

SIMULATING THE PERFORMANCE OF A CLASS-BASED WEIGHTED FAIR QUEUEING SYSTEM

Martin J. Fischer, PhD Denise M. Bevilacqua Masi, PhD John F. Shortle, PhD

3150 Fairview Park Drive, South 3150 Fairview Park Drive, South 4400 University Drive
Noblis, Inc. Noblis, Inc. George Mason University

Falls Church, VA 22042-4519, USA Falls Church, VA 22042-4519, USA Fairfax, VA 22030-4444, USA

ABSTRACT

Class Based Weighted Fair Queueing (CBWFQ) is a very
important router discipline that allows different types of
Internet Protocol (IP) traffic like voice, video, and best ef-
fort data to receive the required quality of service measures
they individually need. CBWFQ dynamically allocates the
available bandwidth to each traffic class based on the
class’s weight. This discipline is playing a vital role as IP
brings these traffic classes together in a truly converged
network. Under stress and in extreme emergencies, it is
critical to be able to determine how the CBWFQ discipline
will perform. In this paper, we present and discuss the crit-
ical role simulation has played in our development of per-
formance analysis tools for the CBWFQ discipline.

1 INTRODUCTION

Industry is moving away from circuit-switched technology
to Internet Protocol (IP) technology for telecommunica-
tions applications, including voice traffic. When IP net-
works become heavily loaded, packets get dropped and
other quality of service (QoS) measures like packet la-
tency, loss, and jitter are significantly degraded. At some
point, the QoS for voice and video packets becomes poor
enough that their communication is lost. As Voice over IP
(VoIP) and video become more prevalent in these net-
works, these issues become increasingly important—
particularly, since there is no dedicated communication
path for a voice or video call.
 The Class Based Weighted Fair Queueing (CBWFQ)
discipline is being used frequently within the Internet with
these potential QoS problems for the multiple traffic
classes (see Cisco Systems Quality of Service Solutions
Configuration Guide, and Semeria (2001)). Under
CBWFQ, the bandwidth is shared in accordance with the
weights assigned to the CBWFQ traffic classes. These
weights are designed to ensure the traffic class gets a cer-
tain portion of the available bandwidth. CBWFQ extends
weighted fair queueing (WFQ) by assigning weights to

classes of traffic rather than individual flows of traffic
identified by origination/destination pairs.
 The CBWFQ discipline is very important to under-
stand as voice, data, and video converge and compete for
use of the same shared transmission resources. Each of
these traffic types has its own required QoS measures to be
met; CBWFQ is one discipline that may be able to meet
these QoS measures. There are several methods that can be
used to evaluate the performance of such a system. These
range from a direct simulation of the system to the devel-
opment of the system equations and their solution via nu-
merical or analytical methods. In this paper, we discuss the
crucial role simulation has played in our development of
performance analysis tools for CBWFQ.
 In order to better present this, we consider a simple
CBWFQ base system. This system has two traffic classes
with Poisson packet arrivals for each class and exponential
packet lengths and finite buffers for each class (see Section
2). There we define the parameters for this system and de-
velop the steady state equations for the state probabilities.
The simulation model we developed is presented and dis-
cussed in Section 3. Other methods we used in the devel-
opment of performance tools are presented in Section 4. In
both Sections 3 and 4, illustrative examples are used to so-
lidify the points we are making. Section 5 contains some
closing remarks.

2 BASE SYSTEM DESCRIPTION

The base CBWFQ system has two classes of packets. We
assume that the arrival process for each class is an inde-
pendent Poisson process and that the service times are ex-
ponentially distributed. In addition, we assume each class
has its own buffer.
 In the CBWFQ system, there is no service interruption
of packets by another. Upon service completion of a pack-
et, the next type of packet to be served is randomly chosen
based on the class weights. Specifically, in the two-class
system, when both classes are present, a class 1 packet is
chosen with probability α and a class 2 packet is chosen
with probability 1-α. If only one class of packets is present,

2901 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Fischer, Masi, and Shortle

then that class is served. Within a class, service is on a
First Come First Served (FCFS) basis. At the boundaries
(α = 0 or 1), this system is the standard non-preemptive
queueing system that has been extensively studied in the
past (see Morse (1958), Cohen (1969), Miller (1981), and
Gross and Harris (1998)).
 Fundamentally, the model described in this paper is a
random polling model. After serving one queue, the next
queue to serve is randomly chosen according to specified
weights. There is a large body of research on polling mod-
els in general. However, most of the literature deals with
cyclic polling models in which the server visits each queue
in ordered succession, rather than in a random fashion. For
example, a standard reference on polling models is the
book by Takagi (1986) as well as a subsequent survey pa-
per (Takagi 1988). Both of these works deal primarily with
cyclic polling models.
 Two papers that deal with random polling models and
that are closely related to this paper are Kleinrock and
Levy (1988) and Lee (1997). Kleinrock and Levy (1988)
consider a discrete-time random polling model under sev-
eral different service disciplines. For the limited-service
discipline, where the server serves at most one customer at
a time before switching queues, results are provided only
for a completely symmetric system in which all queues
have identical statistical properties. No results are given for
the asymmetric case. For some other service disciplines –
for example, where the server continues to serve customers
until the queue is empty – they derive a set of m2 linear eq-
uations that can be solved to obtain expected waits. Lee
(1997) provides exact results for the asymmetric random
polling model. However, we have not been able to match
our simulation results with his analytical results.
 Finally, a related concept is processor sharing in which
customers from different queues are served simultane-
ously. For this system, the queues are served individually,
one customer at a time. If we regard the customers as
packets and we set the maximum packet size to be small,
then the model in this paper can be approximated by ap-
propriate processor sharing models—for example, the gen-
eralized processor sharing and its packet-by-packet vari-
ants (e.g., Parekh and Gallager 1993).
 We define the following parameters and random vari-
ables.

• λi is the packet per second arrival rate for class i

(i = 1,2).
• 1/μi is the average time to serve a class i packet.
• α is the probability a class 1 packet is selected for

service when both classes are waiting.
• Qi is the random number of class i packets in the

system.
• Y is a random variable identifying the class of

packet in service (Y = 1,2) or that the system is
empty (Y = 0).

• Pi,j,k = Pr{Q1 = i, Q2 = j, Y = k} in steady state (i =
0,1,2,…, j = 0,1,2,3…, Y = 0,1,2).

• Ki is the maximum number of class i packets al-
lowed in system

• ρi = λi /μi is the class i load. For the infinite buffer
case, we assume that ρ = ρ1 + ρ2 is less than one.

For a discussion of the appropriateness of these arrival

and packet size distributions assumptions, see Cao (2002),
Fischer (2005), Newman (2001), and Thompson (1997).
The assumption of Poisson packet arrivals and exponential
service times are the most lenient assumptions one could
make and get analytic results. As we will see, even making
these assumptions does not allow a simple analytic solution
except for boundary cases and we are forced to go to simu-
lation or numerical methods.

The steady state birth and death equations for this sys-
tem for the infinite buffer (K1 = K2 = ∞) case are:

21 2 0 , 0 , 0 1 1 , 0 ,1 0 ,1 , 2

1 2 2 0 ,1 , 2 2 0 , 0 , 0 1 1 ,1 ,1 2 0 , 2 , 2

1 2 1 1 , 0 ,1 1 0 , 0 , 0 1 2 , 0 ,1 2 1 ,1 , 2

()

()
()

P P P

P P P P
P P P P

λ λ μ μ

λ λ μ λ μ μ

λ λ μ λ μ μ

+ = +

+ + = + +

+ + = + +
(1)

and for i = 1,2 … and j = 1,2, …

2,1,21,,111,1,21,,111,,121)(++−− +++=++ jijijijiji PPPPP μαμαλλμλλ (2)

and

 2,1,21,,112,1,22,,112,,221)1()1()(++−− −+−++=++ jijijijiji PPPPP μαμαλλμλλ (3)

When i = 1 and j ≥ 1 (the first expression in the right hand
side of equation (2)), we have P0,j,1 = 0, and, similarly in
equation (3), if j = 1 and i ≥ 1 (the second expression on
the right hand side of equation (3)), we have Pi,0,2 = 0.

0

)(

1,,0

2,1,021,,112,1,022,,0221

=

++=++ +−

j

jjjj

P
and

PPPP μμλμλλ
 (4)

For j = 0 and I = 1,2…

0

)(

2,0,

2,1,21,0,111,0,111,0,121

=

++=++ +−

i

iiii

P
and

PPPP μμλμλλ

(5)

For these equations to have a solution we must have ρ < 1.
 In general, we know of no solution to this system; al-
though some results exist for special cases in steady state.
For the case of α = 0 or 1, we have a non-preemptive prior-
ity queueing system and Miller (1981) gives an expression
for the probability of the number of high priority packets in

2902

Fischer, Masi, and Shortle

the system. If α = 1, then the class 1 packets have queue
priority and Pr{Q1=n}=Pn

1 is given by

1 2 1 1 1

1 1
1 1 2 1 1 1 2

Pr() (1)
()

n n n

nQ n λ λ λ μ λρ
μ λ μ μ μ λ μ +

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= = − + −⎜ ⎟ ⎜ ⎟+ − +⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

(6)

When α = 0, then the class 2 packets have priority and
Pr{Q2=n} is given by equation (6) with a suitable changes
in the subscripts (this result only holds when μ1 = μ2). Al-
so in steady state, for any α when the service rates of each
class are equal then the probability of the total number of
packets (=Q1+Q2) is given by standard M/M/1 results; that
is

2121 ,)1(}){(ρρρρρ +=−==+= wherenQQPP n
n . (7)

This result stems from the fact that it does not matter
which customer is in service, the departure rate is the same.
Also the server always works when customers are present
and no work is lost.

3 SIMULATION MODEL

We were first interested in developing a simulation model
for a Low Latency Queueing (LLQ) system (see Masi
(2007a, 2007b). That system is composed of a Priority
Queueing (PQ) module and a CBWFQ module. Because
we understand the interaction between the priority queues
and the class based weighted fair queues, and how to mod-
el that interaction, our focus in this modeling is within the
CBWFQ portion of the router, which is not understood.
We considered developing our own custom simulation ver-
sus using a simulation package such as OPNET Modeler.
OPNET Modeler is a popular discrete-event simulation
package which is designed specifically to model telecom-
munications networks. We decided to develop our own
custom simulator of the CBWFQ system for several rea-
sons, one of which was that we wanted to have a flexible
simulator that could be modified to examine future system
configurations. OPNET Modeler has limited ability to
model router configurations that do not exist in current
equipment without custom programming. In addition, de-
tails on the precise specifications of CBWFQ scheduling
(both within OPNET and in real routers) were not readily
available, and we wanted to have control over and knowl-
edge of the precise mechanics of the CBWFQ algorithm in
the simulation. Also, we anticipated that run times in
OPNET Modeler would be longer than in our custom
simulator, which has much less overhead. Later compari-
sons (see Masi et al. (2007a, 2007b)) showed that our cus-
tom simulator run times for a router using CBWFQ were
about one tenth that of the OPNET run times.
 We developed a simulation of the CBWFQ system in
Visual Basic for Applications (VBA). The interface is

shown in Figure 1. Development time for this model was
relatively short, taking several days. Background research

on the precise rules used by class based weighted fair
queues to select which class of packet to transmit when the
router is available was required and is described in Masi et
al. (2007a, 2007b). The original simulator allowed three
classes of traffic, but for this paper we use the two-class
version, each having Poisson arrivals. Our original simula-
tion allowed for a packet service time distribution that was
Internet specific; three packet sizes are dominant in IP traf-
fic (Thompson et al. (1997)). However, for this paper we
modified the simulation to use exponential service times to
enable comparisons with analytic models. The simulation
computes several measures of effectiveness: latency (mean
queue wait), mean number of packets in the system, and
packet loss. The simulation can also output individual
packet queue waiting times and number of packets at each
departure point, enabling the entire distributions to be ob-
tained if desired.

Figure 1: VBA CBWFQ Simulator

We now consider some illustrative examples using the

simulation model. Our input parameters are as follows. The
class 1 packets have a mean packet size 1.6 kb, and the
class 2 packets have a mean packet size of 5.57 kb. We as-
sume the line speed is a T1 (1536 kbps). The code is writ-
ten in VBA and the runs were made on a 2.4 GHz laptop.
We ran the simulation for 3,000,000 packet arrivals. For
these examples α = 0.77, λ1 = 425 pps and λ2 = 130 pps
which result in ρ1 = 0.443 and ρ2 = 0.471 or a total load of
0.914. In Figures 2, 3, and 4, we see that as the buffer size
increases, the packet loss for each class is going to zero,
and the expected number of each type of packet and the
buffer latency by class are converging to the infinite buffer
cases. These parameter values will also be used in the next
section, where we show the results in tabular format in a
comparison with other analysis methods.

Figure 5 shows the simulation run time. Each run took
about 29 seconds to simulate 3 million packet arrivals. The
run time did not vary much with the size of the buffers.

2903

Fischer, Masi, and Shortle

Packet Loss

0.000

0.004

0.008

0.012

25 50 75 100

Buffer Size

PB

Class 1
Class 2

Figure 2: Simulation Packet Loss

Expected Number of Packets

0

3

6

9

25 50 75 100

Buffer Size

L(
i) Class 1

Class 2

Figure 3: Simulation Expected Number of Packets in
System

Buffer Latency

0

5

10

15

20

25

30

35

25 50 75 100

Buffer Size

W
q(

i)
in

 m
s

Class 1
Class2

Figure 4: Simulation Buffer Latency

CPU_time_sec

20

22

24

26

28

30

25 50 75 100

Buffer Size

Figure 5: Simulation Run Time in Seconds

4 COMPARISON WITH OTHER METHODS

We also investigated other methods such as solving the in-
finite buffer steady state equations analytically using the
standard generating function approach (see Gross and Har-
ris (1998)) or solving the problem numerically.
 In trying to solve the problem analytically, we met
with extreme difficulty. We began with the simplest as-
sumptions: two service classes, exponential service times,
Poisson arrivals, and infinite buffers. The generating func-
tion approach has been successfully applied to analytically
solve similar queues, such as the priority queue (e.g., Gross
and Harris (1998) Section 3.4.1, or Morse (1958) Chapter
9), so we followed the approaches given in these refer-
ences. The two-class priority queue is a special case of the
two-class CBWFQ when the weights of one class or the
other is zero.
 For the two-class priority queue, the approach defines
a two-dimensional generating function H(z1, z2). By appro-
priate summation of the state equations, H(z1, z2) can be
obtained as a function of known parameters and an un-
known one-dimensional generating function P02(z2). Gross
and Harris (1998) point out (for equal service rates) that
the complete form for P02(z2) is not needed to evaluate the
partial derivative of H(z1, z2) with respect to z1—only the
value P02(1) is needed and this can be easily obtained.
Thus, it turns out that all standard first-moment perform-
ance measures for the priority queue can be obtained even
without obtaining the exact functional form for H(z1, z2).
 However, for the CBWFQ, the analogous form of
H(z1, z2) involves two unknown generating functions,
which we may call P02(z2) and Q01(z1). It turns out that tak-
ing the partial derivative of H(z1, z2) with respect to either
z1 or z2 requires knowing the complete form of at least one
of these two functions. Thus, the mean-value performance
measures cannot be obtained without knowing the com-
plete form of these two functions.

2904

Fischer, Masi, and Shortle

 Morse (1958) provides some guidance here. For the
priority queue, he shows that the function P02(z2) can be
obtained by solving a first-order homogenous difference
equation (easy) and then solving a second-order non-
homogenous difference equation. The method works be-
cause the two difference equations can be decoupled, so
one equation can be solved first and then used as an input
into the second. However, for the CBWFQ queue, the re-
sult is a coupled system of two second-order non-
homogenous difference equations, with driving terms in-
volving unknown probabilities from the original queue. We
did not make any serious attempts to solve this system.
 Even if solvable, the approach has limitations in being
restricted to the assumptions of two-service classes, expo-
nential service times, infinite buffers, and load less than 1.
All of these assumptions can be easily generalized using
simulation.
 Our next step was to solve the equations numerically.
Some candidate approaches were the Matrix Geometric
Method (see Miller (1981)), or the method presented by
Cidon (1990); but they involved significant analytic set-up
time to put the equation in a usable form. As an alternative,
we used an iterative method to solve the steady-state bal-
ance. In this approach, we plug an initial guess for the Pi,j,k
values into the right-hand side of equations (1) – (5) to
generate the next iteration values of Pi,j,k. As the process is
repeated, the Pi,j,k value converge to the steady-state prob-
abilities. As an initial starting value of Pi,j,k we set P1,0,1=1.
 Finally, we considered another numerical method.
This numerical method also yields the transient probabili-
ties. This method solves the system of difference differen-
tial equations for Pi,j,k(t), the conditional probability at time
t there are i class 1 and j class 2 packets in the system, and
class k (=1,2) is in service, given the system state at 0.
These equations can be easily developed using standard
birth and death arguments. We use the method described in
Knepley and Fischer (1977) to solve these equations. The
code for each of these methods was written in VBA and all
runs were made on the same computer.
 Table 1 compares the QoS results when using the si-
mulator and the iterative and Knepley and Fischer method
to solve equations (1) through (5). We see that for all prac-
tical uses the results are the same. The buffer latency
(Wq_i) are given in ms. When using the Knepley and
Fischer method, the integration constant h has to be se-
lected. For the parameters used in these examples, h =
0.001 was used. The steady state convergence criterion for
the iterative and Knepley and Fischer methods was that the
expected number of packets in the system at one iteration
was within 0.0001 of the previous iteration. We see all
three methods give the same results for decision making
purposes.
 Figure 6 compares the run times of the three methods.
We see the run times for the iterative and Knepley and
Fischer methods are dependent on the buffer size, because

at each iteration the complete probability distribution of the
state space is determined. As the buffer size increases, the
state space increases and the number of calculations in-
creases as well. The simulation run time does not depend
on the buffer size. The Knepley and Fischer method is
much more sensitive to the buffer size as we had to set h =
0.001 for this problem, because of the values of the input
 parameters, λi and μi.

The major advantage of the Knepley and Fischer me-
thod is that it generates the transient results, while the it-
erative method does not. The simulation method could be
used to do that, but it would require significantly more
runs. One option of the simulator is to output the buffer de-
lays and the number of packets in the system at each depar-
ture point. Here we are only interested in expected value
results in steady state. But if expected transient results
were required via the simulator; then multiple runs of the
simulator would have to be made.

Also if steady state probability distributions of the
number of packets in the system are needed, the iterative
and Knepley and Fischer methods give those results di-
rectly with no additional computational work. They can
also be obtained from the simulator, but the run time is
significantly increased because the associated table has to
be output. The increase in run time to output the tables is a
factor of 10. So the simulation run times become 290 sec-
onds as opposed to 29 seconds. In addition, the output ta-
bles then have to be post-processed to generate the desired
probability distributions. The simulation run time does not
depend of the buffer size.
 A significant advantage of the simulation model is that
it outputs the actual waiting time for each packet by type.
We got the mean delay for the iterative and Knepley and
Fischer methods by using Little’s formula; higher moments
can be obtained via the higher moments of Little’s formula
(Gross and Harris (1998)), but the total probability distri-
bution of the queue wait is not available from those meth-
ods.

We close this section with a brief look at the accuracy
of the methods. In order to do this analysis, we ran the it-
erative method for the 100 buffer case for 15,000 itera-
tions—a graph of the convergence profile and run time is
given in Figure 7. It took approximately 160 seconds for
this run and the resulting number of expected packets (both
classes) in the system was 13.0292. We use this value as
the true steady state value. Table 2 presents the percentage
difference of the three methods with this value, using the
data from Table 1.

Three points are immediate from Table 2. First, the re-
sults presented in Table 1 are very close to the steady state
values, less than 1 percent difference. Second, the simula-
tion method gets closer to the steady state value as com-
pared to the other two methods based on computer time.
Even though the Knepley and Fischer method was closer to
the steady state value, it took 180 seconds of computer

2905

Fischer, Masi, and Shortle

Table 1: QoS Comparison of Simulation, Iterative, and Knepley and Fischer

 Simulation Iterative Knepley and Fischer
Buffer Size PB_1 PB_2 PB_1 PB_2 PB_1 PB_2

25 0.011395 0.001196 0.011339 0.001012 0.011658 0.001450
50 0.001401 0.000004 0.001290 0.000019 0.001309 0.000029
75 0.000243 0.000000 0.000174 0.000000 0.000180 0.000001
100 0.000047 0.000000 0.000024 0.000000 0.000027 0.000000

Buffer Size L_1 L_2 L_1 L_2 L_1 L_2
25 6.24 4.05 6.43 3.97 6.48 4.08
50 8.04 4.43 8.05 4.41 8.08 4.47
75 8.38 4.58 8.40 4.46 8.44 4.51
100 8.45 4.60 8.47 4.47 8.51 4.52

Buffer Size Wq_1(ms) Wq_2(ms) Wq_1(ms) Wq_2(ms) Wq_1(ms) Wq_2(ms)
25 14.33 27.62 14.27 26.96 14.27 26.96
50 18.06 31.07 17.92 30.30 17.92 30.30
75 18.73 31.49 18.72 30.69 18.72 30.69
100 18.88 31.61 18.88 30.76 18.88 30.76

Figure 6: Run Time Comparisons of Methods

time where as the simulation only took 29 seconds. Finally,
the Knepley and Fischer method is better than the iterative
method on a per-iteration basis, because it builds in more
information. Its recursive calculation uses data from the
past two iterations. The iteration method took a little under
160 seconds for the 15,000 iteration, the Knepley and
Fischer method got there in fewer iterations, but the same
length of time.

Convergence to Steady State

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000 14000 16000

Number of Iterations

Ex
pe

ct
ed

 N
um

be
r o

f P
ac

ke
ts

0

20

40

60

80

100

120

140

160

180

R
un

tim
e

in
 S

ec
on

ds

E{Packets} Runtime

Figure 7: Convergence to Steady State of
Iterative Method

Table 2: Percent Difference of Methods and Steady State

Method Value Percent Difference
Iterative 12.9362 0.0071
Knepley and Fischer 13.0291 0.0000
Simulation 13.0483 0.0015

5 CONCLUDING REMARKS

In this paper we have shown the critical role simulation has
played in our development of performance models for a
very important IP router discipline, CBWFQ. At the start
of this development, no performance analysis tools were
available. We were tasked with the development of tools

Run Time Comparisons

0

50

100

150

200

25 50 75 100

Buffer Size

C
PU

 ti
m

e
in

 s
ec

on
ds

Simulation
Iterative
K & F

2906

Fischer, Masi, and Shortle

and found simulation played a crucial role in our develop-
ment efforts.
 In this paper simulation was presented and compared
to two numerical methods. In order to make the numerical
methods tractable, we had to restrict the comparison to on-
ly two classes of packets with Poisson arrivals and expo-
nentially distributed packet lengths. Those simplifying as-
sumptions allowed us to generate the balance equations for
the system, but not an analytic solution. When more realis-
tic assumptions about the packet arrival processes and
packet length distributions are used, it appears that simula-
tion will be the only tool that will yield practical results.
We also suggest that researchers develop custom simula-
tors for an analysis of router queueing disciplines like
CBWFQ, rather than relying on commercially-available
simulators, as they have a substantial amount of run time
overhead and may not have the flexibility of use and un-
derstanding.

ACKNOWLEDGMENTS

This work was partially funded by the National Communi-
cations System under Contract Number NBCH-D-02-0039
and Noblis’ Center for Network-Based Systems, which is a
research collaboration of Noblis and George Mason Uni-
versity

REFERENCES

Altman, E., K. Avrachenkov, and U. Ayesta. 2006. A Sur-
vey on Discriminatory Processor Sharing. Queueing
Systems 53: 53-63.

Cao, J., W. S. Cleveland, D. Lin, and D. X. Sun. 2002. In-
ternet Traffic Tends Toward Poisson and Independent
as the Load Increases. Nonlinear Estimation and Clas-
sification. Editors: C. Holmes, D. Denison, M. Han-
sen, B. Yu, and B. Mallick, Springer, New York, NY.
http://cm.bellabs.com/who/dong/papers/lrd2poisson.pd
f.

Cidon, I. and M. Sidi. 1990. Recursive Computation of
Steady-State Probabilities in Priority Queueing Sys-
tems. Operations Research Letters, Vol. 9, No. 4, pp.
249-256.

Cisco Systems, IOS Quality of Service Solutions Configu-
ration Guide, Release 12.2 (Congestion Management
Overview). http://www.cisco.com/
en/US/proucts/sw/iosswrel/ps1835/products_configura
tion_guide_chapter09186a00800b75a9.html.

Cohen, J. W. 1969. The Single Server Queue. North-
Holland Publishing Company, New York, NY.

Fischer, M. J., and D. M. B. Masi. 2005. Voice Packet Ar-
rival Models and Their Effect on Packet Performance.
Applied Telecommunications Symposium, San Diego,
CA.

Gross, D. and C. M. Harris. 1998. Fundamentals of Queue-
ing Theory. Third Edition, John Wiley, New York,
NY.

Kleinrock, L. and H. Levy. 1988. The Analysis of Random
Polling Systems. Operations Research 36 (5): 716-
732.

Knepley, J. E. and M. J. Fischer. 1977. A Numerical Solu-
tion for some Computational Problems Occurring in
Queueing Theory. TIMS Studies in the Management
Sciences, Vol. 7: 271-285.

Lee, T. 1997. A Closed Form Solution for the Asymmetric
Random Polling System with Correlated Levy Input
Process. Mathematics of Operations Research 22 (2):
432-457.

Masi, D. M. B., M. J. Fischer, and D. A. Garbin. 2007a.
Modeling the Performance of Class Based Weighted
Fair Queueing with OPNET and Custom Simulators.
OPNETWORK Conference, Washington, DC.

Masi, D. M. B., M. J. Fischer, and D. A. Garbin. 2007b.
Modeling the Performance of Low Latency Queueing
for Emergency Telecommunications. Winter Simula-
tion Conference, Washington, DC.

Miller, D. R. 1981. Computation of Steady-State Probabili-
ties for M/M/1 Priority Queues. Operations Research
28 (5).

Morse, P. M. 1958. Queue, Inventories and Maintenance.
Wiley, New York, NY.

Newman, D., G. Chagnot, and J. Perser. 2001. Networking
the Telecom Industry, Light Reading. Detailed Meth-
odology, Section 3–Test Procedures.
www.lightreading.com/document.asp?doc_id=3972.

Parekh, A. K. and R. G. Gallager. 1993. “A Generalized
Processor Sharing Approach to Flow Control in Inte-
grated Services Networks: The Single-node Case.”
IEEE/ACM Transactions on Networking 1 (3): 344-
357.

Semeria, C. 2001. “Supporting Differentiated Service
Class: Queue Scheduling Disciplines.” Juniper White
Paper. http://www.juniper.net/soltions/ liter-
ture/white_papers/200020.pdf.

Takagi, H. 1986. “Analysis of Polling Systems.” The MIT
Press, Cambridge, MA.

Takagi, H. 1988. Queueing Analysis of Polling Models.“
ACM Computing Surveys 20 (1): 5-28.

Thompson, K., G. J. Miller, and R. Wilder. 1997. Wide
Area Internet Traffic Patterns and Characteristics.
IEEE Network.

AUTHOR BIOGRAPHIES

MARTIN J. FISCHER is a senior fellow at Noblis where
his experience includes network design and performance
analysis in telecommunications. He has published more
than 50 articles in refereed journals. He received his doc-

2907

Fischer, Masi, and Shortle

torate degree in operations research from Southern Meth-
odist University.

DENISE M. BEVILACQUA MASI is a senior principal
engineer at Noblis where her experience and research in-
terests include queueing theory and simulation applied to
telecommunications networks. She received her doctorate
degree in information technology and engineering at
George Mason University.

JOHN F. SHORTLE is an associate professor of systems
engineering and operations research at George Mason Uni-
versity (GMU). He is a member of the Center for Air
Transportation Systems Research at GMU and a member
of the Center for Network-Based Systems, a collaborative
initiative between Noblis and GMU. His experience in-
cludes developing stochastic, queueing, and simulation
models to optimize networks and operations. His research
interests include simulation and queueing applications in
telecommunications and air transportation. He received his
doctorate degree in operations research from UC Berkeley.

2908

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

