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ABSTRACT

In this paper, a dynamic model coupled with a simulation
model is introduced to control a multi-workstation pro-
duction system such that a given performance measure is
achieved. In particular, we consider closed loop capacity
controls for regulating WIP (Work-in-Process) at individ-
ual workstation. The capacity adjustments are consisted
of both compensation for local disturbances and predictive
control of downstream effects of capacity adjustments make
up-stream in the system. Using real data collected from an
industrial production system, we are able to demonstrate
that our hybrid dynamic and simulation framework can ef-
fectively predict lead times associated with each workstation
and thus to correctly plan production using a static capacity
control system.

1 INTRODUCTION

Disturbances due to the dynamic nature of a production
system can be attributed to many factors, ranging from tar-
get setting to fulfillment to production data acquisition to
logistic performance measurement (Kim and Duffie, 2006).
While disturbances are main factors causing deviations of
WIP of the production system from the planned WIP. In
order to prevent and correct the effects from disturbances,
the Production Planning and Control (PPC) system can
be implemented. However, the Production Planning and
Control (PPC) system itself can be the source of distur-
bances in the system, so understanding how the system
controls production and how this relates to the dynamic
nature of production can lead to improved planning tech-
niques (Kim and Duffie 2005). Additionally, the upstream
disturbances have an effect on downstream operation for
long periods of time when there is no communication be-
tween the production networks and this is amplified when
reaction to capacity changes is limited (Kim and Duffie
2006). Therefore, coupled closed-loop capacity control po-
lices are necessary applied to effectively control WIP in
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to the planned WIP levels by accurately predicting correct
reallocation of capacity of downstream workstation.

Some previous researches have been conducted on an-
alyzing performance of closed-loop workstation capacity
controls in a multi-workstation production system. Kim
and Duffie (2006) propose a control-theoretic system ar-
chitecture, in which control-theoretic methods are used to
design coupling mechanisms and improve understanding and
confidence in fundamental dynamic behavior by adding cou-
pling at the control level combined with intrinsic coupling
at the orderflow levels. They claim that system performance
can be improved through control coupling between work-
stations. Towill and Cheema (1997) propose a closed-loop
PPC concept with adaptive inventory control in decision
support systems within in a multi-product medical supplies
market.

This paper presents a dynamic model of a multi-
workstation production system, then shows how the dy-
namic model of control is incorporated into a discrete event
simulation model. Then a 5-workstation production system
example as a case study is presented, by which the fun-
damental properties and dynamic behavior of the system
are analyzed. Finally, based on results of the case study
conclusions about the simulation are presented.

2 DYNAMIC MODEL OF MULTIPLE WORK
SYSTEMS

Figure 2 shows the external inputs and outputs of the n-
workstation production system. The external input and
output rates represent orders flowing from and to the Oth
workstation respectively. The planned capacity, c,(t)x, and
planned WIP, wip, (1), for each of the n workstations is
constant and unaffected by the production network. The
input rate, I(¢)o, is the rate at which external orders flow
into the production system.

Figure 1 illustrates the closed-loop and coupled ca-
pacity control mechanisms for the kth workstation in an
n-workstation production system. The input rate of a single
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Figure 1: Closed-loop and coupled capacity control of the kth workstation.
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Figure 2: Production network of autonomous work system.
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where the fraction of orders going to workstation k
is pox- The fraction of orders going to workstation i to k
from previous workstation is represented by matrix p;, and
O(1); is the output rate of the ith workstation (Wiendahl and
Breithaupt 2000). Assuming the model is in a state where
capacity is not effected by WIP, the output rate is assumed
to be ¢r (1)
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for work disturbances, Wy (), the actual WIP, wip,() in
the system is:

wipa(O = [0 -0WAd+Walt)e )
Maintaining level of wip,(t); equal to the planned levels
will result in the planned result of eliminating the wip error,

Wipe(t)i-

“

The capacity adjustment and the speed of which wip, (#)y
is corrected, is dependent upon the control policy gain
k.scd~! and adjustments in upstream workstation capacity
resulting in a capacity adjustment of:

Wipe (1) = wipa(t)x — wipp (t)k

cm(t)k = chipe(t - D)k + Zpikcm(t)i 5)
i=1

i=

The value of k. is determined based on the capacity
control policy and D is the elapsed time necessary to change
capacity at the workstation, assuming instantaneous change
in capacity is not achievable. It is also assumed all work-
stations experience the same k. and D values. The full
capacity of the kth workstation is:

cr(t)e = cm(t)k+cp(t)i (6)
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Figure 3: Discrete-event simulation model illustration of kth workstation.

3 A DISCRETE EVENT SIMULATION MODEL
FOR CAPACITY CONTROLS

Based on the dynamic model, Kim and Duffie (2006) pro-
pose a control-theoretic method exploring its fundamental
dynamic behavior. While we will present a discrete event
simulation model to deal with this in the paper. Using
Arena the discrete event simulation model(DES) of a multi-
workstation production system is modeled.

Figure 3 shows the kth workstation simulation model
illustration, in which there are two modules: one is the
workstation process module, the other is the coupled closed-
loop capacity control module. The simulation modules for
other workstations are similar to those of the kth workstation.
In the simulation model, we set the run time to 8 hours for
per shop calendar day (scd) and assume that the working
time is from O to 8 o’clock of each day. When we calculate
lead time for orders, the neglected 16 hours for each day will
be counted on again. We assume that the order arrival time
for each calendar day is at 0 o’clock and the WIP control
logic is executed at 0 o’clock daily. Regards to capacity
adjustment, the corresponding service time adjustment is
reflected, an average service time of an order for the kth
workstation, S¢(¢); can be calculated as follows:

8
cp()k +kewipe(t — D)+ Y1 | pikcm(t)i

St(t) = (N

If the adjusted capacity is O or negative, the corre-
sponding service time of orders is set to be infinite. On
the following day the capacity adjustment is recalculated
and the service time is set to a different value. If an order
enters the workstation at the simulation time, 7}, and the
simulation day, Ty, such that the service time exceeds the
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amount of available time left in the day then only a fraction
of the order is processed. The fraction of work completed,
Fr(t)gj,is then:

Fr(t)kj _ St(t)k - (it?t];iay - Tnow)

®)

Therefore on the following day the service time of the
unfinished job will be:

©))

We may give an example of explain how we handle
the capacity adjustment, let us assume the capacity today
4 (orders/scd). The processing time is then 2 hours for
each order, if an order input into the machine (or process
module) at the 7th hour of an 8 hour workday, half of the
work required is completed (Fr(t); = 0.5), leaving half
for the following day. Let us assume the capacity for the
following day is 8 (orders/scd), then processing time is 1
hour. Using equation 9, the order will then require 0.5 hours
of processing.

St(t 4 1)ij = (1= Fr(t)i;)St(t + 1)k

4 A 5-WORKSTATION SYSTEM CASE STUDY
4.1 Real Industrial Order Flow Data

The following example is based on production data from a
metal forming company that supplies parts to the automotive
industry. The behavior of the system is modeled using dis-
crete capacity control model simulation. The data includes
all orders, 659, entering the production system from scd
162 to scd 347 in 2001. For this analysis, the workstations
are grouped into five workstations.
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Table 1: Summary of 5 workstations

Workstation Description Number of Machines
1 Shearing/Sawing 6
2 Ring Rolling 16
3 Drop Forging 10
4 Heat Treatment 8
4 Quality Control 24

Figure 4 shows the fraction of orders flowing from
workstation i to workstation j, in the form of matrix p;;.

To 0 1 2 3 4 5
From
0 0 341/659 | 295/659 1/659 71659 15/659
1 0 0 106/341 | 235/241 0 0
2 91401 0 0 0 188/401 | 204/401
3 7/236 0 0 0 100/236 | 129/236
4 27/295 0 0 0 0 268/295
5 616/616 0 0 0 0 0

Figure 4: Order flow matrix p;;.

And the planned capacity and WIP calculated from the
data are shown in Figure 5.

C [orders/scd] WIP,
WS

Weekday Saturday Sunday [orders]

1 472 0.92 0 21.07
2 5.34 1.50 0 18.92
3 295 042 0 14.46
4 270 2.50 1.92 14.87
5 6.28 0.83 0.08 7211

Figure 5: Planned capacity and WIP.

4.2 Simulation Results to Industrial Data

In order to illustrate the dynamic behavior of multi-
workstation production systems better, the input data are
modified to eliminate weekends, the modified planned ca-
pacity is listed in Table 2. In this simulation model, we set
the control gain K, to be 0.25 and set the delayed calender
day, D, to be 1. Table 3 shows the simulated results on ac-
tual WIP and lead time, which are calculated by eliminating
data of the warm-up and shutdown states. The low standard
deviation implies the simulation model effectively controls
the actual WIP into the planned WIP levels. Lead times
also exhibit low variation. In addition, Figures 6-10 show
the simulated wip,(¢); levels for each of the 5 workstations.
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Figure 6: Workstation 1: Shearing & Sawing.

30.0
1
z
&?
;;
0.0
00 950.0
Time (hours)
Figure 7: Workstation 2: Ring Rolling.
20.0
: (e
E WA‘W
i ) \
0.0 [ h Lo
00 950.0
Time (hours)
Figure 8: Workstation 3: Drop Forging.
20.0
2
E
o
0.0
00 950.0
Time (hours)
Figure 9: Workstation 4: Heat Treatment.
80.0
2
E
é
a
0.0

o (hous) 950.0
Time Chours)

Figure 10: Workstation 5: Quality Control.



Wu, Shi, Quirt, and Duffie

Table 2: The modified planned capacity after eliminating
weekends

w1l w2
MPC 532 6.27

W3 W4 W5
3.69 4.60 9.60

*MPC indicates modified planned capacity.

Table 3: Actual WIP and lead time obtained by simulation
model

Planned WIP SWIP[orders] Lead Time[scd]
Mean Deviation Mean Deviation
21.07 20.47 3.09 3.11 0.40
18.92 18.45 3.30 2.36 0.42
14.46 14.09 2.36 3.88 0.40
14.87 14.65 2.90 3.20 0.46
72.11 70.66 3.79 7.56 0.44

*SWIP indicates the actual WIP result obtained by DES
model.

5 CONCLUSION

An integrated dynamic and simulation model is intro-
duced for multi-workstation production systems with cou-
pled closed-loop capacity controls for regulating WIP in
individual workstation, in which capacity adjustments is
consisted of both compensation for local disturbances and
predictive control of downstream effects of capacity adjust-
ments made upstream in the system. The model is used to
analyze the fundamental properties and dynamic behavior of
multi-workstation production systems, which is illustrated
using real data from an industrial production system. The
simulation results show that the integration of the dynamic
and simulation model is able to effectively correct the ef-
fects of work planning disturbances. The low variation of
the lead time at each workstation indicates simulation is
able to predict lead times based on real production data.
The predicted lead time can be used to plan production in
common static capacity planning systems used in industry,
such as MRP.
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