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ABSTRACT

When estimating steady-state parameters in parallel discrete event simulation, initial transient is an important issue to consider.
To mitigate the impact of initial condition on the quality of the estimator, we consider a class of estimators obtained by
putting different weights on the sampling average across replications at selected time points. The weights are chosen to
maximize their Gaussian likelihood. Then we apply model selection criterion due to Akaike and Schwarz to select two of
them as our proposed estimators. In terms of relative root MSE, the proposed estimators compared favorably to the standard
time average estimator in a typical test problem with significant initial transient.

1 INTRODUCTION

Let Y = (Y(¢) :t > 0) be a real-valued stochastic process representing the output of a discrete event simulation. Suppose
that Y satisfies a law of large number (LLN) of the form

oc(t)zf/OIY(s)ds:>oc ey

as t — oo, for some constant &, where = denotes convergence in distribution. As suggested by (1), the time-average o(f) is
an obvious point estimator of . Suppose that P processors are available for simulation, and each processor simulates the
process Y independently up to (deterministic) time 7. Let a,(T) denote the time-average o/(7) generated by processor p.
Set

1 P
a(T,P) = ﬁ Y (7). )
p=1

Then one might expect a(T,P) is an asymptotically unbiased estimate for oc. We call estimator (2) the standard estimator.
The standard estimator will converge to a wrong value if simulated time 7 and the number of processors P are not chosen
appropriately (Glynn and Heidelberger 1991b, Glynn and Heidelberger 1992a, and Glynn and Heidelberger 1992b.) Such
statistical problems basically arise because any bias effects on a single replication are magnified on multiple replications. This
type of problems also arise in transient simulation context; see (Heidelberger 1988) and (Glynn and Heidelberger 1991a),
for example.

The process Y is typically initialized via a distribution for ¥ (0) that is not characteristic of the steady-state behavior.
As a consequence, a(T) is biased as an estimator of ¢. In other words, Ea(T) # a. For the same reason, Ec(7T,P) # «.
The bias in a(T) as an estimator of o is known as the “initial bias”. The initial bias problem, in the single processor
context, can be mitigated in two different ways. One approach is to delete that initial segment of the simulation that is
“contaminated” by initial bias. Such an initial bias deletion approach has been studied by many authors; see, for example,
Glynn (1995), Schruben (1982), Schruben, Singh, and Tierney (1983), and White (1997). An alternative is to consider an
estimator, based on simulating ¥ over [0,7], that attempts to compensate for the bias present in o(7). We refer to such
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estimators as “bias reducing” estimators. The bias reducing estimators usually need to make use of independent identically
distributed quantities. Exploiting the regenerative structure of the process Y is a possible approach; see Hsieh, Iglehart, and
Glynn (2004) for a survey.

In the parallel processors (multiple replications) context, Glynn and Heidelberger (1992a) and Glynn and Heidelberger
(1992b) have studied the initial bias deletion approach. Both theoretical and empirical results in their study show that the
standard estimator (2) and its variant with initial bias deletion are not statistical efficient and ratio estimators are more
appropriate.

We present a new method for mitigating the effect of this “initial bias” when the number P of processors is large. We
first take advantage of the fact that when we average the simulation output across the independent replications, we end
up with an approximately Gaussian process. We then introduce a family of Gaussian models, indexed by the duration of
the initial transient, that is intended to “explain” the Gaussian data that has been collected via averaging. Because these
models involve differing numbers of estimated parameters, we penalize the highly parameterized models via model selection
criterion due to Akaike and Schwarz. This yields new steady-state estimators that are intended to reduce the impact of the
initial transient.

This paper is organized as follows. In Section 2, we describe the proposed estimators and discuss their theoretical
properties. In Section 3, we discuss some of our computational experience with the procedures introduced in Section 2.
Finally, Section 4 offers some concluding remarks.

2 THE PROPOSED ESTIMATORS

Suppose that Y is the simulation output that is derived from the simulation of a stochastic system from processor p. Assume
the simulated time on each of the P processors is 7. Let 0 =1y <t < --- <t, =T be a selection of time points. We define

_ 1 & ‘
Y(tj):?ZY(tj), j=0,1,....m 3)
p=1
When P is large, we can take advantage of the central limit theorem (CLT) to develop a large-sample approximation to
the distribution of ¥ (z;). Specifically, if ¥ 2 (Y(to),...,Y (tw))" and p* = (u*(0),...,u*(m))" with u*(j) = EY(t;), then
VP(Y —u*) = N(0,C)

as P — oo, where N(0,C) is a multivariate normal random vector (of dimension n+ 1) with mean 0 and covariance matrix

C2(Clk,1):0 <k <n,0<1<n), with entries C(k, 1) = Cov(Y (1), Y (1;)).
It follows that when p is large,

_D 1
Y~Nu*, =C).
(1, 5€)

Our interest is in using the data ¥ to estimate o.
Thus, if the initial transient finishes roughly at time / — 1, the mean vector u* should be such that u* is approximately of

the form p* = (u*(0), w*(1),...,u* (I —1),u*(s0), u* (o), ..., u*(eo))" (i.e. u*(j) = u*(eo) for j >1). So, the approximate
likelihood for ¥ when the model is such that the system is in equilibrium from time / onwards is

1 -
(27) 0V det €2 exp (—2<Y—um>f (%) (Y—um)> , @

where = ((0), (1), (I —=1),p4(c),...,1(e0)). The maximum likelihood estimator for p; is the minimizer of the
quadratic programming problem

_ c\7! o
fﬂ[ll]n (Y—#[z])T<) (Y — ) o)
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Since C is unknown, we replace (5) with

¢ -1
Hﬁ[l,]n ¥ — )" () ¥ — ) (6)

where C is the sample covariance matrix given by

et PY-—)_’)(Y»—)_’T
—jZ(: i ) )

~v

with ¥; £ (%(to), .., ¥;(t))7- Let i) be the minimizer of (6).

The model that describes an initial transient that finishes at time / — 1 (i.e. the model associated with estimating y* via
) is nested within the model that describes an initial transient finishing at time /, in the sense that the range of y is
contained within that of u; . As a consequence, we get a better fit as we increase /. In particular, the quality of the fit,
as measured by the quadratic form

A

~1
. = ~ 17 (C 5 A
min Y — ) (P) ¥ —fp) (7)
improves as [ increases. In fact, when [ = n, {ij,) =Y, the residual sum of squares (7) is zero, and fij,)(e) =¥ (n).
However, this discussion does not take into account the model complfixity. Specifically, the vector ) associated with
[-th model contains /4 1 free parameters that the data (as represented by Y) must attempt to accurately estimate. It is now
well understood within the statistical literature that one must “penalize” models with a large complexity (i.e. a large number
of parameters). The two most widely used such criterion are the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC); see (Akaike 1974) and (Schwarz 1978) for details. In our current setting, the AIC criterion
demands that one maximize

1 Nl
—sP =) (5 ) T =py)-+1), (8)
2 P
over [ € {0,1,...,n}; the inclusion of the term [+ 1 penalizes models with a large number of estimated parameters. If L, is

the maximizing value of / in (8), then the AIC-based estimator for EY (e) is fijz,)(c).
The closely related BIC criterion penalizes more complex models (as measured through the number of estimated
parameters) more heavily than does the AIC criterion. Specifically, the BIC criterion requires that one maximize

An —1
1 - . C _ [+1
- E(Y —#[IJ)T (P) Y —ag) - %1%’1’7 )

over [ € {0,1,...,n} in this context. Letting Lp be the maximizing value of [ in (9), the BIC-based estimator for EY (c0) is
then .a[LB](‘X’)'
3 EMPIRICAL RESULTS

In this section, we present computational results which illustrate the properties of the AIC and BIC estimators. In particular,
we expect MSE of the proposed AIC- and BIC-based estimators are smaller than that of standard estimators (2). We start
with a description of the test problem and associated parameters. The problem had been used in (Steiger et al. 2005) to test
ASAP3 and other batch means procedures. This test problem has significant initial bias.

1. First-Order Autoregressive (AR(1)) Process. This test problem is to estimate the steady-state mean of a first-order
autoregressive process X = (X, : n > 0) with initial condition Xy = 0. The process is defined as

Xo,=(1—-p)u+pXy—1+&, n>1
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Table 1: The estimated relative RMSE of each estimator, estimated EL4 and ELg for the First-Order Autoregressive Process.
Relative RMSE, EL4 and ELp are estimated by 100 independent copies.

Estimators [ a(7,P) AIC  BIC EL, ELg
P=512; T = 1000
m=>5 [ 0.1984 0.0070 0.0087 4.77 4.41
m=10 0.0084 0.0109 9.15 8.33
P =2048; T = 1000
m=5 | 0.1975 0.0065 0.0067 5 4.94
m=10 0.0069 0.0081 9.78 9.18
P =8192; T = 1000
m=5 | 0.1974 0.0067 0.0067 5 5
m=10 0.0068 0.0070 10 9.86
P=512; T =2000
m=35 [ 0.0994 0.0030 0.0030 3.34 2.82
m=10 0.0024 0.0026 5.97 4.82
P =2048; T = 2000
m=35 1 0.0995 0.0015 0.0015 3.50 3.05
m=10 0.0012 0.0016 6.57 5.31
P =8192; T = 2000
m=35 ] 0.0995 0.0008 0.0009 3.80 3.08
m=10 0.0007 0.0008 7.14 6.02
P =512; T = 4000
m=35 1 0.0496 0.0020 0.0017 2.33 1.90
m=10 0.0019 0.0018 3.87 2.87
P =2048; T = 4000
m=35 1 0.0496 0.0011 0.0009 2.42 2.03
m=10 0.0009 0.0008 3.89 3.01
P =8192; T = 4000
m=35 ] 0.0497 0.0006 0.0005 2.55 2.01
m=10 0.0005 0.0005 4.37 3.25

where pt =100, p =0.995 and g,’s are independent standard normal random variables. Therefore, the steady-state
mean of the first-order autoregressive process is 100.

The parameters of the proposed estimators include the number of processors P, the simulated time 7' and the time points
t,...,tm. We selected 18 combinations for the test problem by varying the value of each parameter. In particular, they
include the following combinations:

1. P=512,2048, or 8192;
T = 1000,2000 or 4000;

3. Three different selections of the time points #1,...,%,. The time points were selected by first fixing m and then the
time points are equally spaced within the interval (0,7). The values of m are 5 or 10.

Table 1 show the detail information of these parameter combinations.
We use relative root mean squared error (RMSE) as a performance measure for the estimators. In particular, for estimator
¢, the relative RMSE is defined as

E[(&—a)’]

relRMSE = (10)

472



Hsieh and Glynn

We performed N = 100 independent parallel simulation runs for each combination of 7, P, and m, and based on each
parallel simulation run (include P replications), we compute standard estimator o (T, P) and the proposed estimators o (T, P),
i=1,2,3,4. That is, for each estimator &, we have N independent copies. Denote these N independent copies of & as &¥),
k=1,...,N. Then the relative RMSE of & can be estimated by

The empirical results are shown in Table 1.

From the experiment results, the AIC- and BIC-based estimators, in terms of relative root MSE, compared favorably
to the standard time average estimator. Their performance are about the same, but AIC-based estimator seems a little bit
better than BIC-based estimator. If the simulated time is not long enough (7 = 1000) to let the process Y be in the steady
state, both method will select Ly and Lg close to m which is an indication of the simulated time is too short. When the
simulated time are long enough (7' = 2000 and 7" = 4000) to let the process Y be in the steady state, AIC-based estimator
select ELy = 5.97t07.14 (when T =2000) and ELy = 3.87 to 4.37 (when T = 4000) predicts initial transient terminate
around 7 = 1200 to 1600; BIC-based estimator select ELg = 4.82 to 6.02 (when T = 2000) and ELg = 2.87t03.25 (when
T = 4000) predicts initial transient terminate around 7 = 1000 to 1300. Also, EL, increases when P increases. This is
actually a theoretical property of AIC-based estimator, which we will discuss in the expansion version of this paper.

4 CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed AIC and BIC-based estimators for parallel steady state simulation. Based on the numerical
experiments we conducted, they seem promising. We will develop the confidence interval construction procedures for these
estimators and test their coverage probability.
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