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ABSTRACT 

The design of complex artificial populations is the first 
step in simulating evolution during the time span of socio-
economic variables as the family income. In this paper, a 
new hybrid model based on Monte-Carlo simulation and 
fuzzy inference is described to design environmental con-
ditions, the basic socio-economic structure and to deter-
mine the causes for mortality in an artificial population. 
The model is based on three main databases that describe 
the characteristics of the environment, individuals and me-
chanisms (mortality). These expert-based characteristics 
guide the simulation model which has a fuzzy inference 
engine to evaluate fuzzy dependence relationships. These 
relationships have been formulated to automatically deter-
mine complex environmental and individual characteristics 
as well as mechanism parameters, and they are based on 
expert knowledge. An artificial population has been de-
signed with satisfactory results when critical design factors 
are carefully adjusted. 

1 INTRODUCTION 

In order to analyze evolution throughout the time span of 
social, demographic or economic variables, researchers 
have built models that usually describe only a specific situ-
ation (Stern 1997). These models are used to evaluate po-
litical alternatives or to suggest different courses of action 
(Kydland 2006). But the nature of their specifications ren-
der them useless in other contexts, when the original situa-
tion changes, due to difficulties in determining relations 
among covariates or, even worse, because information is 
incomplete and must be estimated. 

Monte-Carlo simulation has been widely used to mod-
el and design artificial data series based on some fixed pre-
requisites (statistical distributions) defined by experts de-
pending on the purpose of the study (Fishman 1996, Stern 
1997). This methodology can be used to model complex 
events but, in order to avoid absolutely blind models, it is 
absolutely necessary to manage expert knowledge (always 

scarce) to define, if possible, the variable behavior (repre-
sented by mathematical functions, statistical distributions, 
etc.), on one hand, and the relationships among them 
(many, complex and sometimes unknown), on the other. In 
these cases, variable and parameter values in the model de-
pend on the values of other variables and/or parameters (of 
the model or external) and, sometimes, on their own val-
ues. There are many approaches for modeling and evaluat-
ing these dependence relationships (Setnes et al. 1998, Cox 
2005), but when it is not possible to define algebraic ex-
pressions, only artificial intelligence approaches can be 
used, if expert knowledge can be explicitly stated. Fuzzy 
logic can be considered as an appropriate tool when expert-
based rules can be defined (Cordon et al. 2002, Cordon et 
al. 2003, Cox 2005). The huge amount of these expert rules 
usually needed to model a framework under study can be a 
serious problem because experts cannot accurately define 
all of them (Wang et al. 2005) and, in addition, their evalu-
ation is very computer demanding (Gegov 2007). 

In order to deal with the rule number problem (Guven 
and Passino 2001, Pal et al. 2002), in this paper we propose 
a new procedure to make rule design and evaluation auto-
matic. This procedure can only be used in structured sys-
tems where experts can identify which variables (outputs) 
depend on others (inputs) as well as some additional pa-
rameters to use as rule-design guidelines. Rather than de-
fining and stating all the rules explicitly in a rule base 
(Xiong and Litz 2002), this procedure designs, instantiates 
and evaluates only the appropriate rules and when needed. 

The aim of this paper is to design and develop a 
Monte-Carlo simulation model that incorporates a multi-
level fuzzy inference engine to generate and understanding 
the evolution of complex artificial populations of individu-
als based on expert knowledge. 

A population is a set of individuals. Each individual is 
born in a specific socio-economic environment and dies 
due to different causes that can be algebraically described 
by mortality functions. These sets of functions are called 
mechanisms (i.e. mortality). Once the environmental char-
acteristics are known, those associated to each specific in-
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dividual can be determined at the moment of his/her birth. 
From this starting point, the individual characteristics 
evolve the function of his/her age according to complex 
relationships among individual and socio-economic co-
variates. Finally the individual dies, again due to complex 
reasons. 

The structure of the socio-economic environment has 
been defined by a set of complex variables. Basically, there 
are two different variable types: non-conditioned and con-
ditioned. The non-conditioned variable (inputs) values are 
determined first by a standard Monte-Carlo model (Fish-
man 1996) taking into consideration their appropriate ex-
pert-based statistical distributions. Conditioned variables 
(outputs) are related to non-conditioned or other condi-
tioned variables (previously evaluated and considered in-
puts). Each conditioned variable or output defines a de-
pendence relationship (DR). These DRs can be defined by 
algebraic functions, statistical distributions or, finally, 
fuzzy rules. Depending on the DR type chosen and the val-
ues of non-conditioned or conditioned variables, output 
values can be finally evaluated. 

Individual characteristics can also be classified using 
the same categories: non-conditioned (inputs) and condi-
tioned (inputs/outputs). Their values evolve through time 
(the age of the individual) according to both the environ-
mental socio-economic characteristics and his own. Non-
conditioned characteristics, like individual gender and 
his/her age, are strange in complex systems. The rest, con-
ditioned, depend on both environmental (per capita in-
come, …) and individual (age, gender, family income, …) 
characteristics. These DRs can be also modeled by alge-
braic functions, statistical distributions or  fuzzy rules to be 
evaluated by the appropriate algorithms. 

Our proposed Monte-Carlo Model has two sections. 
First, the socio-economic variables that describe the evolu-
tion of the artificial environment are determined based on 
an expert-driven framework. In the second, individuals are 
born (birth rate), live (they learn, generate income and so 
on) and, finally, die. In both sections non-conditioned vari-
ables (inputs) are determined by the Monte-Carlo model 
according to specific and expert-based probability distribu-
tions. The rest can be evaluated by an algebraic solver, by 
Monte-Carlo simulation or by our fuzzy inference engine, 
according to the predefined framework. 

In order to check our proposed model, an artificial 
population has been designed based on the characteristics 
of a medium-large sized town in a developed country. DRs 
were mostly defined by fuzzy rules because there was not 
enough evidence to define specific algebraic functions for 
all the possible inputs and outputs combinations. Depend-
ing on individual characteristics, four different mortality 
causes are evaluated. The mortality mechanisms are 
(Carnes et al. 1996): child (including maternal and infant) 
mortality, non-specific base mortality, accidental and dis-
ease mortality (which can include wars and natural disas-

ters) and, finally, deterioration mortality. All of them have 
been designed as functions of a time whose results can be 
evaluated directly or by applying conditioned probabilities 
according to standard probability functions.   

Results verify that the behavior of the model and the 
structure of the resulting population matches expectations. 

This paper is structured as follows. First, the Monte-
Carlo model is defined in section two. The third section in-
troduces the structure of a real example. Some relevant re-
sults obtained using the predefined structure are described 
in section four. Finally, a brief discussion of relevant issues 
concludes this paper.  

2 MODEL STRUCTURE 

The Monte-Carlo model is based on four main elements: i) 
databases; ii) dependence relationships, iii) the fuzzy infer-
ence engine; and, iv) the simulation model. 

2.1 Databases 

Our model is structured on three main databases: i) 
environment; ii) individuals; and iii) mechanisms. 

2.1.1 Environmental Characteristic Database 

Socio-economic characteristics, like per capita income and 
social security expenditures, are essential (Wood et al. 
1980, Carnes et al. 1996, Murray et al. 1996, Olshansky et 
al. 1997) for the design of artificial populations because 
they always condition individual behavior. Experts know 
that these DRs exist, but their structure is complex and, on 
many occasions, unknown. 

Each environmental characteristic is identified and can 
be described by experts. Its structure has many parameters 
that define its behavior in the Monte-Carlo model. It can be 
non-conditioned (input) or conditioned (input/output) and, 
in both cases, it can be relevant during the whole life of the 
individual or only at a/some specific age ranges. Its value 
can be determined by: experts (parameter), an algebraic 
function, statistical distribution or, finally, a DR (fuzzy 
rules). In these three final cases, its value can depend on all 
or some (including its own previous values) environmental 
characteristic values. Finally, an environmental variable 
evolves through the time: increasing, decreasing, reaching 
peaks or having a conditioned probability. 

2.1.2 Individual Characteristic Database 

Each specific individual in the artificial population is de-
fined by a set of characteristics (variables) that determines 
his/her life. These characteristics like, for example, gender, 
family income and so on, are also chosen by experts. Each 
individual characteristic or variable has a structure similar 
to that which was described for environmental ones. It can 
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also be non-conditioned or conditioned, can be relevant in 
the whole life of the individual or only in a/some age 
ranges and, finally, can have, or not, minimum and maxi-
mum admissible values. The variable value can be deter-
mined by the Monte-Carlo model when is fitted to a statis-
tical distribution (with conditional probabilities or not), but 
it can also be calculated by an algebraic function or by a 
DR. Finally, it evolves through time and its value can be 
more or less constant, increase, decrease or can fluctuate. 

2.1.3 Mechanism Parameter Database 

A mechanism is a process, defined by a set of algebraic 
functions, that must be evaluated to be able to design a re-
liable artificial population of individuals. Some examples 
of mechanisms are: mortality, employment, etc. Mecha-
nisms are evaluated on individuals, for example: individu-
als die, can work and so on; and evolve through time de-
pending on the individual and environmental 
characteristics.  

Parameter values in mechanism functions are defined 
by DRs once the function is instantiated. This means that 
there is enough expert knowledge to define the global 
structure of mechanism functions through time, but experts 
cannot accurately define their parameter values for each 
specific situation. These parameters are always related to 
individual and environmental characteristics and can be 
evaluated by the fuzzy inference engine. As mentioned 
above, parameters are determined when the corresponding 
function is instantiated. This procedure means that the pa-
rameter values are different for each individual (the func-
tion structure is identical) and are inherited during his/her 
life. Nevertheless and depending on environmental and/or 
individual variable values, these parameter values can be 
distorted for a specific year/age according to conditioned 
probabilities. 

In this paper, only one mechanism has been described: 
mortality. It was defined by four mortality functions: child 
(decreasing exponential. Lynch 2006), non-specific base 
(degenerated normal. LeClere 2000), accident and disease 
(displaced Weibull. Murray,et al. 1996) and deterioration 
(increasing exponential. Gavrilov et al. 2003). In all of 
them, parameters were determined by the fuzzy inference 
engine using DRs where the output was the corresponding 
parameter and the inputs, individual and environmental 
characteristics.  

2.2 Dependence Relationship Structure 

In our model, many variables as well as mechanism pa-
rameters depend on individual or environmental character-
istics. These relationships are defined by fuzzy rule sets 
where individual and/or environmental characteristics are 
the inputs and other individual or environmental character-
istics and mechanism parameters are the outputs. The set of 

rules that relates one output with some inputs is called a 
dependence relationship (DR) and its basic structure must 
include: 

• Inputs/Output. For each output, inputs must be de-
fined. Inputs can be ranged according to expert 
knowledge. 

• Time ranges. DRs can be applicable only at spe-
cific time/age ranges (i.e. child mortality). 

• Function value ranges. Output values (results) can 
be ranged. 

• Conditioned probabilities. Output values can be 
fitted to specific probability functions. 

2.3 The Fuzzy Inference Engine 

For each DR, inputs and outputs are expressed in linguistic 
terms using semantic labels (membership functions or 
fuzzy sets in Fuzzy Logic). For example: the family in-
come is high or the national health care system is poor. 
Semantic labels define fuzzy sets that allow us to evaluate 
fuzzy relationships using IF input1 IS label1 and input2 IS 
label2 and … THEN output IS labelo rules (Cordon 2002). 
Once the real value for a specific population characteristic 
is known, we can fuzzify it determining its membership 
functions (MF) –semantic labels- and their corresponding 
membership degrees (MFi, ( )

iMF ixμ ) (i=1,2, …,m), m be-
ing the number of inputs. The maximum number of rules 
that the system should be capable of managing, r, is an ex-
ponential function (Cordon et al. 2002, Cordon et al. 2003) 
of the number of inputs m, membership functions p and, 
finally, the number of DRs d in the form: 
 mr dp=  (1) 

Depending on d, p and m values, r in (1) can be enor-
mous making it impossible for the experts’ explicit defini-
tion one per one (Dubois et al. 1997). This means that the 
Monte-Carlo model must automatically design and evalu-
ate the corresponding rules (depending on the input values) 
when they are needed. 

This procedure can be completely automatic and needs 
a simple rule base that should include: 

• DR description: inputs and outputs, type and in-
tensity (described in detail in the next section). 

• The relative weight of each input on the output 
defined by the characteristics (range, mean, stan-
dard deviation …) of a probability distribution 
chosen by the experts.  

• The influence (positive or negative) of each input 
on the output. 

In order to design and evaluate automatically fuzzy 
rules, an inference engine has been included in the Monte-
Carlo simulation model. Fortunately, population design is a 
structured system where experts can identify which inputs, 
to a certain extent, are related to specific outputs: the DR 
basic structure. In this phase of knowledge acquisition, sys-
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tem designers can also request experts to identify a DR 
type. A DR type is a category, defined by system designers 
and comprehensible for experts, that describes how spe-
cific combinations of input MFs identify the output MF in 
a fuzzy inference engine. For example, five types of DR 
can be defined as follows: 

• Very negative (VN) type. Given the MFs for the 
DR inputs (identified in a fuzzification process) 
the corresponding ones for the outputs are shifted 
far to the left. 

• Negative (N). Given the MFs for the DR inputs, 
the corresponding ones for the outputs are shifted 
slightly to the left. 

• Neutral (X). Given the MFs for the DR inputs, the 
corresponding ones for the outputs are located in 
the same relative position. It is the default selec-
tion. 

• Positive (P). Given the MFs for the DR inputs, the 
corresponding ones for the outputs shift slightly to 
the right. 

• Very positive (VP). Given the MFs for the DR in-
puts, the corresponding ones for the outputs are 
shifted far to the right. 

This procedure makes the complete (but simple) au-
tomation of rule design and evaluation possible and it does 
not imply that the MF number for each input and output 
should be identical. Each input can have an influence on 
the output that is positive (the greater the value –or MF- of 
the input, the greater the value –or MF- of the output) or 
negative (the greater the value –or MF- of the input, the 
lower the value –or MF- of the output). Experts must de-
fine the influence of each input as well as its relative 
weight (relevance) with respect to the output. In a Monte-
Carlo simulation model, these weights can be modeled se-
lecting appropriate probability distributions. 

Once the input weights wi (i=1,2, …,m) are determined 
at random (according to their probability distributions, 
Monte-Carlo) for a specific simulation and their corre-
sponding input MFi are identified (the fuzzification process 
determines all standard grades of membership 

( ) [ ]0,1
iMF ixμ ∈ ), the MF for a specific output MFo is: 

 
1 1

m m

o i i i
i i

MF round w MF w Q
= =

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑  

Q being an integer chosen according to p ( ( )1 / 2Q p≤ − ) 
and the DR type selected by the experts. Q can be positive 
(positive DR types: P and VP), zero (neutral) or negative 
(negative DR types: N and VN). If  Q >0, then neutral MFo 
will be biased to the right and vice versa. 

The selection of both the number of MFs p and the DR 
type determines the design (now automatic) and the behav-
ior of the fuzzy rules in the fuzzy inference engine. This 
process automatically determines MFo whatever the values 
of the inputs might be. This means that the rules are always 

true and their fulfillment does not admit nuances. Usually, 
experts cannot agree with this fuzzy inference engine be-
havior. The experts are capable of identifying fuzzy ranges 
for each input where the fulfillment degree fd of the corre-
sponding fuzzy rules (automatically designed) can be more 
or less arguable (vagueness and ambiguity). When this 
situation occurs, new easy-to-understand categories, called 
DR intensities, can be defined by system designers in order 
to describe the inner ambiguity of each specific DR. For 
example, if five intensities are chosen, they would be: 

• Neutral (NI). No intensity is evaluated. It is the 
default selection. 

• Increasing (I) intensity. The greater the MFi 
(i=1,2, …,m), the greater the rule fulfillment de-
gree. 

• Decreasing (D) intensity.  The greater the MFi, the 
lower the rule fulfillment degree. 

• Centered-increasing (CI) intensity. The more cen-
tered the MFi, the greater the fulfillment degree.  

• Centered-decreasing (CD) intensity. The less cen-
tered (in the extremes) the MFi, the greater the 
fulfillment degree. 

For each rule and in each simulation, the determina-
tion of the fulfillment degree ( 0 1fd≤ ≤ ) can be consid-
ered as a standard fuzzy problem that can also be solved by 
a fuzzy inference engine once MFi (i=1,2, …,m) are 
known. When a pseudo-random number generated by the 
computer is lower than fd, the fulfillment of the rule is ar-
guable and MFo is determined by: 

  
1 1

m m

o i i i
i i

MF round w MF w Q D
= =

⎡ ⎤⎛ ⎞
= + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑  

D being the distortion, an integer ( )1 / 2Q D p+ ≤ − that 
shifts the original MFo to the right or to the left. The D val-
ue depends on the fd value. D is selected at random within 
a range (composed by negative and positive integers, zero 
is also included), the lower the fd, the wider the range. 

The fuzzy inference engine, specifically designed to 
evaluate mechanism parameters –outputs, has finally the 
following structure: 

• Input values –characteristics of a population 
group- xi (i=1,2, …,m) are fuzzified (MFi, 

( )
iMF ixμ ). 

• Input weights wi (i=1,2, …,m) are determined at 
random (Monte-Carlo) according to their expert-
defined probability distributions. 

• For each MFi (i=1,2, …,m) combination, the 
fuzzy inference engine determines the fulfillment 
probability fd according to the intensity selected 
by the experts for the corresponding DR [3,4]. 

• If fd is lower than a pseudo-random number gen-
erated by the computer, then the distortion D is 
determined at random within an automatically 
generated range of integers [-v,v] where v depends 

2804



García-Alonso and Pérez-Alcalá 
 

on fd, that is: the lower the fd, the greater the v 
(being ( )1 2v p≤ − ). 

• Again for each MFi (i=1,2, …,m) combination, 
the fuzzy inference engine determines MFo as if 
the neutral DR type had been selected. 

• According to the DR type chosen and the MFo 
previously determined, Q is then calculated (if the 
neutral type was selected 0Q = ). The easiest way 
to evaluate Q for a DR type or category is adding 
or subtracting 1 to the corresponding Q value of 
the previous category. For example, if in the neu-
tral (X) type 0Q = , then in the positive (P) type 

1Q = and in the very positive (VP) category 
2Q =  and the contrary holds true for negative 

types. 
• Taking into consideration D and Q values, the fi-

nal MFo is calculated for each MFi (i=1,2, …,m) 
combination. 

Finally, some relevant parameters must be defined by 
experts: 

• The number of categories for DR types and inten-
sities (in our example five each). 

• The number of MFs for fuzzifying/defuzzifying 
(precision and accuracy) the input and output val-
ues. 

• The number of MFs for evaluating the degree of 
fulfillment  . 

The structure proposed to model DRs can be easily 
formulated in a standard relational database and admits, in 
a very compact format, a huge amount of DR and, conse-
quently, rules. 

2.4 The Simulation Model 

The Monte-Carlo simulation model is structured in two 
sections: the former determines the environment structure 
in each period of time (by default, the year is the time unit) 
and the latter designs the artificial population. Table 1 
shows the model pseudo-code.  

In the first section (steps 2 to 4, Figure 1) the evolution 
of environmental socio-economic variables is determined 
using the process that was described in section 2.1.1. 

In the first loop of the second section (step 5 in Figure 
1), The number of individuals in each year is defined by 
the birth rate (a new generation) which was fitted to an ex-
pert-based uniform statistical distribution and evaluated by 
the Monte-Carlo model. 

In the second loop of the second section (step 7 in 
Figure 1), a new individual in the generation is born and 
starts living. For each individual age (third loop of the sec-
ond section, step 8 in Figure 1) his/her characteristics are 
evaluated depending on, if it was established before,  envi-
ronmental and/or other individual characteristics. Then 

(step 10 in Figure 1), the mechanism parameters are deter-
mined by the fuzzy inference engine according to the spe-
cific characteristics of the new individual. Finally (step 11 
in Figure 1), the new individual continues alive until a 
mortality cause is fulfilled.  

 
Table 1: Model Pseudo-Code. (1)number of years to be ana-
lyzed, (2)number of individuals (birth rate is a predefined 
parameter) and (3)maximum age that an individual can 
reach (i.e. 100 years old). 
Step Description 

1 Determination of MF limits for all the inputs and 
outputs 

2 For year=1 to years1 do 
3 Structure of the socio-economic environment: 

Monte-Carlo simulation and fuzzy inference 
4 End for years 
5 For year=1 to years1 do 
6 Number of children that will be born nindividuals2: 

Monte-Carlo simulation 
7 For individual=1 to nindividuals do 
8 For age=1 to agemax3 do 
9 Characteristics of the individual of age years old: 

Monte-Carlo simulation and fuzzy inference 
10 Mechanism parameter determination according to 

the individual and environmental characteristics: 
Monte-Carlo simulation (conditioned probabilities) 
and fuzzy inference 

11 Determination of the mortality causes for the indi-
vidual of age years old 

12 Evaluation of the mortality causes 
13 If individual=dies 
14 The age loop finishes 
15 End if 
16 End for age 
17 The life and the mortality cause of the individual 

are saved 
18 End for individual 
19 End for years 

 
Once an individual is born and for each year of his/her 

life, four mortality causes (except if an age range is de-
fined, section 2.1.3) are evaluated (step 12 in Figure 1) and 
if a pseudo-random number is lower than one or more of 
them, then the individual dies. The life (years) and the 
mortality cause are saved in the result database (step 17 in 
Figure 1).  

Individuals have a maximum expecting life (selected 
by experts), if they are still alive at this moment they die 
(no individual can be older than the predefined expecting 
life). Once the population is older than the individual ex-
pecting life, it can be considered stable. 
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3 AN ILLUSTRATIVE EXAMPLE 

To check the model, five socio-economic variables (Wood 
et al. 1980, Carnes et al. 1996, Murray et al. 1996, Ol-
shansky et al. 1997) were chosen to describe the population 
environment: national per capita income (PCI), public 
health expenditures (PHE), social security expenditures 
(SSE), annual investment in public infrastructure (IPI) and, 
finally, insecurity and accident rate (IAR). All of their val-
ues were standardized in a global range [0,100]. Their 
structures are defined in Table 2. 
 
Table 2: Structure of the socio-economic variables in the 
environment database. 

 Conditioned Function Range Evolution 
PCI No Uniform [40,75] Increasing 

PHE Yes Fuzzy [50,90] None 
SSE Yes Fuzzy [50,80] None 
IPI Yes Fuzzy [50,90] None 

IAR No Uniform [5,25] Constant 
 

Taken into account their statistical distributions (Table 
2), non-fuzzy variables PCI and IAR were calculated at 
random by the Monte-Carlo model in the first year. Their 
evolution from year 2 (step 3 in Table 1) is increasing for 
PCI with a probability of 0.85 and constant for IAR with a 
probability of 0.5. Their values were finally obtained using 
uniform statistical distributions based on their correspond-
ing evolutions. 

PHE, SSE as well as IPI variables were evaluated us-
ing the fuzzy inference engine. They defined three DRs 
(described in Table 3) where their values are determined 
depending on PCI and IAR values. Taken into account 9 
MFs, 243 rules can be potentially evaluated. 

 
Table 3: Structure of the DRs for evaluating environmental 
variables: DR type, Probability of rule fulfillment –the rule 
is instantiated, DR intensity, intensity minimum probabil-
ity, PCI weight and influence (+: positive; -: negative), IAR 
weight and influence (+,-). 

 Structure 
PHE (X,0.98,I,0.25,0.85PCI+,0.15IAR-) 
SSE (X,0.90,I,0.25,0.90PCI+,0.10IAR-) 
IPI (X,0.80,I,0.25,0.75PCI+,0.25IAR-) 

 
Eleven population characteristics (standardized within 

[0,100]) have also been considered: Gender (IG), family 
income through his/her childhood (FI), sanitary environ-
ment through his/her childhood (SE), parent experience 
(PE), childhood schooling (CH), location –rural/urban- of 
the his/her home in childhood (LH), youth schooling (YS), 
parent educational level in his/her childhood (FE), adult-
hood educational level (AE), town size where his home is 
(TS) and personal income (PI). Their structure are shown 
in Table 4. 

 
Table 4: Structure of the characteristics for describing in-
dividuals in the artificial population. (1)Conditioned; 
(2)Value ranges; (3)Age ranges; (4)To the end of his/her life. 

 Cond1 Function VR2 AR3 Evolution 
IG No Binary [0,0]  None 
FI No Gamma [25,75] [0,18] Increasing 
SE Yes Fuzzy [40,80] [0,18] None 
PE No Normal [5,50] [0,5] Increasing 
CH Yes Fuzzy [10,20] [3,8] None 
LH No Uniform [20,90] [0,18] Constant 
YS Yes Fuzzy [20,40] [9,18] Constant 
FE Yes Fuzzy [20,90] [0,18] None 
AE Yes f(CH) [40,90] [19,-4] Increasing 
TS No Uniform [30,90] [19,-] Constant 
PI Yes Fuzzy [20,85] [19,-] None 

 
Family income was initially modeled as a gamma 

(2,18) and fuzzy relationships are described in Table 5.  
 

Table 5: DR structure in the individual characteristic data-
base: DR type, Probability of rule fulfillment, DR inten-
sity, intensity minimum probability, characteristic weight 
and influence (+: positive; -: negative). 

 Structure 
SE (X,0.98,I,0.25,0.9FI+,0.1LH+) 

CH (X,0.98,NI,0,0.8FI+,0.1FE+,0.05PCI+,0.05IPI+) 
YS (X,0.98,NI,0,0.8FI+,0.1FE+,0.05PCI+,0.05IPI+) 
FE (X,0.98,I,0.25,0.7FI+,0.15PCI+,0.15IPI+) 
PI (X,0.98,I,0.25,0.7AE+,0.15TS+,0.1PCI+,0.05IPI+) 

 
All variables involved in fuzzy rules were adjusted to 

nine MFs in the fuzzy inference engine. 
Four mortality functions were considered and de-

signed for the mortality mechanism. The child mortality 
rate (CMR) was designed as a decreasing exponential of 
the time t (years) atCMR be−= , a and b being the parame-
ters, [ ]0,15t∈  and its results were conditioned by a nor-
mal probability function in the form: 

( ),0.1CMRN CMR C CMR+ , CMRC ∈ being a coefficient 
that depends on the individual characteristics at the mo-
ment (age) t when the function is evaluated. The unex-
pected base mortality rate (BMR) was designed as a degen-
erated normal of the time in the form: 

 
( ) 2

2

2

Xt X d

X

eBMR c
σ

πσ

⎡ ⎤− −⎣ ⎦

=  

where c and d are the parameters that were calculated once 
the average X and the standard deviation Xσ are defined 
by the experts. BMR results were also conditioned by a 
normal probability function ( ),0.05BMRN BMR C BMR+ , 

BMRC ∈ being a coefficient that depends on individual 
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characteristic values in t. The accident and disease mortal-
ity rate (AMR) was designed as a displaced in time Weibull 
probability distribution in the form: 
 ( )( )1 ( )t IAMR t I eβ αβαβ − − −= −  
α and β being the mechanism parameters, I being the ini-
tial moment (age. In this case I=35) when the formula goes 
into effect (a uniform probability distribution [14,16]U ) 
because the function is time ranged [ ]14,100t∈ . Finally, 
its results were also conditioned by a normal probability 
distribution ( ),0.15AMRN AMR C AMR+ , AMRC ∈  be-
ing the distortion coefficient that depends on the individual 
characteristics in t. 

Finally, the fourth function was the deterioration mor-
tality rate (DMR). It was an in time increasing and dis-
placed exponential 

´( )k t IDMR he −= , h and k being the pa-
rameters, I’ being the moment (age) when the formula goes 
into effect (fitted to a [28,35]U ) and, finally, [ ]28,100t∈ . 
Its results were also conditioned to a normal probability 
function in the form ( ),0.1DMRN DMR C DMR+ , DMRC be-
ing a distortion coefficient that again depends on individual 
characteristics in t. The initial and basic characteristics of 
all the mechanism parameters are shown in Table 6 and an 
example of non-distorted mechanism functions are intro-
duced in Figure 1. 

 
Table 6: Membership function (MF) basic structure: range, 
minimum value (MF min), central value (MF central) and 
maximum value (MF max), for all the mechanism parame-
ters. 

 Range MF 
min 

MF central MF 
max 

A [0.15,0.25] 0.15 0.2 0.25 
B [10E-5,20E-5] 10E-5 15E-5 20E-5 

X  [20,40] 20.5 30 39.5 
Xσ  [2,4] 2 2.8 4 
C [0.35,0.55] 0.35 0.4 0.55 
D [4,6] 4 5 6 
I [14,16] 14 15 16 

α  [0.36,0.42] 0.36 0.38 0.42 
β  [0.9,1.2] 0.9 1 1.2 
H [8E-3,12E-3] 8E-3 9.5E-3 12E-3 
K [0.06,0.07] 0.06 0.065 0.07 
I’ [28,35] 28 31 35 
 
All the population characteristics in Table 4 were con-

sidered as inputs and the mechanism parameters (except 
X and Xσ ) as outputs to be evaluated by the fuzzy infer-

ence engine. DRs are described in Table 7. 
 

 
Figure 1: Mechanism (mortality) functions, a detail to 
highlight the lower mortality rates. 

 
Table 7: DR structure, all of them (X,0.98,I,0.25),  for de-
termining the mechanism parameter values: characteristic 
weight and influence (+, -). Gender was considered an in-
put that defines the final structure of the rule: (1)Females; 
(2)Males. 

  Structure 
a F1 (0.6FI-,0.2SE-,0.1PE-,0.1SSE-) 
b F (0.65FI-,0.15SE-,0.1PE-,0.1SSE-) 

X  F (0.6FI-,0.2SE-,0.1PE-,0.1SSE-) 
Xσ  F (0.6FI-,0.2SE-,0.1PE-,0.1SSE-) 
c F (0.65FI-,0.1SE-,0.15PE-,0.15SSE-) 
d F (0.7FI-,0.2SE-,0.05PE-,0.05SSE-) 
α  F (0.6FI-,0.2SE-,0.1PE-,0.1SSE-) 
β  F (0.6FI-,0.2SE-,0.1PE-,0.1SSE-) 

I F (0.6FI-,0.2SE-,0.1PE-,0.1SSE-) 
h F (0.7FI-,0.1SE-,0.1PE-,0.1SSE-) 
k F (0.6FI-,0.2SE-,0.1PE-,0.1SSE-) 
I’ F (0.65FI-,0.15SE-,0.1PE-,0.1SSE-) 
a M2 (0.65FI-,0.15SE-,0.1PE-,0.1SSE-) 
b M (0.6FI-,0.2SE-,0.1PE-,0.1SSE-) 

X  M (0.5FI-,0.25SE-,0.15PE-,0.1SSE-) 
Xσ  M (0.6FI-,0.2SE-,0.1PE-,0.1SSE-) 
c M (0.65FI-,0.15SE-,0.1PE-,0.1SSE-) 
d M (0.7FI-,0.2SE-,0.05PE-,0.05SSE-) 
α  M (0.5FI-,0.2SE-,0.15PE-,0.15SSE-) 
β  M (0.6FI-,0.2SE-,0.1PE-,0.1SSE-) 

I M (0.6FI-,0.2SE-,0.1PE-,0.1SSE-) 
h M (0.65FI-,0.15SE-,0.1PE-,0.1SSE-) 
k M (0.7FI-,0.1SE-,0.1PE-,0.1SSE-) 
I’ M (0.5FI-,0.3SE-,0.1PE-,0.1SSE-) 
 
The birth rate was defined by a uniform probability 

distribution [3.25,3.5]U . The maximum individual age 
was established at 100 years old and the model was 
stopped when the 300th generation was created. The fuzzy 
inference engine uses the product-sum-gravity with super-
position method to evaluate fuzzy rules (Cox 2005). 
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4 RESULTS 

The artificial population generated by the Monte-Carlo 
model reached a stable situation in the 100th generation. 
Due to the model’s complexity, it was parallelized in a 
multiple processor cluster (5 processors) following the 
strategy of dividing the expected number of individuals in 
the final population by 5. The simulation model designed 
and evaluated successfully the appropriate fuzzy rules, but 
their results were sometimes unstable depending on their 
fulfillment probabilities. Figure 2 shows, as an example of 
the results obtained using the fuzzy inference engine, the 
evolution through time of PHE considered as an output of 
a DR defined in Table 3. 

 

 
Figure 2: Evolution of public health expenditures based on 
the national per capita income and insecurity and accident 
rate. 

 

 
Figure 3: Population structure (age intervals) in two differ-
ent years once it was stable. 

 
The structure of the population remains constant in 

relative terms once a stable situation is reached. As it is 
shown in Figure 3, the population can be considered young 
(over 50% under 20 years of age) and the relative weights 
of different age intervals are practically constant if the 

150th and the 250th generations are compared. Mann-
Whitney U non-parametric test confirmed that neither 
structure can be considered to come from different popula-
tions. 

Once a stable situation is reached, the evolving popu-
lation can be used to evaluate other mechanisms related to 
family structure and income evolution 

5 DISCUSSION AND CONCLUSIONS 

In this paper, we have introduced a hybrid system (Monte-
Carlo simulation and fuzzy logic) to design artificial popu-
lations when complex relationships among environ-
mental/individual characteristics and mechanism parame-
ters should be taken into account. Expert knowledge was 
incorporated into the Monte-Carlo model by identifying 
the appropriate algebraic functions, statistical distributions 
and by defining the structure of DRs. 

Fuzzy inference was chosen to formalize the vague-
ness of the expert’s reasoning involved, when DRs must be 
defined among environmental and individual characteris-
tics as well as mechanism parameters, and to simplify the 
design process in this large scale but structured system. In 
the artificial population design, there is enough expert 
knowledge to define DR structure, but it is not possible to 
design all the rules needed. In this paper, we have proposed 
a new procedure to make the design and evaluation of 
fuzzy rules automatic. This procedure requires: i) identify-
ing the related inputs and outputs (DRs); ii) selecting a 
type and a rule fulfillment probability for each DR; iii) as-
suming, if necessary, an intensity and an intensity mini-
mum probability also for each DR; iv) assigning a relative 
relevance level (weight) for all the inputs in each DR, 
where a specific probability distribution will determine the 
behavior of these weights in the Monte-Carlo model; and, 
finally, v) identifying the influence (positive or negative) 
of each input on the corresponding output. 

Using this simplified way of designing rule bases, a 
fuzzy inference engine was designed to automatically eva-
luate the appropriate rules when input values have been de-
termined by the simulation model. This fuzzy inference 
engine first evaluates the fulfillment degree of the rule to 
admit nuances in the inference process. These nuances are 
based on expert knowledge and selected by a specific in-
tensity.  

In a second step, the fuzzy inference engine deter-
mines if the resulting MF output should be biased or not 
according to the DR type and intensity selected. Using this 
procedure a Monte-Carlo simulation model has been de-
signed and developed to design artificial populations. This 
large scale but, fortunately, structured problem was suc-
cessfully modeled and results confirm that we are capable 
of generating stable populations based on expert knowl-
edge. 
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Fuzzy rules have been designed, instantiated and eva-

luated correctly by the Monte-Carlo model but their results 
were sometimes unstable throughout time. There are some 
critical factors in the design process that must be adjusted 
very carefully to avoid unexpected results: input/output 
ranges (time, age and values), DR probabilities (fulfillment 
and intensity) and, finally, value tendencies (increasing, 
decreasing, etc.). 

Basically, due to the number of generations needed to 
reach stable but complex populations with many different 
individuals, the Monte-Carlo model designed is very com-
puter demanding. Nevertheless, the characteristics of the 
problem make it easy to parallel following different strate-
gies (i.e. number of individuals, gender groups, etc.). 
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