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ABSTRACT 

One of the issues in mixed mode simulation is the need to achieve a believable and valid state of interoperability within the 
simulation itself. This is achieved in part through aggregation/disaggregation, Multi Resolution Entities or other methods, 
which deal with the interoperability and believability issues with different amounts of success. These approaches can be im-
proved with the inclusion of predictive algorithms that can reduce the amount of aggregation/disaggregation in dense or 
thrashing scenarios. In this paper, we discuss the issues of consistency in mixed mode simulation in the context of the High 
Level Architecture and proposed a set of predictive algorithms to improve its efficiency. We carried out a set of experiments 
using these algorithms in a mixed mode simulation to assess their effects on consistency and efficiency. The experimental re-
sults show that the algorithms can improve the simulation performance by reducing the amount of aggregation/disaggregation 
in dense interaction scenarios. 
 

1 INTRODUCTION 

One of the issues with multi-resolution simulations is the need to achieve a believable and valid state of interoperability. 
Some simulations, such as the Joint Conflict And Tactical Simulation (JCATS) and the Joint Theatre Level Simulation 
(JTLS) achieve some degree of interoperability using the HLA RTI (Bowers and Prochnow 2003). This is achieved through 
the processes of aggregation and disaggregation in which represented objects convert between High Resolution Entities 
(HREs) and Low Resolution Entities (LRE) on a need basis. Issues arising from the aggregation and disaggregation 
processes, e.g. consistency and thrashing, and some of their possible solutions have been discussed in (Reynolds and Natrajan 
1997, Natrajan 2000). We note, however, that there is still an unavoidable reliance on the process of aggrega-
tion/disaggregation in these solutions. In the case of Multi Resolution Entities (Natrajan et al. 1997), a similar mechanism for 
attribute regeneration is used when a multi-resolution simulation is carried out in space constrained situations.  

In this paper, we reinvestigate the issue of consistency in a simulation experiment using HREs, LREs and Multi Resolu-
tion Entities as well as investigate a predictive algorithm approach to mitigate the aggregation/disaggregation problem in 
simulation efficiency in which the worst case scenario is thrashing.  

The remainder of this paper is organized as follows. Section 2 briefly introduces aggregation and disaggregation, multi 
resolution modeling, multi resolution entities, data distribution management and predictive algorithms. Section 3 addresses 
the consistency and performance issues that were investigated in further detail. Section 4 details the algorithms used in test-
ing the issues described in Section 3. Section 5 describes the experimental scenario in which the algorithms were tested. Sec-
tion 6 presents the results of the experiment. And finally, Section 7 presents our conclusions and possible related work in the 
future. 

2 RELATED WORK 

Distributed simulation is an evolving field requiring the integration of many different technologies. In this section we cover 
some of the techniques and design ideas developed in previous work that were studied and used in our experiments. 
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2.1 High Level Architecture 

The High Level Architecture (HLA) is an architecture for reuse and interoperation of simulations (DMSO 1998). It is an 
IEEE specification standard for simulation interoperability in a distributed environment. The HLA describes distributed si-
mulations as a HLA ‘federation’ which consists of several functional components: individual simulations termed as ‘fede-
rates’. 

The HLA Runtime Infrastructure (HLA RTI) is a key component that enables simulations to communicate with each 
other. It is the system through which simulations pass messages to one another. The HLA RTI also provides a number of 
general purpose features for mixed mode simulations. 

2.2  Multi Resolution Modeling 

Multi Resolution Modeling (MRM) is defined as (1) building a single model with alternative user modes having different le-
vels of resolution for the same phenomena; (2) building an integrated family of two or more mutually consistent models of 
the same phenomena at different levels of resolution; or (3) both (Davis and Tolk 2007). 

Models are required to function at different levels of detail due to the strengths and weaknesses of the models at different 
levels of resolution (Davis and Bigelow 2002). Different levels of resolution provide different perspectives to the same prob-
lem. 

A purpose of MRM is the efficiency of communication: to reduce overheads in communication when a high level of de-
tail is unnecessary, and to reverse the process when a situation arises which requires the high level of detail. An example 
would be combining a number of tanks into a tank group for ease of communication of orders and the returning of the tanks 
to their individual control states when they enter combat with other individually controlled vehicles to facilitate combat cal-
culations. 

One of the ways MRM is achieved is through the processes of Aggregation and Disaggregation. This will be described in 
the following two subsections. 

2.3 Aggregation and Disaggregation 

The process of aggregation is one which a number of HREs are combined into LREs of a higher level of abstraction (Natra-
jan 2000).  In this state, the HRE object models are either rendered inactive, slaved to the operations of the LRE or deleted.  

Disaggregation would be the opposite process where the LRE is split into its component parts and the HREs are indivi-
dually communicated with. Disaggregation forces the platoon to decompose into individual soldiers in situations that require 
greater precision (e.g. simulated combat at the individual level with units controlled by another simulation federate). 
 

Soldier 
1

Soldier 
2

Soldier 
n

…

Platoon

Soldier 
1

Soldier 
2

Soldier 
n

…

Disaggregation

Aggregation

 
 

Figure 1: An example of the process of Aggregation and Disaggregation 
 

Figure 1 shows conceptually that several soldier entities can be aggregated to form a platoon LRE. Likewise a platoon 
LRE can be disaggregated into its component soldiers. 

In present day, simulating the basic HRE to LRE aggregation/disaggregation model is rare as data consistency could be 
lost through repetitive aggregation and disaggregation (Natrajan et al. 1997). Instead other methods such as composite model 
are used. One of the composite models which combine features of HREs and LREs is the Multi Resolution Entity. 

2.4  Thrashing 

Thrashing in the context of mixed mode simulation is the extreme situation where aggregation and disaggregation occurs so 
frequently, e.g. on every time iteration of the simulation, that the overheads for these two processes actually hinder the per-
formance of the simulation (Reynolds and Natrajan 1997). Thrashing occurs in a spatial simulation when a relevant HRE en-
ters the aggregation/disaggregation range of an LRE, or needs to interact with the LRE. 
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2.5 Multi Resolution Entities 

Multi Resolution Entities or MREs are hybrid objects that combine features of both LREs and HREs (Natrajan et al. 1997). 
MREs maintain the information of both disaggregate and aggregate models at the same time, and therefore require more 
memory than LREs and HREs being modeled separately. But maintaining correctness and consistency of data is easier with 
MREs as a consistency checker function is called periodically to update relevant attributes even if that level of resolution of 
the model is not currently active. 

For a fully implemented MRE, there is no need to generate the data of a different level of resolution. Instead, what would 
happen during aggregation and disaggregation intervals is replaced with a choice of which resolution to broadcast the data in; 
to select which attributes and control mechanisms should be active for the next point in the simulation. 

While MREs can solve the consistency and simulation efficiency issues, they also require more memory and are more 
complex than HREs and LREs. A fully implemented MRE requires the space equivalent of an HRE and all its LREs at all 
times of the simulation. Regardless of which mode the MRE is operating in at the moment, more data have to be tracked and 
managed. 

2.6 Data Distribution Management 

Data Distribution Management (DDM) is a service provided by the HLA RTI to limit the amount of messages passed be-
tween its individual simulators (Van Hook and Calvin 1998). These individual simulators can use DDM to parse the entities 
that they subscribe to, filtering out messages about the entities outside their scope of interests. There are many other ap-
proaches to DDM (Kumova 2005, Tacic and Fujimoto 1998). The efficiency of the more common DDM methods, e.g. Re-
gion and Grid based DDM are investigated in (Boukerche and Dzermajko 2004). 

Figures 2 and 3 show how a simulation in a distributed environment that subscribes to the same entity class might work, 
with or without DDM respectively. Sending simulators are the simulators that generate data about the one class of object that 
the receiving simulator is interested in. 
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Figure 2: A distributed simulation with and without Data Distribution Management 
 

If no DDM were used, all messages about this class of objects would be sent to the Receiving Simulator even if the Re-
ceiving simulator did not need the information. With DDM implemented, the receiving simulator would be able to send a 
DDM message to the RTI Execution Program, specifying what ranges of data is relevant to it. The RTI Executive Program 
would then filter irrelevant updates from reaching the receiving simulator. In this case, the receiving simulator is only inter-
ested in 1 message each from sending simulators 2 and 3. The RTI Executive Program filters out all the other messages. 

2.7 Predictive algorithms 

To the best of our knowledge, predictive algorithms have not been used to control aggregation/disaggregation. However, pre-
dictive algorithms have been used in distributed simulations to reduce network message load. One of these predictive algo-
rithms is dead reckoning, a technique in which future positions of objects in a spatial simulation are estimated by interpolat-
ing from their current velocity and position (Zhang et al. 2006, Cai et al. 1999). The error of the interpolated value from the 
measured value from the next update is used to determine the frequency of future updates.  

While dead reckoning is not used in this project, the predictive algorithms investigated use the same methodology: they 
collect historical data to decide future actions taken by the simulation. The motivation of predicting aggregation and disag-
gregation in this manner is to produce a simulation that can decide if the computational tradeoff between an LRE re-
aggregating immediately (after it is no longer necessary to stay disaggregated) and simply waiting in its disaggregate state to 
its next disaggregation is worth it. 
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3 ISSUES OF MIXED MODE FEDERATION 

Regardless of what scenario is to be modeled, simulations operating on different resolutions have to deal with a set of com-
mon issues, including data consistency and simulation performance. 

3.1 Consistency 

Consistency is an issue of MRM simulations that involves the accuracy and believability of information produced by aggre-
gation/disaggregation (Reynolds and Natrajan 1997, Natrajan 2000). Problems with consistency could occur when an LRE 
meets an HRE and has to disaggregate to interact with it fruitfully. 
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Figure 3: An example of mapping inconsistency in a simple MRM simulation 
 
Figure 3 illustrates spatial mapping inconsistency where the physically impossible occurs due to rapid aggregation and 

disaggregation. Soldiers S1, S2 and S3 are deleted and recreated with random positions each time the platoon LRE aggre-
gates and disaggregates. Assume in the above scenario each arrow represents a 1 second time frame. That would mean that 
the soldier S2 had ‘jumped’ an impossible distance in a short time. 

For this research, we were primarily concerned with observing spatial mapping inconsistency as it is the most obvious 
inconsistency phenomenon. We observed that the inconsistency problems were most evident during periods of rapid aggrega-
tion and disaggregation. The main problems consisted of the center of gravity of LREs shifting sporadically over a short pe-
riod of time, causing HREs ‘jumping’ around impossibly (as shown in Figure 3). 

3.2 Performance 

The performance of a distributed simulation is a measurement of the effectiveness of its resource utilization. The perfor-
mance, or simulation efficiency, can be measured by the passage of logical time, the amount of memory space utilized, the 
number of RTI messages received and sent by the simulation, and the number of aggregation/disaggregation in the simula-
tion. 

For this research, we define interaction density as the amount of interaction (or aggregation/disaggregation occurring) in 
a simulation with respect to the amount of real world entities (LREs, HREs) being modeled in the simulation. For example, 
suppose a single HLA federate sends and receives an average of 10 messages per iteration cycle. In an HLA federation which 
involves 1000 entities, the interaction density of that federate would be considered relatively sparse. However if it was part of 
an HLA federation which involves 50 entities, its interaction density would be relatively dense. 

To test the viability of different predictive algorithms, we measured the simulation efficiency of aggrega-
tion/disaggregation under various forms of control and under differing simulation population densities from sparse interaction 
density to dense interaction density. The performance of these methods were benchmarked against the naïve method (no con-
trol) of approaching aggregation/disaggregation. For our experiments, we measured the efficiency of an algorithm by count-
ing the number of aggregation and disaggregation that occurs in these scenarios and the number of messages passed in and 
out of the simulation. 

The motivation of the experiment is to reduce the total number of messages produced and to eliminate the problem of 
thrashing without using a full MRE model. The primary reasoning being a full MRE model takes up more space than similar-
ly structured HREs permanently in full disaggregate state. 

4 APPROACHES 

We detail here the various approaches to controlling aggregation/disaggregation which were tested in our experiments using 
the HLA RTI. 
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4.1 Naïve 

This is the basic message passing approach in HLA RTI simulations, no message filtering beyond publishing and subscribing 
checks is done. The naïve approach processes a lot of unnecessary information but is simple, performing well for scantly po-
pulated spatial based simulations. It was used in the research as a benchmark against which the other approaches were com-
pared.  

4.2 Region-based Data Distribution Management (DDM) 

Region-based DDM is provided by the HLA RTI as a service, reducing unnecessary information sent to receiving simulators 
by utilizing the RTI Executive to filter messages which are not in the receiving simulators region of interest. Data distribution 
management by itself does not prevent thrashing or reduce load efficiently in dense interaction situations but it has a great ef-
fect on simulation efficiency in sparse to moderation interaction conditions. 

4.3 Region-based DDM with Constant Wait Interval 

An addition of a static value set by the user, delays aggregation by a number of logical cycles. The main purpose of this con-
stant wait interval is to reduce the effects of aggregation/disaggregation due to thrashing at certain frequencies. This approach 
has the disadvantage of preventing thrashing only at the selected delay intervals and could actually make thrashing worse if 
thrashing occurred at a slightly slower frequency. It also has the added disadvantage of slowing the simulation down in sparse 
conditions, where the constants wait interval is not required. 

4.4 Region-based DDM with Predicted Wait Interval 

The main limitation of the wait interval described above is its static nature. If the wait interval could change according to the 
simulations current interaction density, the issues it introduces could be resolved. To estimate the wait interval for the current 
situation requires the simulation to collect data from past iterations. There are several means to achieve this measurement, but 
due to time limitations only two methods of predicting this value are investigated in this paper. 

4.4.1 Quantity of Entity Prediction 

The first method for determining the wait interval twait is the Quantity of Entity Prediction (QoE) method. QoE is particularly 
useful for simulations that revolve around crowds and based on simple observation: if a LRE encounters one HRE, it is likely 
the LRE will continue to encounter more HREs. The more HREs and LRE is simultaneously encountering, the higher the li-
kelihood that the LRE will interact with more HREs within a short amount of time. This prediction method checks for the 
number of HREs interacting with a LRE and uses this value to estimate how long it should wait before re-aggregating should 
the HREs stop interacting with any LRE in the next logical time step. 
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Figure 4: Quantity of Entity Prediction 
 
Figure 4 shows how twait could be measured using QoE. The number of HREs within a LRE’s region of interest, kj , is deter-
mined by DDM and recorded every iteration into a location in the array determined by iteration number modulus array 
length. During an iteration the values are summed, averaged and multiplied by a constant c to determine the length of the 
next wait interval. The algorithm is adaptive and the interval changes according to the number of HREs measured in the re-
gion over a specified number of n previous iterations. 
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4.4.2 Frequency-based Prediction 

Frequency-based Prediction measures HREs on an individual basis. It keeps track of the time between the beginning of each 
HRE’s interaction and its end, discarding the information if the HRE appears relatively infrequently with other HREs within 
the region of interest. Using the information collected, the algorithm checks if staying in the disaggregate state till the reap-
pearance of the entity will save more effort than aggregating now and disaggregating again later. A decision is then made 
based on the information calculated. 

Each HRE is measured on an individual entity basis. Frequency based prediction is less prone to sudden fluctuations in 
interaction density, but requires a higher ‘setup’ time for data collection of each entity’s activities. This setup time could be 
very long if the HREs only interact sparsely. Frequency-based prediction also requires the designer to formulate a balance be-
tween space and time efficiency. This requires some technical expertise but means that frequency-based prediction can be 
flexible for different simulations. 

4.5 Summary of Algorithms 

Table 1 summarizes and compares the algorithms discussed in this section. 
 

Table 1: Comparing the four different types of aggregation/disaggregation algorithms 
 

 Naïve DDM Constant Wait 
Value DDM 

QOE Prediction 
DDM 

Frequency-based Predic-
tion DDM 

Complexity Simple Simple Simple +O(n) complexity Simple 
Aggregation 

Disaggregation 
Management 

Not  
efficient 

Not  
efficient 

Good in some 
invariant cases 

Good in dense interac-
tion but not in sparse 

conditions 

Good in dense interaction 
scenarios. 

Adaptability None, 
fails at 

thrashing 

None, 
fails at 

thrashing 

None Adapts quickly. Solves 
thrashing problem in 

most cases 

Adaptation rate is depen-
dent on frequency of en-

counters with entities. 
User Knowledge 
Requirement of 

Simulation 

Low Low Low Low Less prone to sudden  
fluctuations. Requires  

formulation of space/time 
trade off. 

 

5 EXPERIMENTAL MODEL 

The algorithms were tested in a 2D spatial world populated by HREs and 1 LRE with a region of interest that is a subset of 
the spatial world. In the simulation, the LRE disaggregates into a number of entities when HREs enter its region of interest to 
operate at the HRE’s level of resolution. The simulation federation consists of 1 LRE simulation, which disaggregates when 
necessary, and up to 3 HRE simulations controlling 1 to 80 HRE entities depending on the interaction density load require-
ment of the tests. In total the experiments were run on a total of 4 computers with similar specifications. 
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Figure 5: HRE simulation and LRE simulation view of the simulation world respectively 
 

Figure 5 shows a stationary LRE (e.g. a base or town entity) controlled by the aggregate federate is positioned in the 
middle of the simulation world, staying in its default LRE state but disaggregating into mobile HREs (e.g. person, car, tank or 
troop entities) when a HRE (e.g. spy plane, UAV, helicopter, vehicle entity) controlled by other simulations comes within 
range. HREs controlled by the HRE simulations moved in a number of different paths to produce different interaction density 
situations. The left image shows the view of the simulation world from the perspective of the HRE simulation and its entities. 
The right image shows the view of the simulation world from the perspective of the LRE simulation and its region of interest 
(represented by the largest circle). The experiment measured the number of messages passed between the LRE federate and 
the RTI Executive and the number of aggregation and disaggregation work being done by the LRE federate. 

A total of 5 scenarios were tested with no changes to the single LRE federate in any of the scenarios. The HRE simula-
tion in the first scenario produces a sparse interaction density situation, meaning little aggregation and disaggregation occurs, 
by controlling one HRE that intersects with the LRE’s region of interest at long intervals. The second scenario simulates a 
situation where there are 20 HREs, but none actually interact with the LRE. The third scenario simulates regular interaction 
between the HREs and the LRE. The fourth scenario simulates thrashing at regular intervals to test the performance of the al-
gorithms in the worst case scenario of distributed multi-resolution simulations. The last scenario simulates a high load, very 
dense interaction density environment where the LRE has little or no chance to re-aggregate at all. 
 

Table 2: Configuration of the different scenarios tested 
 

Scenario 
No. 

Number of HRE 
Simulations 

Number of 
HRE Entities 

Expected Interaction 
Density 

1 1 1 Sparse 
2 1 20 Zero 
3 1 20 Moderate 
4 1 20 Thrashing 
5 3 80 Very Dense 

 
Table 2 shows a summary of the 5 scenarios which the algorithms were tested on. The scenarios differed in the density 

and frequency of interaction between the HREs and the LRE entity. Algorithm performance of each algorithm was deter-
mined in each case as shown in the next section of this paper. 
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6 RESULTS 

From our experiment results in Table 3, it can generally be seen from rows 3 and 4 that simulations utilizing predictive 
algorithms perform better than those that do not in cases with high aggregation/disaggregation. Only in cases with little or no 
aggregation/disaggregation, e.g. scenarios 1, 2 and 5, do predictive algorithms not make a notable difference.  
 

Table 3: Number of messages per iteration.* 
Scenario Naïve DDM DDM CW DDM QOE DDM FREQ 

1: Sparse 
Interaction 

5.51/10.724 
 

4.35/12.271 5.45/12.377  (Wait 5) 
 

4.37/12.268 4.63/12.312 

2: No 
Interaction 

41.04/0.894 1.02/0.537 1.02/0.537 1.02/0.537 1.02/0.537 

3: Moderately 
Dense 
Interaction 

52.76/18.708 
 

16.01/18.992 13.54/9.592 (Wait 3) 
16.04/17.712 (Wait 1)  

 

14.92/15.697 12.42/3.772 

4: Thrashing 63.36/27.936 
 

36.06/39.056 21.36/12.617 (Wait 3) 
38.78/44.253 (Wait 1)  

 

21.24/11.615 21.28/11.406 

5: Dense 
Interaction 

168.82/17.358 
 

17.52/8.660 17.52/8.660 17.52/8.660 17.52/8.660 

*The first number shows the mean value and the second number shows the standard deviation. 
 
The predictive algorithms tested saved the most effort in dense thrashing situations, e.g. scenario 4, but they also increase 

the efficiency of the simulation in scenario 3. It can be seen from our results that implementing a constant wait interval could 
also improve the efficiency of the simulation for certain situations and could be detrimental in others. 

Figure 6 shows the problem with constant wait intervals. The sharp spikes in the number of messages in the graph indi-
cate that disaggregation is occurring. In this situation, aggregation/disaggregation thrashing occurs at an interval of 3 logical 
cycles. In this case, having a constant wait interval of 3 prevents thrashing altogether. But if the constant wait interval was 1, 
the constant wait interval does not stop thrashing from occurring at all. While the designer may tune the wait interval to fix 
one issue, the wait interval could likely cause another problem sometime in the future. 

The predictive algorithms are also not flawless. Figure 7 shows an issue of the QoE prediction which relies on the selec-
tion of a good value for the constant multiplier of the QoE equation for the weight of entities. In the experiment, the value of 
the constant multiplier used was not large enough and fails when only one entity is thrashing. However the constant multip-
lier selected works when 3 entities are thrashing. As can be seen in the graph, the QoE predictive algorithm adapts the wait 
interval to prevent thrashing from occurring after 3 disaggregation processes have happened. 
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Figure 6: Comparing wait intervals 1 and 3 
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Figure 7: An issue of QoE prediction 

7 CONCLUSION 

It is our conclusion that predictive algorithms can improve the efficiency of mixed mode simulations especially in dense inte-
raction or thrashing scenarios. Predictive algorithms can likely eliminate thrashing, providing an alternative in space con-
strained simulations where the use of full MREs is not feasible.  

While the algorithms tested have their weaknesses or scenarios in which they do not work, it is our opinion that these are 
weaknesses that can be overcome with further research and study, or with additional heuristic weights that can balance the 
predictive algorithm’s equations. 
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