
A SIMULATION MODEL TO ANALYZE THE IMPACT OF HOLE SIZE ON PUTTING IN GOLF

Matulya Bansal
Mark Broadie

Graduate School of Business,
Columbia University,

New York, NY 10027, USA

ABSTRACT

We develop a model of golfer putting skill and combine
it with physics-based putt trajectory and holeout models to
study the impact of doubling the radius of the hole on the
putting performance of professional and amateur golfers.
The putting skill model reflects golfer execution errors, i.e.,
that golfers cannot hit the ball at exactly their intended
velocity and direction. A green reading skill model re-
flects a golfer’s inability to perfectly estimate the slope or
contour of the putting surface. The model is calibrated
to professional and amateur putting data. Optimal putting
strategies are computed using stochastic dynamic program-
ming. Quasi-Monte Carlo and other methods are used to
speed up computations. Doubling the hole radius improves
the putting performance of both professional and amateur
golfers, as expected. However, the improvement for amateur
golfers is shown to be relatively larger than for professionals.

1 INTRODUCTION

Gene Sarazen, one of the best golfers in the modern era,
believed that putting was too important in golf, and that a
larger hole size would make for a better balance between
putts and all other golf shots. On his profile in the World Golf
Hall of Fame it is written that he “lobbied unsuccessfully to
have the hole enlarged from four inches in diameter to eight.”
Ben Hogan, Johnny Miller, and other prominent golfers have
expressed similar views. In a May 2005 article in Golf
Digest (p.60), Johnny Miller asserted, “The experiment
[of enlarging the hole] was tried and promptly deemed a
failure, because it had the unintended effect of giving an
even bigger advantage to the best putters.” The decline in
the number of people playing golf in recent years has been
partly attributed to the time it takes to finish a round and
the frustration associated with the process of putting the
ball into the hole (Thomas et al. 2008). A larger hole is
sometimes suggested as a means to reduce the time to play
and increase the enjoyment by amateur golfers.

In this paper, we use simulation to analyze the effect
of increasing the radius of the hole. Simulation is ideally
suited for this analysis for several reasons. First, there is
little available putting data for an enlarged hole. Collecting
such data would be time-consuming and expensive, because
thousands of putts by golfers of different and known putting
abilities would be necessary for reliable results. It would
take time for golfers to identify how their optimal putting
strategy would be affected by the increased hole size. And
finally, it would be nearly impossible to obtain such data
under tournament conditions comparable to those facing
professionals on a weekly basis. Instead, we use simulation
to analyze how increasing the radius of the hole would
affect the putting performance of professional and amateur
golfers. The simulation model is calibrated to professional
and amateur putting data using the current standard hole size
and then results are generated with a larger hole size. This
approach fully takes into account the physics of a holeout
(e.g., that gravity will have a larger effect with a larger hole
size) and the change in optimal putting strategies to account
for the larger hole size.

We develop models of golfer putting and green reading
skill and combine them with physics-based putt trajectory
and holeout models for sloped green surfaces in order to
determine optimal putting strategies. Equations from New-
tonian physics are used to determine the trajectory of a
putt on a sloped planar green taking into account friction.
Physics principles are also used to determine whether the
trajectory of a putt will lead to a holeout or a miss. The
golfer skill model has two components. The first is a physi-
cal skill model, which includes execution errors in velocity
and direction. The second is a green reading model, which
reflects errors in the golfer’s estimate of the slope of the
green. A putting strategy refers to the target velocity and
direction chosen by the golfer. In choosing a strategy, a
golfer should consider the likelihood of a holeout, how far
a putt might finish from the hole in case it misses and the
likelihood of making the subsequent putt, which will depend
on the hole radius. Another consideration is the slope of
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the green, which causes a putt to follow a curved trajectory,
referred to as the break of the putt. Hitting the ball with a
larger initial velocity causes the putt to break less initially,
and so it is less affected by green reading error, i.e., errors
in the estimate of the green slope. However, a larger initial
velocity will lead to misses that tend to be further from
the hole, resulting in a greater chance of a three-putt (i.e.,
taking three putts to holeout). The determination of the
optimal strategy involves the solution of a two-dimensional
stochastic dynamic program. The model is calibrated to
an extensive set of amateur and professional putting data.
The calibrated model is used to investigate how the ex-
pected number of putts for professional and amateur golfers
changes with a doubling of the hole size. We quantify the
impact of a larger hole on highly skilled professional and
less skilled amateur putters in order to predict which type
of putter would benefit more.

Gelman and Nolan (2002), Hoadley (1994) and
Tierney and Coop (1999) developed simple putting models
that were fit to professional putting data. However, these
models are not rich enough to analyze putting with larger
hole sizes.

The remainder of the paper is organized as follows.
In Section 2, we present models for the ball trajectory, the
putting green, and the golfer, and discuss the golfer objective
of minimizing the expected number of putts. A numerical
algorithm to compute these objectives is given in Section 3.
Numerical results, including calibration and computation of
optimal putting strategies for professional and the amateur
golfers, are presented in Section 4. Concluding remarks are
given in Section 5.

2 MODEL

In this section, we describe models for the ball trajectory
and determining whether the trajectory leads to a holeout.
Then we describe models for the green and the golfer, and
discuss the golfer objective.

2.1 Trajectory model

A trajectory is the path followed by the ball on a green
given an initial velocity and direction. The trajectory model
used in this paper is from Vanderbei (2001), who considers
the problem of finding the velocity and direction to putt
on a green so that the ball comes to rest in the hole. In
Vanderbei (2001), the movement of the ball is modeled as
sliding on a surface with friction. Perry (2002) develops
a slightly more realistic model that considers both sliding
and rolling effects, but the extra level of complexity is not
necessary for our purposes. We numerically solve the system
of differential equations in Vanderbei (2001) to obtain the
ball trajectory.

2.2 Holeout model

A holeout, i.e., the ball finishing at the bottom of the hole,
can occur in several ways, including the ball falling into
the hole, the ball hitting the back of the hole and dropping
in, or the ball rolling along the rim and eventually falling
into the hole. Holmes (1991), Hubbard and Smith (1999)
and Penner (2002) derive equations of motion for a ball
interacting with a hole and they determine the maximum
velocity that will lead to a holeout, accounting for all of
these holeout possibilities, as a function of the distance of
the ball from the center of the hole and the hole radius.
The current standard hole radius is 2.125 inches. We also
consider an enlarged hole with a radius of 4.25 inches.

2.3 Green model

The two main characteristics of our model for the putting
green are its slope and its speed. In reality, greens are
curved surfaces where the slope varies from one point to
the next. However, many greens are nearly flat surfaces
and the hole is almost always positioned on a flat portion
of the green. For these reasons, we assume that the entire
green has a fixed slope, i.e., we model the green to be a
planar surface in three-dimensional Euclidean space given
by z = ax+by+ c, where a and b are constants. With this
green specification, it suffices to denote any point (x,y,z)
on the green as (x,y). We will refer to a planar green
with a = b = 0 as being level. The coefficients a and b are
referred to as the grade. We report the green slopes tan−1(a)
and tan−1(b) in degrees. We assume that the center of the
hole lies at position (0, 0).

The speed of a putting green is defined to be the
distance a golf ball travels on the green when rolled off a
stimpmeter onto a level portion of the green (Holmes 1986).
The stimpmeter is a device designed to release a golf ball
from a length of 30 inches along an inclined plane making
an angle of 20◦ with respect to the green. As shown by
Holmes (1986), the initial velocity of a ball rolling off
a stimpmeter is 1.83 m/s. If the ball rolls d feet off the
stimpmeter, the green speed is said to be d feet. Greens with
large stimpmeter speeds, e.g., 11 feet or greater, are called
fast greens while greens with small stimpmeter speeds, e.g.,
8 feet or less, are called slow greens. The speed of a green
is determined by the height, type and grain of the grass on
the green, the wetness and hardness of the green, and other
physical features which cause friction between the ball and
the green. We assume that the entire green has a constant
coefficient of friction denoted η . For a level green, the
equations of motion in Vanderbei (2001) can be solved to
give d = v2/(2ηg), where d is the distance traveled from
the initial position, v is the initial velocity of the ball, and
g is acceleration due to gravity.
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2.4 Holeout region

The holeout region is the set of velocity-angle combinations
that lead to a holeout for a given initial ball position.
Figure 1 shows holeout regions for 5-foot sidehill putts with
standard and enlarged hole sizes. The minimum velocity
and maximum angles that lead to a holeout are similar
in both cases, since these trajectories correspond to paths
where the ball’s velocity declines to zero as it reaches the
edge of the hole. However, the maximum velocity for a
holeout almost doubles from the standard hole size to the
enlarged hole size. The larger size of the holeout region
illustrates how putting to a larger hole is easier.

2.5 Golfer skill model

We model three different aspects of golfer putting ability:
errors in putting the ball with a desired velocity, errors
in putting the ball in a desired direction, and errors in
estimating the slope of a green. We refer to these errors
as velocity error, direction error, and green reading error,
respectively.

The trajectory model requires the ball’s initial velocity.
On a level green the distance a ball travels is proportional
to the square of the initial velocity, so our primitive variable
will be ṽ2, the ball’s random initial velocity squared. We
assume that

ṽ2 ∼ N (μ2
v ,g(μv)2), (1)

i.e., ṽ2 is normally distributed with a mean μ 2
v , where μv is the

target velocity chosen by the golfer, and ṽ−μv is the velocity
error. The variance of ṽ2 is denoted g(μv)2. We motivate the
functional form for g(·) next. Differences between a ball’s
initial velocity and the golfer’s target velocity contribute
to distance errors, i.e., the realized length of the putt is
different from the target length. Putting data shows that
distance errors are roughly proportional to the length of the
putt, which implies g(μv) should be roughly proportional
to μ2

v . However, 20-foot putts on a fast level green will
typically have greater distance errors than 20-foot putts
on a slow level green. This implies that lower velocities
will have slightly higher relative errors, i.e., distance error
normalized by length of the putt, than larger velocities.
Similarly, shorter putts tend to have slightly larger relative
distance errors than longer putts on the same green. These
considerations suggest that g(μv) is a convex increasing
function of μ 2

v . We assume that g(μv) is a piecewise-linear
convex function given by:

g(μv) =

{
β2v2

β −β0(v2
β − μ2

v ), μ2
v ≤ v2

β
β2v2

β + β1(μ2
v − v2

β ), μ2
v > v2

β
(2)

where vβ is termed the breakpoint velocity, and β0, β1

and β2 determine how distance error changes with velocity.
We impose 0 ≤ β0 ≤ β1 ≤ β2 to ensure non-negativity and
convexity of g(μv). As a special case, taking β0 = β1 = β2

leads to g(μv) = β2μ2
v , which implies that relative distance

error is constant on level greens. We sometimes denote
ṽ2 by ṽ(μv)2 to emphasize the dependence on the target
velocity.

Direction errors occur because golfers are unable to
putt the ball in exactly the desired target direction. Given
that a golfer chooses a target angle of μα (measured relative
to the ball-hole line), we assume that the ball starts at a
random angle α̃ which follows a normal distribution:

α̃ ∼ N (μα ,σ2
α). (3)

We sometimes denote α̃ by α̃(μα) to emphasize the de-
pendence on the target direction. Smaller values of σ α
correspond to more highly skilled putters. We assume that
ṽ2 and α̃ are independent.

Green reading errors occurs because golfers cannot
estimate green slopes perfectly, i.e., a golfer’s estimate
of the green slope is different from the actual green slope.
Suppose a golfer estimates the green slopes to be θ =(θx,θy),
where θx and θy are estimates along the x-axis and y-axis,
respectively. The actual slope is randomly chosen by nature
and its distribution is given by

(θ̃x, θ̃y) = (θx,θy)+ (σgZ cos(2πU),σgZ sin(2πU)), (4)

where Z ∼N (0,1), U ∼U [0,1] and Z and U are indepen-
dent. The green reading skill parameter is σg and high values
of σg imply greater errors in the golfer’s estimates of the
green slopes. To motivate equation (4), observe that θx and
θy can be represented as a point in two-dimensional space.
Adding (σgZ cos(2πU),σgZ sin(2πU)) leads to green slopes
that are uniformly distributed on a circle centered at (θ x,θy)
with radius σg|Z|.

Since we restrict our analysis to planar greens, without
loss of generality, we change coordinates so that the golfer’s
green slope estimate is zero along the x-axis, i.e., we set
θx = 0. In other words, the negative y-axis is the downhill
direction to the hole, also called the fall line. We use
the notation K = (β0,β1,β2,vβ ,σα ,σg) to denote a golfer’s
putting skill parameters.

2.6 Golfer objective

We assume that the golfer’s objective is to minimize the
expected number of putts to holeout, defined as follows.
Suppose the golfer starts at I = (x,y) and putts until the ball
falls in the hole. The golfer’s slope estimates are (0,θy) and
the random realized green slope is (θ̃x, θ̃y) defined in equa-
tion (4). Suppose the golfer chooses a target velocity μ v and
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(d) Holeout: larger hole

Figure 1: Graphs (a) and (b) show how the holeout region changes for a 5-foot sidehill putt when the hole radius is doubled.
The green has a slope of 1.5◦ along the y-axis, and the green speed is 11 feet (η = 0.0510). For a sidehill putt, the initial
ball position makes an angle of 0◦ with respect to the x-axis. Each dot on the graph represents a velocity-angle combination
that results in a holeout. Velocity is measured in meters per second and the angle refers to the initial direction of the putt
relative to the ball-hole line measured in degrees. A zero degree angle means the putt starts directly toward the hole. A
positive angle means the ball starts to the right of the hole, and then gravity causes the ball to break, i.e., curve, toward the
hole. Graphs (c) and (d) show trajectories for v = 1.35 m/s and α = 6 ◦ (indicated by a square in graphs (a) and (b)). With
the standard hole size, the ball misses the hole while the same trajectory results in a holeout with the larger hole.

a target angle μα for the putt. The realized velocity ṽ(μv)
and the realized angle α̃(μα) are given by equations (1) and
(3), respectively, and the random trajectory of the putt start-

ing at position I is T̃ (I,μ) = T̃
(

I, θ̃ ,η , ṽ(μv), α̃(μα )
)

,

where η is the friction coefficient, and μ = (μv,μα ).
The stopping point of trajectory T will be denoted by
S (T ) = (Sx(T ),Sy(T )), where we assume that the hole
is covered, so that trajectories for putts that would other-
wise lead to holeout do not necessarily end at the hole.
The holeout function h(T ) maps a trajectory to its out-
come: h(T ) = 1 if T leads to a holeout, and 0 otherwise.
The expected number of putts objective leads to a dynamic
programming problem, because the optimal strategy for the
initial putt depends on the strategy of the second putt in the
case of a miss on the first putt. In order to begin a policy
iteration algorithm, and for interest in its own right, it is
useful to consider the simpler objective of maximizing the
probability of a one-putt, i.e., a holeout on the first putt.
The probability of a one-putt depends on the target velocity
and angle μ , the initial position I, the slope estimate θ , the

friction coefficient η , and the golfer skill parameters K:

P1(μ , I,θ ,η ,K) = E[h(T̃ (I, θ̃ ,η , ṽ(μ), α̃(μ)))]. (5)

We often abbreviate the one-putt probability as P1(μ , I).
We optimize a given objective over the set of velocity-

angle combinations defined by:

U = {(μv,μα)|μ
v
≤ μv ≤ μv,μα ≤ μα ≤ μα}, (6)

where μ
v

and μ v are the smallest and largest candidate
velocities, respectively, and μ α and μα are the smallest and
largest candidate angles, respectively, that are considered for
optimization. The one-putt probability maximizing velocity
and angle are given by:

μ (1)(I) = argmax
μ∈U

P1(μ , I). (7)

The expected number of putts, N, depends on the ball’s
initial position (I) and the golfer strategy (μ(I)), in addition
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to the golfer slope estimates (θ ), the friction coefficient (η)
and golfer skill parameters (K). The result of the first putt
is either a holeout or a second putt which begins from the
stopping point of the first putt. This leads to the recursion:

N(I,μ(I)) = E[1+ N(S ,μ(S ))(1−h(T̃ ))], (8)

where T̃ = T̃ (I,μ(I)) and S = S (T̃ ). The Bellman
equation for the optimal expected number of putts is:

N∗(I) = min
μ∈U

E[1+ N∗(S (T̃ ))(1−h(T̃ (I,μ)))]. (9)

Denote the optimal choice of target velocity and angle in
equation (9) by μ∗(I). Using results from Whittle (1983)
it can be shown that the standard policy iteration algorithm
converges to the optimal policy for this problem.

3 COMPUTATIONAL METHODS

In this section, we show how the optimization problems
in equations (7) and (9) are solved to identify the optimal
strategies for a given golfer. Both the state and control spaces
in equations (7) and (9) are continuous, so we discretize
these to proceed with the computation.

3.1 State and control space discretization

The state space I ⊂R
2 is continuous, so to solve equations (7)

and (9), we discretize I. It is convenient to denote the position
of the ball on the green I = (x,y) in polar coordinates as
(d,γ), where d =

√
x2 + y2 and γ = tan−1(y/x),γ ∈ [0,2π).

We discretize the (d,γ)-space into a finite number of points
Ii j = (di,γ j), i = 1, . . . ,nd , j = 1, . . . ,nγ . Here d ∈ (0,d],
where d < ∞ is the length of the longest putt we consider.
We assume that the probability of a one-putt from any point
on the green, for any golfer, is strictly positive.

The set of feasible controls U in equations (7) and (9) is
continuous. Since a closed-form solution to the objectives in
these equations is not available, we optimize over a discrete
subset of Û of U .

3.2 Probability estimation

To estimate the one-putt probability, P1(μ , I), we generate
n samples, (θ̃ (k), ṽ(k)(μ), α̃(k)(μ)), k = 1, . . . ,n. Then

P̂1(μ , I) =
1
n

n

∑
k=1

h(T̃ (k)) (10)

gives an estimate of P1(μ , I), where T̃ (k) is short for
T̃ (k)(I, θ̃ (k),η , ṽ(k)(μv), α̃(k)(μα)).

To identify μ̂ (1)(I), the estimate of the velocity-angle
combination that maximizes the probability of a one-putt,
we perform a grid search over Û to obtain

μ̂ (1)(I) = arg min
μ∈Û

P̂1(μ , I). (11)

3.3 Expected putts estimation

Next we describe how we solve equation (9) to find the
strategy that minimizes the expected number of putts. This
is an instance of a two-dimensional stochastic shortest path
problem discussed, for example, in Whittle (1983). We use
policy iteration to solve for the optimal expected number
of putts. We first discuss the policy iteration algorithm for
the continuous state and control space case, and then show
how to implement it after discretizing the state and control
space.

The one-putt probability maximizing strategy, μ (1)(I),
is the solution of a simple numerical optimization procedure,
i.e., one that does not require a recursive dynamic program-
ming algorithm. Furthermore, for short putts, maximizing
the one-putt probability is nearly equivalent to minimizing
the expected number of putts, since the expected number of
putts is approximately 2−P1 when the probability of three
or more putts is nearly zero. For these reasons, we use
μ (1)(·) as the initial policy in the policy iteration algorithm.

The expected number of putts starting from the initial
position I, and using the policy μ (p)(·) for the initial and
any subsequent putts, is denoted N (p)(I). The number of
putts until a holeout occurs is the smallest m for which
putt m results in a holeout, so N (p)(I) can be written as

N(p)(I) = E[min{m = 1,2, . . . | h(T̃ (Im,μ (p)(Im))) = 1}],
(12)

where I1 = I, and Im = S (T̃ (Im−1,μ (p)(Im−1))), i.e., the
initial position of putt m is the stop point of putt m− 1
(if putt m−1 does not end in a holeout). Given a policy
μ (p)(·), equation (12) defines the policy evaluation step.
Under our assumption that the probability of a one-putt is
strictly positive, N(p)(·) is finite with probability one.

The policy improvement step is:

μ (p+1)(I) = arg min
μ∈U

E[1+ N(p)(S (T̃ (I,μ)))(1−h(T̃ (I,μ)))].
(13)

Equation (13) states that μ (p+1)(I), the optimal policy given
an initial position I, is given by the target velocity-angle
combination μ ∈ U that minimizes the expected number
of putts to holeout starting from position I, when μ is used
for the first putt, and policy μ (p)(·) is used for subsequent
putts, if any. Starting with p = 1, we iterate between
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equations (12) and (13) until the policy converges, i.e.,
until |μ (p)(I)−μ (p+1)(I)|< ε , for all I, and for some fixed
ε > 0.

Since the state space I is continuous, we show how to
proceed with the computations in equations (12) and (13)
after the state and control spaces are discretized. For each
Ii j, i = 1, . . . ,nd , j = 1, . . . ,nγ , we solve equation (11) to
find μ̂ (1)(Ii j), the strategy that maximizes the probability of
one-putt from Ii j. Next we solve equation (12). To estimate
N(1)(Ii j), the objective in equation (12) for p = 1, simulate
n trials, each trial consisting of a sequence of putts until
holeout occurs. Suppose trial k requires m̃(k) putts, i.e.,
h(T̃u,k) = 0, u = 1, . . . ,m̃(k)− 1, h(T̃m̃(k),k) = 1 and T̃u,k

denotes the trajectory of putt u for trial k. Then

N̂(1)(Ii j) =
1
n

n

∑
k=1

m̃(k) (14)

gives an estimate of N(1)(Ii j), i = 1, . . . ,nd , j = 1, . . . ,nγ .
For each simulation trial, the initial position of putt u is
the stop point of putt u− 1, given that it didn’t result in
a holeout. The target strategy is the one-putt probability
maximizing strategy from the stopping point of putt u−1.
Since the stopping point will not, in general, coincide with a
grid point, we interpolate to obtain the target velocity-angle
strategy μ̂ (1).

To identify μ̂ (p+1)(Ii j), the policy at iteration p+1, we
perform a grid search:

μ̂ (p+1)(Ii j) = arg min
μ∈Û

E
[
1+ N̂(p)(S (T̃ (Ii j,μ)))(1−h(T̃ (Ii j,μ)))

]
.

(15)

For p = 1, we obtain μ̂ (2)(Ii j), for i = 1, . . . ,nd , j = 1, . . . ,nγ .
We repeat this procedure to determine N̂(2)(Ii j), then we
determine μ̂ (3) and so on until the policy converges, i.e.,
until |μ̂ (p)(Ii j)− μ̂ (p+1)(Ii j)| < ε for all Ii j for some fixed
ε > 0.

3.4 Computational speedups

We now discuss some techniques and observations that
enable us to considerably speed up the computation of
optimal putting strategies.

Quasi-Monte Carlo: For variance reduction, we use the
Sobol sequence (Press et al. 2007) to generate samples
in equations (1), (3)-(4), (10)-(11) and (14)-(15). Low-
discrepancy methods or Quasi-Monte Carlo methods, of
which the Sobol sequence is an example, seek to achieve
variance reduction by generating samples that are evenly
distributed.

We generate a four-dimensional Sobol sequence to es-
timate the one-putt probability in equation (10). The first
two dimensions are used to generate velocity and angle
samples using equations (1) and (3), respectively, while
the third and the fourth dimensions are used to generate
green slopes using equation (4). To estimate the expected
number of putts in equation (14), we use a 10-dimensional
Sobol sequence, where the third and the fourth dimension
are used to generate green slopes using equation (4), and
dimensions 1-2 and 5-10 are used to generate velocity and
angle realizations for putts 1 through 5, if needed.

Reducing the dimensionality of the optimization: The op-
timization over μv and μα in equations (11) and (15) can
be CPU intensive. All optimal solutions obtained with
this two-dimensional optimization procedure were found to
possess the property that the ball trajectory at the optimal
target velocity-angle combination passes through the center
of the hole, a property which makes intuitive sense. It can
be shown that this property holds in the special cases of a
level green, and for straight uphill and downhill putts. If
this property holds in general, then one-dimensional opti-
mization can be used to identify the optimal solution. In
particular, suppose that the optimal strategy for the golfer
is to target a distance d feet beyond the hole (d ≥ 0) and
that the trajectory corresponding to the optimal velocity-
angle combination, (μv,μα), passes through the center of
the hole. Instead of a two-dimensional search over (μ v,μα),
we perform a one-dimensional search over d ≥ 0, using a
root-finding procedure to solve for the velocity-angle com-
bination (μv(d),μα (d)) that leads to a stop point d feet
beyond the hole and passes through its center. The compu-
tations were done with this one-dimensional procedure, with
spot checks for accuracy using the slower two-dimensional
search procedure.

Symmetry of the optimal policy: Since we only consider
planar greens, putts started on either side of the fall line
to the hole will follow symmetric trajectories. Together
with the symmetry of the normal distribution used in the
putting skill models, this means that we only need to find the
optimal solution to equations (11) and (15) for γ ∈ [−90,90]
for any d.

4 NUMERICAL RESULTS

In this section, we present numerical results that allow us
to quantify the effect of doubling the radius of the hole.
We first describe the putting data and calibration results.

Data: We use amateur and professional golfer data col-
lected under actual playing conditions from regular play
and tournaments. PGA TOUR data was collected with their
ShotLinkTM system. The database contains the start and
stop points of approximately 15,000 putts hit by over 100
different golfers. The database is contained in the Golfmet-
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rics program which is further described in Broadie (2008).
From this data the fraction of one-putts, three-putts, and
average number of putts are computed as a function of the
initial distance from the hole.

Parameter choices: Public and private courses typically
have green speeds in the 7-10 foot stimpmeter range. Green
speeds at professional tournaments are typically in the 9-13
foot range. For our numerical experiments, we use a green
speed of 11 feet (η = 0.0510) for professional golfers, and a
green speed of 9 feet (η = 0.0623) for amateur golfers. For
our numerical computations, we use a constant green slope
of 1.5◦, which is a typical value found on actual greens.

Computational parameters: We use a time increment of
0.1 seconds to compute the putt trajectories. We use 216

simulation trials to obtain the probability and expected
number of putts estimates. We set d, the length of the longest
putt in our experiments, to be 50 feet. For discretizing the
initial putt locations, we use d = {1.5, 2, 2.5, 2.75, 3, 3.25,
3.5, 4, 4.25, 4.5, 4.75, 5, 5.25, 5.5, 6, 6.5, 7, 8, 9, 10, 12,
15, 18, 20, 25, 30, 40, 50} and γ = {0 ◦,15◦,30◦, . . . ,360◦}.
The concentration of gridpoints near the hole allows better
interpolation in this region, which is important because a
majority of the putts that do not result in a holeout are
likely to end near the hole. We use the bicubic spline
interpolation implementation from Numerical Recipes in C
(Press et al. 2007) for strategy interpolation. With these
parameters, errors of approximately 0.005 in the expected
number of putts are obtained. Numerical experiments were
run on a Pentium 4, 3.2 GHz processor with 1 GB RAM,
using the MS Visual C++ compiler.

Calibration: We calibrated the golfer model to professional
golfer data and obtained a good match with the parameter
values: β0 = 5.5%, β1 = 6.5%, β2 = 6.5%, vβ = 15 feet,
σα = 1.0, and σg = 0.15. For long putts, the relative putt
distance error is 6.5% due to velocity errors. The standard
deviation of direction error is 1.0◦. Calibrating to amateur
data (representing golfers with an average score of about 90)
we obtained a good fit with the parameter values: β0 = 6.0%,
β1 = 7.8%, β2 = 8.5%, vβ = 25 feet, σα = 1.5, and σg =
0.25. For long putts, the relative putt distance error is 8.5%
due to velocity errors. The lower skill level of the amateur
golfers is also reflected in the larger standard deviations
of direction and green reading parameters. Figure 2 shows
the fit for expected number of putts between the model and
data as a function of the putt length. For both professional
and amateur golfers, the root-mean-squared error in the
expected number of putts was about 0.03, which is the
same magnitude as the standard errors in the data.

Effect of the hole radius: Table 1 shows the increase in the
one-putt probability for professional and amateur golfers
with an enlarged hole as a function of the initial putt dis-
tance. While one-putt probabilities for both professional
and amateur golfers improve significantly, for short initial
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Figure 2: This figure shows how the expected number of
putts changes for professional and amateur golfers as the
hole radius is changed from 2.125 inches to 4.25 inches.
The error bars indicate the confidence intervals for the data
used for calibration. The model with the standard hole fits
the data well.

putt distances, the relative and absolute improvement for
amateur players is much larger. For example, for a 3-foot
putt, the one-putt probability for professional golfers in-
creases from 95.4% to 100% with the larger hole, while for
amateur golfers probability increases from 76.3% to 98.2%.
Table 1 also shows the decrease in the three-putt probability
as a function of the initial putt distance. For example, for
a 50-foot initial putt distance, the three-putt probability for
professionals decreases from 14.6% to 3.2% with the larger
hole, while for amateur golfers the probability decreases
from 35.8% to 8.9%. The change in expected number of
putts for professional and amateur golfers is shown in Fig-
ure 2 and Table 1. Professional golfers have less room for
improvement compared to amateur golfers.

Figure 3 shows how the optimal strategy for the pro-
fessional golfer changes with the larger hole. The optimal
strategy is more aggressive than with a standard hole size,
as reflected in the increases in the target distances beyond
the hole (i.e., increases in the target velocities) and de-
creases in the fraction of putts which finish short of the
hole. Cochran and Stobbs (1968) performed a small exper-
iment with a larger hole size, and our simulation results
are broadly consistent with theirs. They did not test golfers
with different putting skills, so their results cannot be used
to answer which golfers would benefit more from a larger
hole.

To aggregate results from individual putts into an av-
erage number of putts per 18-hole round, the expected
number results are weighted by the distribution of initial
putt lengths. Table 1 shows the effect of doubling the hole
radius on putting performance. The expected number of
putts per round decreases from 29.3 to 24.3 for professional
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(a) Standard hole: Optimal distance beyond hole
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(b) Larger hole: Optimal distance beyond hole
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(c) Standard hole: Fraction of short putts
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(d) Larger hole: Fraction of short putts

Figure 3: This figure shows how the optimal target distance beyond the hole and the fraction of putts that fall short of the
hole vary for a professional golfer as the hole radius is changed from 2.125 inches to 4.25 inches. Sidehill putts have an
angle of 0◦ with the x-axis, downhill putts have a 90◦ angle, and uphill putts have a −90◦ angle. Graphs (a) and (b) show
that the optimal target distance increases significantly, while graphs (c) and (d) show that the fraction of short putts decreases
significantly, together implying that the optimal strategy becomes more aggressive with the larger hole radius. The fraction
short values for 10- and 15-foot putts with the larger hole are less than 0.5% and are not shown for clarity.

golfers, and decreases from 33.6 to 26.8 for amateur golfers.
Both highly skilled and less skilled golfers benefit from the
larger hole size. The improvement by professionals is 5.0
putts per round but amateurs benefit to an even greater
extent, with a reduction of 6.8 putts per round. This is in
contrast to the Johnny Miller quotation from his May 2005
Golf Digest article which claimed that more highly skilled
putters would benefit more. No reference is given for the
experiment in which the enlarged hole had the “unintended
effect of giving an even bigger advantage to the best putters,”
so it is difficult to understand the source of the discrepancy.
It is possible that the experiment was not very extensive or
carefully done. It is also possible that more highly skilled
putters understood that their putting strategy should change
with an enlarged hole, while less skilled putters may not
have had time to adapt accordingly.

5 CONCLUSION

We developed a model of golfer putting ability and combined
it with physics-based putt trajectory and holeout models.
The golfer putting model incorporates both physical skill,
which reflects the golfer’s ability to putt with a desired target
velocity and angle, and green reading skill, which reflects
the golfer’s ability to estimate the slope of the green. The
model was calibrated to real-world professional and amateur
golfer data. Optimal putting strategies were found using
stochastic dynamic programming. We analyzed the impact
of doubling the hole radius on professional and amateur
player putting performance. As expected, doubling the
hole radius improves the performance of both professional
and amateur golfers. However, the relative performance
improvement for amateur golfers is larger.
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Table 1: Effect of doubling the hole radius

This table summarizes the effect of doubling the hole radius from 2.125 inches to 4.25 inches. Distributions of the number of initial
putts in an 18-hole round are given in the columns np and na for the professional and amateur golfer, respectively.

Professional Amateur
Standard hole Larger hole Standard hole Larger hole

d np P1 P3 N∗ P1 P3 N∗ na P1 P3 N∗ P1 P3 N∗
2 1.00 99.8% 0.0% 1.00 100.0% 0.0% 1.00 1.15 93.2% 1.1% 1.08 99.6% 0.0% 1.00
3 1.51 95.4% 0.3% 1.05 100.0% 0.0% 1.00 0.46 76.3% 3.1% 1.27 98.2% 0.0% 1.00
4 0.78 84.8% 0.8% 1.16 99.9% 0.0% 1.00 0.86 60.4% 4.1% 1.44 93.7% 0.1% 1.01
5 0.78 73.0% 1.2% 1.28 98.9% 0.0% 1.00 0.86 48.1% 4.3% 1.57 85.7% 0.4% 1.06
6 0.78 62.3% 1.3% 1.39 95.7% 0.1% 1.01 0.86 39.4% 4.4% 1.66 76.4% 0.9% 1.12
7 0.69 53.8% 1.5% 1.48 91.2% 0.2% 1.04 0.89 33.2% 4.9% 1.72 68.5% 1.4% 1.19
8 0.69 46.8% 1.6% 1.55 85.4% 0.4% 1.08 0.89 28.2% 5.0% 1.77 60.5% 1.8% 1.26
9 0.69 41.0% 1.6% 1.61 79.2% 0.8% 1.13 0.89 24.3% 5.0% 1.82 53.2% 1.9% 1.33

10 1.59 36.4% 1.8% 1.65 72.9% 1.0% 1.18 1.76 21.1% 5.3% 1.85 47.1% 2.2% 1.39
15 2.11 22.0% 2.1% 1.80 48.6% 1.5% 1.41 2.62 12.3% 7.7% 1.97 29.2% 2.8% 1.61
20 1.53 14.6% 2.7% 1.88 33.5% 1.8% 1.57 1.75 8.1% 11.1% 2.05 20.2% 3.3% 1.73
25 1.48 10.3% 3.9% 1.94 24.3% 1.9% 1.68 1.25 5.8% 15.2% 2.12 14.8% 3.4% 1.81
30 1.75 7.6% 5.4% 1.98 18.4% 2.0% 1.75 1.47 4.6% 19.7% 2.18 11.9% 4.3% 1.87
40 1.31 4.7% 9.6% 2.05 11.8% 2.5% 1.84 1.28 3.0% 28.2% 2.29 8.3% 5.8% 1.95
50 1.05 3.3% 14.6% 2.12 8.5% 3.2% 1.90 0.93 2.2% 35.8% 2.39 6.3% 8.9% 2.02

Average putts per round 29.31 24.31 33.59 26.81
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