the UCR, events are obtained from a common prior-
ity queue ordered by simulation time. If simulation times
are equal, then a unique event integer identifier that is in-
cremented and assigned when events are initial queued is
used to resolve order. A Least Global Virtual Time
(LGVT) is defined as the simulation time and event identi-
fier of the earliest ordered event in the queue, currently be-
ing executed, or already executed but awaiting final proc-
essing in the LCR because earlier events still exist.

After the event is obtained from the event queue, it is
checked for possible collisions with events that have not

UCR

mutex

mutex

mutex

mutex

LCR

File Output
External Interfaces
Displays

State Saving or
Rollback

1056

Mutschler

yet finished processing. Event collision occurs when the
event examined could read or write data within a simula-
tion object involved with a later event (in simulation time)
that has been or is currently being processed. Processing
of the later event hence might no longer be valid because it
employed data that might have changed.

Should a collision occur, then if we are considering
the later event, it is queued in a structure on the executing
event and rescheduled once that event completes. Other-
wise, this event is placed on a different list on the execut-
ing event and the executing event is marked for rollback.
Once complete, the events are ordered and placed back on
the queue.

If no collision would occur, the event is placed on a
different priority queue for events being executed or events
that finished executing and are awaiting final processing in
the LCR. This common queue simplifies LGVT calcula-
tion.

A thread would execute an event in parallel once the
mutex for the critical region is unset. Changes to simula-
tion state are maintained on an ordered list associated with
the event. Output to external interfaces is also kept on a
separate ordered list associated with the event.

The thread then waits upon the mutex and once that is
satisfied, enters the lower critical region (LCR). If the si-
mulation of the processed event is equal to LGVT, then it
is processed immediately. Otherwise, the most recent
event on the queue of executed or executing events is then
examined to determine if it has finished executing and if its
event time would be the LGVT. If so, then it is processed.

Processing of an event with LGVT in the LCR in-
volves several other actions. First, new events generated
by the processed events are queued in the order generated
and event identifiers assigned. LGVT is checked and up-
dated when the new event would be the earliest unproc-
essed event in the simulation. Checks for collision and
subsequent rollback are also made.

In addition, event output is also arranged to be sent in
proper order outside the simulation before the thread proc-
esses its next event. State saving (moving forward) or
rollback is also determined to be executed for each simula-
tion object before its processing of its next associated
event. Event output and simulation object rollbacks are
handled in the main body and outside the LCR to decrease
the impact of the critical regions as processing bottlenecks.

After processing an event, the queue of executing and
executed events is repeatedly examined and the earliest
event processed until the earliest event time is no longer
the LGVT.

1.4 Optimizations

A number of optimizations were made to limit the impact
of the UCR and LCR bottleneck. First, these regions were

coded to be highly efficient. Aforementioned optimiza-
tions include the following:

• Update or rollback of simulation state is deter-
mined within the LCR but processed outside the
critical regions before the next pertinent event for
the affected simulation object.

• Submission of output to external displays and
files is ordered in the LCR but processed before
processing of a thread’s next event.

• Use of a common queue for events currently exe-
cuting or awaiting final processing to simplify
LVGT processing.

Other optimizations include the following:
• A common memory pool already employed by

JIMM was coded for parallel operation (Mut-
schler 2006).

• Input from external sources is also handled out-
side the critical regions.

• Each event is assigned a main simulation object
and then ordered by time on a list associated with
that object. This list is referenced as a single
structure on the main simulation queue based on
the time of its earliest event. This avoids colli-
sions of events with the same main simulation ob-
ject.

• The simulator can be adjusted to obtain more than
one event in the UCR and then execute them one
after the other. This can reduce synchronization
overhead due to mutex operation at the cost of po-
tential parallel execution.

• A separate method is used for serial execution of
events as opposed to event execution in parallel.
This reduces overhead from parallel operation ca-
pability when it is not necessary and there no ben-
efit from parallel operation would be achieved.

2 IMPLEMENTATION OF STATE SAVING

JIMM is implemented in the C++ programming language
and makes extensive use of object-oriented programming
constructs such as derived classes that inherit data and
function methods from associated base classes.

Execution of events in parallel was implemented in the
last phases of the parallelization effort. Associated with
these phases was the saving of the state of objects associ-
ated with events in the case of rollback.

State saving data is implemented as a doubly-linked
list of objects associated with a single simulation object.
The objects have a base class known as a “result”. Conse-
quently, the list is known as a “result list”. The base class
includes pointers for the list as well as specification of two
function methods: “Apply()” where the simulation state of
the object is changed, and “Discard()” where the simula-
tion object is returned to its original state. The derived

1057

Mutschler

classes of the result base class contain pertinent data as
well as implementations of the Apply() and Discard() func-
tions.

Events act upon simulation objects. At the start of
event, the result list for each of the simulation objects
should be empty. When the event is processed, results are
appended to the result list as needed. When an event is de-
termined to be safe (e.g. has the earliest LGVT) or rolled
back (e.g. an event collision has occurred), the determina-
tion is noted in a bit stored within the simulation object.
The results are later processed before the simulation object
is accessed in a different event.

If the event is determined to be safe for final process-
ing, then the result list is processed through execution of
the “Apply()” function from earliest result to last result to
ensure order of update. If the event must be rolled back,
then the result list is processed from its last update to its
earliest through execution of the “Discard()” function to
ensure correct reverse order of state restoration.

In deferred modification, the original state is main-
tained in the simulation object and changes are usually (but
not always) stored in the result class. The event is then
coded to use the interim values and ensure that the initial
state in the object is not altered. Processing of the result
list via the Apply() function overwrites the initial state in
the simulation object with the modified state. Processing
of the Discard() function discards the changes but makes
no modification to the original simulation object state,
leaving it intact.

In immediate modification, the original value is stored
within the result class. The data in the original data struc-
tures for events are then modified and used. When the Ap-
ply() function is executed, the original data is thrown away
since saving it is no longer necessary. When the Discard()
function is executed, the original state is restored.

Saving and restoration of simulation state is only han-
dled by result classes and these must be used for each state
change. This explicit update was assumed to be more effi-
cient in terms of performance than employing classes that
perform state saving automatically.

Results can be programmed for each variable type as
well as structures or other collections of data. In the be-
ginning, all the data for a simulation object in an event was
handled by a derived result class instance. Specific code
modules were denoted by a “dr_” prefix for “derived re-
sult”.

3 EVOLUTION OF STATE SAVING

As a legacy model in current use, JIMM is updated and re-
leased two or more times per year. Most corrections and
enhancements are achievable as single stage efforts pro-
vided in a single release. Larger efforts are divided into
increments that correspond to the releases. Because work

for parallel operation was a multi-year effort, it was di-
vided into parts for incorporation into successive versions.

The early part of the parallelization effort from August
2000 to 2002 focused on use of threads for output, allow-
ing multithreaded access to terrain and the memory pool,
better organization of events via derived classes, organiz-
ing event output for external transmission after the event
completed, and eliminating cases where simulation state
was modified outside events (JMMO 2008).

Work on parallel execution of events started in late
2001. In retrospect however, specific development and in-
tegration of parallel execution of events had three major
stages: initial development using deferred modification up
to successful demonstration of parallelism starting in early
2002 and ending in 2003, rejection of deferred modifica-
tion and completion of the development effort, and subse-
quent perfective maintenance and greater use of generic
classes through 2007. Employment of result classes has
evolved over these periods.

3.1 Initial Development

When the parallelization effort was initiated in 2000, the
proposed preliminary architecture was examined. Check-
ing of collisions in the UCR was not thought to be neces-
sary and use of deferred modification of simulation objects
would allow associated events to be executed in parallel
safely. This assumption was later rejected since update of
simulation state when one event was determined to be safe
could still occur during processing in the main body of a
different event with the same associated simulation object.
However, the preference for deferred modification was es-
tablished.

State saving using deferred modification was imple-
mented and tested for several small events and shown to
operate correctly. Developers initially considered the ap-
proach to be straightforward.

Generic routines for saving of basic types such as in-
tegers, doubles, pointers, and lists where implemented but
were not used extensively. Instead, each event had an as-
sociated “result” class for each simulation object which
handled all the state saving processing.

In subsequent development, use of deferred modifica-
tion worked well. Unfortunately, as more complex events
were considered, retaining and using the intermediate state
instead of the original state required heroic programming
efforts. Extensive structures containing intermediate data
needed to be retained and passed from procedure to proce-
dure. Coding became quite cumbersome especially as
common procedures and classes were used in multiple
events.

Even so, the methods worked for an initial implemen-
tation involving the major events associated with sensing,
perception cognizance, and decision making. Near linear

1058

Mutschler

speedup with up to twenty-four separate processors was
obtained (Mutschler 2005b).

3.2 Rejection of Deferred Modification

Once the initial parallel version was complete, many
events still needed to be coded for operation in parallel.
This effort was completed by the JIMM Model Manage-
ment Office (JMMO) in the following year as part of its
code maintenance efforts.

In maintaining the code, several problems became ap-
parent. First, event implementations could rarely mix de-
ferred modification (a.k.a. “Apply-based”) and immediate
modification (a.k.a. “Discard-based”) methods. An event
had to be implemented either one way or the other. This
was especially a cause of concern given the use of common
procedure and classes and the now inherent utilization of
state saving.

Another problem was that much of processing for
events employing deferred modification was moved out-
side the event into the Apply() function of the result class.
This made the code difficult to follow and understand. On
the other hand, events employing deferred modification re-
tained much of their original coding inside the event, thus
making understandability and subsequent code mainte-
nance much easier.

After long deliberation, the JMMO determined that
even though many events were already implemented using
deferred modification, it would no longer be used and that
extensive effort would be undertaken to convert events im-
plemented using deferred modification to immediate modi-
fication methods. This effort has been completed. How-
ever, instance of the use of deferred modification are still
found and treated as low priority required software
changes.

3.3 Using of Generic Classes

One of the by-products of the use of deferred modification
was the generation of many instances of derived “result”
classes specific to events and common procedures. The
number of files became very cumbersome.

As events were converted (or modified to operate in
parallel), it was noted that many functions of the result
classes could be handled by several instances of more “ge-
neric” result classes that operated only on basic data types
such as integers and pointers or on simple types such as
lists. Simulation state saving would not be done in a single
class instance but would be done with multiple smaller re-
sult class instances on the event’s associated result list.

Because the generic result classes only dealt with sim-
ple types, their implementation was very efficient. Thus,
the associated performance cost of employing them vice a
single result class instance was negligible. Moreover, code

module understandability improved significantly, thereby
reducing overall maintenance costs.

The generic result classes were expanded slightly with
instances to handle simple classes, structures, and other
blocks of data. Otherwise, they were left unaltered.

Eventually, many of the larger event-specific result
class instances were completely replaced. The JMMO then
determined that all event or procedure specific result class
instances would be replaced with generic results. As of
November 2007, less than a dozen of these instances (from
an initial count of more than one hundred fifty) remained.

The JIMM simulator is still in use. The release of ver-
sion 3.2 was provided to the user community in June, 2008
(JMMO 2008). Maintenance of parallel execution of
events continues.

4 CONCLUSION

This paper has described the use of threaded worker pools
to execute events in parallel with a real-time legacy simu-
lator known as the Joint Integrated Mission Model
(JIMM). Methods for deferred modification and immedi-
ate modification of simulation state variables are discussed
and shown to be different applications of a common state
saving class known as “results”.

During initial conversion to parallel operation, de-
ferred modification techniques were employed success-
fully. However, as the code was later maintained, this ap-
proach was rejected and techniques using immediate
modification were employed instead due to the need for
increased understandability and simpler overall construc-
tion given complex code and use of common procedures.

Eventually, more elaborate derived result classes spe-
cific to events and common procedure were replaced with
more generic result class instances that handled basic
types, blocks, and lists.

ACKNOWLEDGEMENTS

JIMM was created and derived from previous models de-
veloped by Peter Lattimore. The initial implementation of
the state saving (“result”) structure was provided by Wil-
liam Brooks. The initial version was developed by Jon
Anderson, William Brooks, Michael Chapman, Ralph Gib-
son, Doug Pickeral, Jon Smith, and others. Extensive en-
hancement and utilization of the generic classes was im-
plemented by Blair Kitchen. JIMM is currently maintained
by the JIMM Model Management Office (JMMO). Infor-
mation about JIMM may be obtained by contacting the
JIMM Model Manager at <jmmo@navy.mil>.

REFERENCES

Chapman, M. D., and D. W. Mutschler. 2006. Communica-
tion Modeling in the Joint Integrated Mission Model

1059

Mutschler

(JIMM) and the Air Combat Environment Test &
Evaluation Facility (ACETEF). ITEA Modeling and
Simulation Conference, Las Cruces NM.

Duquette, M, J. Nalepka, & R. Luczak. 2004. The en-
hanced generic air defense system. AIAA Modeling
and Simulation Technologies Conference and Exhibit.
Providence RI. (AIAA-2004-4799)

Fujimoto, R. M. 1999. Parallel and Distributed Simulation
Systems. John Wiley & Sons Inc. New York, N.Y.

Gibson, R. D., and M. D. Chapman. 2001. Legacy software
testing – a current methodology. The Eleventh Annual
International Council On Systems Engineering
(INCOSE). Melbourne, Australia.

Hoagland, D., E. Martin, and M. Anesgart. 2001. Repre-
senting Goal-Oriented Human Performance in Con-
structive Simulations: Validation of a Model Perform-
ing Complex Time-Critical-Target Missions.
Proceedings from the Spring 2001 Simulation Interop-
erability Workshop. Simulation Interoperability Stan-
dards Organization. San Diego CA. Paper Number
01S-SIW-137.

JIMM Model Management Office (JMMO). 2008. JIMM
3.2 Users Guide Volume One. Available via
<jmmo@navy.mil>.

Kelly, M., S. Vick, J. Schloman, J., and F. Zawada. 2004.
A Weather Service for Introducing Dynamic Attenua-
tion Factors in the Joint Integrated Mission model
(JIMM). Proceedings from the Fall 2004 Simulation
Interoperability Workshop. Simulation Interoperability
Standards Organization. 04F-SIW-107.

Long, G., D. W. Mutschler, and G. Lohman. 2006. Human
Behavior Modeling in the Joint Integrated Mission
Model. Proceedings from the Fall 2006 Simulation In-
teroperability Workshop. Simulation Interoperability
Standards Organization. Orlando, FL.

Mutschler, D. W. 2007a. Employing Future Path Informa-
tion to Improve Position Accuracy in Distributed Si-
mulations. Proceedings of the Fall 2007 Simulation
Interoperability Workshop. Simulation Interoperability
Standards Organization. Orlando FL. (07F-SIW-033)

Mutschler, D. W. 2007b. Integration of Directed Energy
Weapons Modeling in the Air Combat Environment
Test & Evaluation Facility (ACETEF). Directed En-
ergy Professional Society (DEPS) Modeling & Simu-
lation Conference, Monterey CA.

Mutschler, D. W. 2006. Enhancement of Memory Pools
Toward a Multi-Threaded Implementation of the Joint
Integrated Mission Model (JIMM). In Proceedings of
the 2006 Winter Simulation Conference, ed. L. F. Per-
rone, B. Lawson, J. Liu, F.P. Wieland, 856-862. Pis-
cataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers, Inc.

Mutschler, D. W. 2005a. Language-based Simulation,
Flexibility and Development Speed in the Joint Inte-
grated Mission Model. In Proceedings of the 2005

Winter Simulation Conference, ed. M. E. Kuhl, N. M.
Steiger, F. B. Armstrong, and J. A. Joines, 1190-1197.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Mutschler, D. W. 2005b. Parallelization of the Joint Inte-
grated Mission Model (JIMM) Using Cautious Opti-
mistic Control. Proceedings of the 2005 Summer
Computer Simulation Conference. Cherry Hill NJ, So-
ciety for Modeling and Simulation International, 145-
152.

Nalepka J., J. Gump, R. Kurker. 2001. JIMM: The next
step for mission models. 2001 SPIE Aero-
space/Defense Sensing and Controls Conference
(#2367), Orlando FL.

Niland, W., B. Skolnik, S. Rasmussen, K. Finley, and K.
Allen. 2005. Enhancing a Collaborative UAV Mission
Simulation Using JIMM and the HLA. Proceedings of
the Spring 2005 Simulation Interoperability Work-
shop, Simulation Interoperability Standards Organiza-
tion, San Diego CA.

Worsham, R. 2002. Northrop Grumman Radar Simulation
(AVSIM). Proceedings of the 2002 IEEE Radar Con-
ference, 176-186.

AUTHOR BIOGRAGHY

DAVID W. MUTSCHLER has been employed by the
U.S. Navy in the Naval Air Systems Command (NAVAIR)
since 1985. He obtained his doctorate in Computer and In-
formation Science from Temple University in 1998. He
worked on the Joint Integrated Mission Model (JIMM) and
its predecessor, the Simulated Warfare Environment Gen-
erator (SWEG), from 1996 to 2007. He was the principle
investigator for the JIMM parallelization effort from 2000
to 2003 and the JIMM Model Manager from July 2004 to
Feb 2006. He is now the Government Software Integrated
Product Team (IPT) Lead for the CH-53K Heavy Lift Re-
placement (HLR) rotorcraft. He is a member of the Asso-
ciation for Computing Machinery (ACM), its Special In-
terest Group in Simulation (ACM SIGSIM) and the
Institute for Electrical and Electronics Engineers (IEEE)
Computer Society (IEEE/CS). He is also an Associate Pro-
fessor of Computer Science at the Florida Institute of
Technology (FIT) University College – Patuxent River
MD site. His e-mail address is
<david.mutschler@navy.mil>.

1060

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

