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ABSTRACT 

This research is motivated by a scheduling problem found in the diffusion and oxidation areas of semiconductor wafer fabri-
cation facilities. With respect to some practical motivated process constraints, like equipment dedication and unequal batch-
sizes, we model the problem as unrelated parallel batch machines problem with incompatible job families and unequal ready 
times of the jobs. Our objective is to minimize the total weighted tardiness (TWT) of the jobs. Given that the problem is NP-
hard, we propose two different solution approaches. The first approach works with a time window-based mixed integer pro-
gramming (MIP) decomposition. The second approach uses a variable neighbourhood search (VNS). Using randomly gener-
ated test instances, we show that the proposed algorithms outperform common dispatching rules that cannot deal with the 
given constraints effectively.  

 

1 INTRODUCTION 

The planning and optimization of semiconductor manufacturing is a very complex task. Especially, in the field of wafer 
processing in the front-end a lot of different processing steps have to be performed. These steps are, for example, typical 
batch tool operations like oven processes and wet-etch processes, or typical cluster tool operations like dry-etch, implant or 
lithography processes having complex setup strategies. A batching machine allows that several jobs can be processed at the 
same time. Because of several specific constraints and dependencies, it is challenging to schedule the jobs. Moreover, meet-
ing customer due dates is one of the important manufacturing objectives. Because of the complex nature of the process, the 
customer due date is set for each operation as operation due date (ODD) (cf. Rose 2003). The task to be solved consists in 
meeting these due dates for each job within each work center as good as possible with respect to different job priorities. 

In this paper, we focus on diffusion and oxidation operations which are performed on batch machines, i.e. furnaces. Be-
cause of the long processing times of batch tools an effective scheduling of the furnace operation has an huge impact on 
global manufacturing objectives (cf. Mehta and Uzsoy 1998). Though several jobs can be processed simultaneously on these 
batch processing machines, the process restrictions require that only jobs belonging to the same family can be processed to-
gether at the same time. Further process restrictions specify that not all families can be processed by every machine (equip-
ment dedication) and that machines can have different capacities. These equipment dedication constraints mainly represent 
different equipment qualifications. Especially for research and development wafer fabs with high product mixtures and con-
stantly new developments, these constraints make the manufacturing control more sophisticated. In addition, the jobs to be 
processed have different priorities/weights, due dates, and ready times. So, in the case of unequal ready times, it is sometimes 
advantageous to form a non-full batch while in other situations it is a better strategy to wait for future job arrivals to increase 
the fullness of the batch. 

In this research, we model the described problem as unrelated parallel batch machine scheduling problem with incom-
patible job families and unequal ready times of the jobs. The performance measure is TWT. Using the α | β | γ notation of 
Graham et al. (1979) our scheduling problem can be represented as Rm | ri,p-batch,incompatible | ΣwiTi. This problem is NP-
hard by reduction to 1|| ΣwiTi (cf. Lawler 1977). Therefore, this research proposes two heuristic solution strategies that lead to 
good results in comparison to common dispatching approaches. The suggested heuristics are investigated with respect to dif-
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ferent application scenarios. We are especially interested in answering the question how the optimization potential depends 
on information for future job arrivals. This question is related to setting appropriate forecast horizons. 

The paper is organized as follows. Related work concerning scheduling of batch machines is discussed in Section 2. We 
define the problem and provide some assumptions in Section 3. In Section 4, we explain several variants of dispatching ap-
proaches, the MIP decomposition scheme as well as the VNS approach. The test data generation scheme is introduced in Sec-
tion 5. We present the results from our computational experiments in Section 6. Finally, Section 7 contains our conclusions 
and plans for future research. 

2 PREVIOUS RELATED WORK 

Approaches for scheduling batch processes are a matter of particular interest and are also recorded in several publications. 
The solution methodologies can be grouped into optimum approaches and heuristic approaches including simulation tech-
niques. A recent collection of these approachess is provided by the survey of Mathirajan and Sivakumar (2003). Another re-
view and classification concerning machine environments, constraints, and performance measures can be found in (Perez, 
Fowler, and Carlyle 2005). Mehta and Uzsoy (1998) describe dynamic programming and heuristic solution procedures for the 
single machine batch problem with incompatible job families and the total tardiness objective. This work was extended by 
Perez, Fowler, and Carlyle (2005) to the performance measure TWT. Balasubramanian et al. (2004) and Mönch et al. (2005) 
extend the existing solution methodologies from the single machine to the case of identical parallel batch machines. In 
(Mönch et al. 2005), dynamic job arrivals are taken into account which are essential for considering real-world problems. 
Fowler, Hogg, and Phillips (2000) illustrate the need to use information regarding future arrivals within different control 
strategies for batching tools. 

Most of the decomposition approaches for batch scheduling discussed in the literature are divide the overall scheduling 
problem into the phases batching the jobs and sequencing the batches on the machines (cf. Mehta and Uzsoy 1998, 
Balasubramanian et al. 2004, Mönch et al. 2005, and Raghavan and Venkataramana 2006 amongst others). Raghavan, and 
Venkataramana (2006) uses ant colony optimization to tackle the batching problem. In (Balasubramanian et al. 2004) and 
(Mönch et al. 2005), the decomposition is coupled with a genetic algorithm. Almeder and Mönch (2009) further enhance this 
approach by using VNS instead of the genetic algorithm. This especially leads to significantly reduced computation times. 
Unfortunately, most of the decomposition approaches cannot be used for machines with different batch sizes and dedications. 
The VNS approach of Almeder und Mönch (2009) is further extended in this paper to tackle these specific process con-
straints. 

Klemmt et al. (2008) describe MIP models as well as a simulation-based optimization approach which was performed 
together with a genetic algorithm for unrelated parallel batch problems. Here, the objective was to minimize makespan and 
queuing time. In (Klemmt, Lange, and Weigert 2009) these methods where adapted to the objective TWT and tested using 
several benchmark instances. An online scheduling application using MIP and constraint programming techniques for the op-
timization of furnace operations in a 300mm wafer fab is described by Bixby, Burda, and Miller (2006). Unfortunately, fur-
ther modeling details of this approach are not presented. 

3 PROBLEM ASSUMPTIONS 

In the remainder of this paper, different solution approaches for the unrelated batch scheduling problem are described. Re-
lated to Balasubramanian et al. (2004) the following assumptions are made. 
 
1. The jobs fall into different incompatible families that cannot be processed together.  
2. There exist f  job families. F := {1,…, f } represents the set of all families. 
3. There are n jobs to schedule. J := {1,…,n} represents the set of all jobs. 
4. There are m unrelated machines in parallel. M := {1,…,m} represents the set of all machines. 
5. Machine preemption is not allowed. 
6. The family of job i is represented as fi.  
7. The priority weight for job i is represented as wi. 
8. The (operation) due date of job i is represented as di. 
9. The processing time pi  of job i is assumed to be equal on all machines. Also it is equal for all jobs of the same family.  
10. The ready time of job i is represented as ri. All jobs forming the batch have to be ready before the batch start. 
11. The batch processing machine capacity of machine k∈M measured in jobs is represented as Bk. 
12. The dedication of machine k, i.e., the set of allowed families on machine k, is represented as a subset Dk ⊆  F. 
13. The completion time of job i is denoted by Ci. 
14. The weighted tardiness of job i is represented as wiTi= wi (Ci - di )+, where x+ := max(x,0). 
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4 SOLUTION METHODOLOGIES 

In this paper three, different solution strategies for the batch scheduling problems are investigated. The solution strategies are 
list-based scheduling approaches based on dispatching rules, MIP-based decomposition techniques, and a VNS scheme. All 
of them will be described in detail in separate sub sections. 

4.1 Dispatching – BATC-II 

The Apparent Tardiness Cost (ATC) dispatching rule suggested by Vepsalainen and Morton (1987) is important for obtaining 
schedules with small TWT. Some modifications of this rule (called BATC) for batch processes exists in literature (cf. Mönch 
et al. 2005 for more details on this batching rule). In its simplest version, the BATC rule ignores the ready times of the jobs. 
So, every time a machine becomes available a batch is started if at least one job is available. A more complex version of the 
rule, denoted as BATC-II, takes the ready times of the jobs into account. As a result, this rule is able to delay batch starts and 
to form more full batches if this is possible. So, for batch problems with ready times, this rule reaches best dispatch perfor-
mance results (cf. Mönch et al. 2005 or Klemmt, Lange, and Weigert 2009).  

In this paper, a further extension of this rule, denoted as BATC-IIi (insert), is discussed. Here, if a batch is delayed, the 
length of the resulting delay interval is checked whether there is an fitting batch that is available for processing or not. If sev-
eral fitting batches are available, the batch with the highest BATC-II index is inserted. Within this research, the BATC, 
BATC-II, and BATC-IIi rules are used as reference heuristics to assess the performance of a MIP-based decomposition 
scheme and a VNS approach. 

4.2 MIP Approach 

The suggested MIP is similar to the MIP suggested by Klemmt et al. (2008). Some modifications concerning constraints and 
objective become necessary. The parameter bk restricts the number of batches on each machine k ∈  M. The subset Mi ⊆  M 
includes all machines which are allowed to process job i. The subset Jk ⊆  J contains all jobs which are allowed for 
processing on machine k. Note that both subsets can be directly derived from the set Dk. K is a very large positive number. 
The following decision variables have to be defined:  

sjk ∈  ℝ+  starting time of batch j on machine k; (k ∈  M;  j = 1,…,bk ), 
xijk ∈  {0,1}   job i is scheduled in batch j on machine k, 0 otherwise; ( i ∈  J; k ∈  Mi ;  j = 1,…,bk ), 
yjkl ∈  {0,1} family l is scheduled in batch j on machine k, 0 otherwise; (k ∈  M;  j = 1,…,bk ; l ∈  Dk ⊆  F ), 
Ci ∈  ℝ+  completion time of job i, 
Ti ∈  ℝ+  tardiness of job i. 

 
The remaining parameters have been already introduced in Section 3. In a next step, the batch process MIP model has to 

be formulated. 
 

Batch process MIP model: 
 min subject toi i
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Here, the constraints set (9) restricts the objective function (1). Constraints set (2) ensures that each job can only be 

processed in one batch on one machine. The maximum batch size is restricted by (3). Equations (4) and (5) make sure that 
only jobs of the same family can form a batch. Constraints set (6) guarantees that a job can only be processed after it is ready. 
Equation (7) forces that a batch can be started only after the previous one is finished. Constraints set (8) restricts the comple-
tion time of each job. 

Because of the NP-hardness of the researched problem, it has been computationally shown that even state of the art MIP 
solver can only handle relatively small problems for the TWT objective (cf. Klemmt, Lange, and Weigert 2009). Therefore, 
in this section several decomposition approaches are described. 

Time window decomposition: Every time t a machine becomes available, a MIP is formulated and solved for the sub-
problem. Only jobs with ready times smaller than t + Δt are considered. We use the set : { |  }iJ i J r t t= ∈ < + ∆ instead of J. 
As a result, we obtain sub-problems of smaller size. The timestamp t’ ≤  t + Δt of the next event is calculated (i.e., a machine 
becomes available, a new job is arrived, etc.). All jobs that have been completed until t’ are further disregarded. All batches 
which are currently, i.e., at time t’, processed define new time periods Rk (denoted as Rk’ in Figure 2) where jobs are proc-
essed on the machines. To consider these periods of time in each MIP sub-problem a further constraint set (10) has to be de-
fined:  
 
 1,k kR s k M≤ ∈ . (10) 
 

The jobs that form these batches are also disregarded further. All jobs which have not been started until t’ as well as all 
jobs which enter oven operation in the time period t’ + Δt form the new job pool. The MIP which represents the new sub-
problem is solved. The process is repeated until all jobs are scheduled. For the cyclic solving of the MIP sub-problems (1) is 
replaced by 
 
 mini i ii J i JK w T C

∈ ∈
⋅ + →∑ ∑  . (11) 

 
The advantage of (11) is that jobs without tardiness cost are additionally optimized with respect to their completion time. 

This leads to minimal unavailability times Rk’ for the machines in the subsequent MIP sub-problem. Figure 1 illustrates the 
MIP time window decomposition. Note that the number of jobs involved in a sub-problem is usually much smaller than n. 
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Figure 1: Illustration of time window decomposition for two batch tools 
 

Machine pool decomposition: The MIP sub-problem complexity can be further reduced. Therefore, only machines (in a 
time window) with availability times lower than a time horizon t + Δt2 are regarded. So, { }2: | kM k M R t t= ∈ < + ∆  is used 
instead of M. This decomposition is effective for highly distributed processing times (like found in the benchmark test in-
stances in Section 5) with 2 max ( )i it t p∆ ≤ ∆ ≤ . 

1689



Klemmt, Weigert, Almeder, and Mönch 
 

Job list reduction: As shown in Figure 1, the time window approach only fixes the jobs of the next batch on each machine 
(first batch in the time window). All following batches are recalculated in a later time window. So, if the number of jobs in a 
time window is still too large, the current job list is further reduced. Therefore, for all jobs the ATC priority index (cf. Mönch 
et al. 2005) is calculated. Each job i has a priority index Ii. The jobs are sorted concerning this index. Then only the first n  
jobs are taken into account. That means that : { | ,  }i iJ i J r t t I n= ∈ < + ∆ < is used in the time window. Based on the results 
found in (Klemmt, Lange, and Weigert 2009) [20,30]n ∈ has to be chosen. 

Strong upper bounds: To accelerate the optimization process, for every MIP sub-problem an initial feasible solution is 
calculated using the BATC rule. So the optimization is started already from an good initial point in the search space with 
strong upper bounds for the objective function. 

4.3 VNS Approach 

Variable neighborhood search is a local-search based metaheuristic (cf. Hansen and Mladenovic 2001). The main idea is to 
enrich a simple local search method in order to enable it escaping from local optima. If the local search gets stuck in a local 
optimum, it is restarted from a randomly chosen neighbor of a large neighborhood (larger than those used during the local 
search step). This restarting step is called shaking and is performed with different neighborhoods of increasing sizes. A basic 
VNS consists of the following steps: 

 
Initialization: 
1. Define K different neighborhoods Nk 
2. Generate an initial solution x 
3. Set k=1 
 
Algorithm: 
4. Repeat until stopping criterion is met 
a. Shaking: choose randomly x’∈Nk(x) 
b. Local search: Improve x’ by a local search method 
c. Accept? If x’ is better than x, then x=x’ and k=1 otherwise k=(k mod K)+1. 
 

The VNS algorithm designed for the batching problem operates on the final solution representation, i.e. each job is as-
signed to a batch and each batch is assigned to a certain position on a machine. Its design is similar to the VNS for the batch-
ing problem of parallel machines with jobs with zero release times (cf. Almeder and Mönch 2009). The proposed local search 
method used for the VNS consists of two different phases. During the first phase the workload of the machines is balanced. If 
the last batch of the machine with the maximum completion time starts later than the completion time of another machine 
which is suitable for that batch, the batch is moved to that machine. This step is repeated until no batch can be moved. During 
the second phase of the local search the following three steps are applied iteratively: 
 
1. job insert (remove a job from a batch and insert it into another batch), 
2. job swap (swap two jobs of different batches), 
3. batch swap (swap two batches of the same family).  
 

Therefore the design of the neighborhood structure for the shaking step of the VNS considers manipulations of whole 
batches across different machines. We define five classes of neighborhoods: 
 
• splitBatch(l): Select randomly a batch and split it into two batches. One remains on that position, the other one is in-

serted into the sequence on a different machine. Repeat this step l times. 
• moveBatch(l): Select randomly a batch from a machine and remove it. Insert it on a random position on a randomly se-

lected machine. Repeat this step l times. 
• moveSeq(l): Randomly select a position on a machine. Remove a sequence of at most l (l or all remaining batches) and 

insert either this partial sequence or the reversed one on another machine at a randomly selected position. 
• swapBatch(l): Select randomly two batches from different machines which are both capable of handling those batches 

and exchange their positions. Repeat this step l times. 
• swapSeq(l): Randomly select two positions on different machines and exchange the batch sequences starting from that 

position of at most length l (l or all remaining batches). 
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Note that in each of these neighborhoods only splits, moves, and swaps are considered which result in a feasible solution, 

i.e. restrictions of job families and batch sizes are considered. The neighborhoods are applied in the order given above. 

5 TEST DATA GENERATION 

For testing our solution methodologies, test instances are generated randomly. A benchmark scheme is used which is investi-
gated in different variants by many researchers (see Mehta and Uzsoy 1998, Mönch et al. 2005 amongst others). In Table 1, 
this benchmark is extended to the researched scheduling problem. Some modifications have to be made to allow the model-
ing of some real-world conditions (cf. also Klemmt, Lange, and Weigert 2009). To represent the high product mixture, the 
number of families is between four and eight. Furthermore, the utilization u of the parallel machine group is varied from 0.7 
to 0.9. Here, an average batch size coefficient b  = 0.75 is assumed to represent capacity limitations resulting from product 
mixture and equipment dedication. The expected makespan of each test instance can be computed as follows: 

 

 
1

m
kk

n pmakespan
b u B

=

⋅
=

⋅ ⋅∑
, (12) 

where p  denote the average processing time of the jobs. 
The ready times of each job are uniformly distributed in [0, makespan]. It is assumed that all jobs are controlled by ODD 

in pre-operations, the due-date spreads around the ready date. Here, a deviation of five (v = 5) average process times is set. 
The weight of the jobs is not uniformly distributed to represent the different priority items. The batch size is not variable but 
fixed at different capacities for the machines. Also, additional equipment dedication constraints are considered. It allows the 
modeling of different machine qualifications. The number of allowed machines per families spreads from one to five. Family 
1 can be regarded as a standard process which is executable on each machine (see Table 1). In contrast, for family 2 only one 
qualified machine exists because of new products or engineering tasks. Altogether 162 different test instances (every possible 
factor-combination is generated two times) with a number of jobs ranges from 80 to 320 are considered within the computa-
tional experiments. The used design is summarized in Table 1.  

 
Table 1: Design of experiments  

Factors Values used Total values 
Number of machines 3, 4, 5 3 

Number of jobs/family 20, 30, 40 3 
Number of families 4, 6, 8 3 

Utilization 0.7, 0.8, 0.9 4 
Family processing time 

(probability) 
2 (20%), 4 (20%), 10 (30%), 16 (20%), 20 (10%) 1 

Weight per job (probability) 0.3 (75%), 0.6 (20%), 1 (5%) 1 
Release date ri ~ Uniform (0, makespan) 1 

Due date di ~ Uniform ( ri – ( 1)v p− ⋅ , ri + ( 1)v p+ ⋅ ) 1 

Batch size B1 = 3, B 2 = 4, B3 = 6, B4 = 4, B5 = 2 1 
Dedication (allowed fami-

lies/machine) 
D1 = {1,2,3,4,5,6}, D2 = {1,3,7,8}, D3 = {1,4,6,7},  

D4 = {1,4,5,8}, D5 = {1,3,4} 
1 

 Number of independent instances 2 
 Total problems 162 

6 RESULTS 

In this section, we present the optimization results to the 162 test instances achieved with the different proposed solution 
methodologies. Two different application scenarios are investigated: 

 
1. The entire problem is tackled. All information are available for the optimization method. 
2. Only jobs within a forecast horizon Δt are available/known at time t. This scenario arises if only a small number of future 

job arrivals is known or the arrivals are very uncertain. 
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The heuristic based on the BATC rule operates without any job forecast. The approaches based on BATC-II and 

BATC-IIi are restricted to scenario 2. They can handle job forecasts but as shown in (Klemmt, Lange, and Weigert 2009) 
they are only applicable for very short horizons Δt. For this reason, these methods are only investigated for Δt = / 4p . The 
MIP approach can be applied to solve the problems in both scenarios. But with regard to the strongly increasing computa-
tional burden only the investigation of scenario 2 is reasonable. The assessment is performed using different forecast horizons 
Δt ( / 4, / 2,p p p ), and different optimization time limits (5s, 30s) per time window. The VNS approach can be used in both 
application scenarios. However, in this research, it is only investigated for scenario 1 (full information). This will show how 
much more beneficial the global knowledge of future job arrivals in contrast to local time window information is. The VNS 
scheme is tested for 60 seconds runtime applied to all 162 test instances. For each test instance and this runtime three runs 
with different seeds are performed and the average values for TWT are used for comparison. All the tests for VNS are per-
formed on an Intel QuadCore 2.4 GHz, 4GB computer with Linux Suse 10.1 as operating system.  

In Table 2, we present the results for our test instances. Altogether 1944 different schedules are created with the different 
solution methods. The average TWT value of all test instances with their respective method and their denoted compare item 
(for example, m = 3) is shown relative to the TWT value obtained by the BATC rule. All MIP approaches are implemented 
with the parameter settings ( 2t∆ = p , 25n = ) using the CPLEX 11.2 library of TOMLAB (CPLEX-Settings: NODEALG = 
1; SUBALG = 1; PREIND = 0; AGGIND = 0; all cuts disabled). All the tests for MIP are performed on an Intel Core 2 Duo 
2.54 GHz, 4GB computer with Windows Vista as operating system. 

 
Table 2: Comparison of the dispatching approaches, MIP approaches, and VNS approach for all 162 test instances. The re-
sults are aggregated according to the different instance properties. All values are relative to the TWT values found by the 
BATC rule. 

Compare Machines 
m = 3    m = 4    m = 5 

Jobs per family 
j = 20   j = 30    j = 40 

Families 
f = 5      f = 6      f = 7 

Utilization 
u = 0.7 u = 0.8 u = 0.9 

Overall 

BATC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
BATC-II              
Δt  = / 4p  1.005 1.005 0.989 0.993 1.008 0.997 0.986 1.016 0.997 0.987 0.993 1.018 0.999 

BATC-IIi              
Δt = / 4p  0.984 0.990 0.986 0.982 0.993 0.984 0.982 0.994 0.984 0.984 0.977 0.999 0.986 

MIP (5s)              
Δt  = / 4p  0.915 0.946 0.954 0.949 0.936 0.930 0.940 0.931 0.944 0.939 0.929 0.947 0.938 
Δt  = / 2p  0.908 0.938 0.942 0.936 0.926 0.926 0.926 0.919 0.943 0.925 0.924 0.940 0.929 

Δt  = p  0.922 0.976 0.975 0.942 0.954 0.977 0.928 0.945 1.001 0.930 0.941 1.002 0.957 
MIP (30s)              
Δt  = / 4p  0.914 0.942 0.955 0.947 0.933 0.930 0.937 0.928 0.945 0.938 0.928 0.944 0.936 
Δt  = / 2p  0.902 0.933 0.936 0.932 0.920 0.918 0.923 0.914 0.933 0.922 0.920 0.929 0.923 

Δt = p  0.917 0.944 0.959 0.929 0.941 0.951 0.915 0.927 0.979 0.921 0.923 0.977 0.940 
VNS              

(total 60 s) 0.899 0.925 0.924 0.910 0.913 0.924 0.900 0.909 0.938 0.917 0.908 0.922 0.916 
 
As Table 2 shows, the presented MIP approach and VNS scheme clearly outperform the traditionally BATC type rules. 

More interesting is the result that the local information of Δt = / 2p  leads to solutions with an objective function difference 
smaller than 1% compared to the best (global) VNS results. Also it is interesting that almost the MIP (5s) approach nearly 
reaches the same solution quality. However, we expect that a more carful and refined design of the neighborhoods for the 
VNS scheme will further improve the results obtained by this metaheuristic.  

The reasons why the BATC-based dispatch rules does not provide comparable good scheduling results is stated below 
and also depicted in Figure 2: 

 
• In the MIP solution, some batches are retarded and resulting less batches are formed. 
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• The BATC-rule does not treat the equipment dedication constraints in an appropriate manner, i.e., for example, family 3 
and 4 is scheduled on machine 1 in Figure 2. 

 
The last mentioned point leads to a significantly increased makespan because of unbalanced workloads. Because 

BATC-II and BATC-IIi type rules have similar problems, their TWT value improvements compared to the BATC rule are 
small. 
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Figure 2: Comparison of BATC and MIP-solution for a test instance (m = 3, j = 20, f = 6, u = 0.9, b = 0.75, p = 10) 

7 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we discussed heuristics that are motivated by real-world scheduling problems in the semiconductor manufactur-
ing domain. The researched scheduling problem contains unrelated parallel batch machines with different batch sizes, ma-
chine dedications, incompatible job families, and ready times of the jobs. We suggested a MIP-based approach that is based 
on a time window decomposition. Furthermore, we also proposed a VNS scheme that takes the various constraints into ac-
count. It turned out that the VNS approach slightly outperforms the MIP approach with respect to solution quality and time 
needed for computation. However, the MIP approach seems to offer some advantage when more additional constraints like, 
for example, time constraints between consecutive process steps have to be taken into account. The design of appropriate 
neighborhoods for VNS is more sophisticated in this situation.  

There are some directions for future research. First of all, additional computational experiments with more test instances 
are highly desirable to assess the performance of the suggested heuristics. We are also interested to enrich the problem by ad-
ditional, more real-world like, constraints. Furthermore, it is planned to use our VNS scheme for scenario 2. VNS seems to be 
faster than the MIP approach, but it provides at the same time high quality solutions. 
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