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ABSTRACT

We present an efficient two-level simulation procedure which uses stochastic kriging, a metamodeling technique, to estimate
expected shortfall, a portfolio risk measure. The outer level simulates financial scenarios and the inner level of simulation
estimates the portfolio value given a scenario. Spatial metamodeling enables inference about portfolio values in a scenario
based on inner-level simulation of nearby scenarios, reducing the required computational effort. Because expected shortfall
involves the scenarios that entail the largest losses, our procedure adaptively allocates more computational effort to inner-level
simulation of those scenarios, which also improves computational efficiency.

1 INTRODUCTION

Estimating risk measures of a portfolio may require nested simulation, especially when the portfolio contains derivative
securities. In a two-level nested simulation framework, outer-level simulation generates possible future scenarios. These
scenarios may arise from historical simulation or Monte Carlo sampling from the distribution of future changes in risk
factors. Inner-level simulation of the more distant future conditional on each scenario yields an estimate of the portfolio’s
value, or profit and loss (P&L), in each scenario. For example, inner-level simulation of derivative securities’ payoffs in the
distant future provides Monte Carlo estimates of these derivatives’ values in a given scenario (Glasserman 2004). A principal
obstacle to implementing nested risk management simulations is the large computational cost of simulating many payoffs
in each of many scenarios.

In this article, we focus on expected shortfall (ES) as the risk measure. ES can be interpreted as the average of the
largest losses, in the tail of the loss distribution. In particular, suppose there are K equally probable scenarios in which P&L
is Y1, . . . ,YK , and we are interested in a tail of probability p, where K p is an integer. Then ES at the 1− p level is

ES1−p =− 1
K p

K p

∑
i=1

Y(i), (1)

where Y(i) is the ith smallest P&L. We refer to the scenarios whose P&L is among the K p smallest as tail scenarios: they
belong to the tail of the loss distribution and appear in (1). We refer to the other scenarios as non-tail scenarios. For further
background on ES, we refer to Acerbi and Tasche (2002) or Liu, Nelson, and Staum (2008).

The literature on computational efficiency of nested risk management simulations, addressing estimation of value at risk
(VaR) and ES, has two branches. One branch focuses on choosing the number of inner-level simulation replications. The
number of replications may depend on the scenario, but it must be strictly positive for each scenario. This branch of the
literature also deals with quantifying and reducing the bias that arises due to inner-level sampling error. For a brief literature
review, see Liu, Nelson, and Staum (2008). The other branch of the literature, exemplified by Frye (1998) and Shaw (1998),
proposes to reduce computational cost by performing zero inner-level simulation replications in many of the scenarios. In
this approach, inner-level simulation occurs only for a set of scenarios called design points. These authors estimate the P&L
of other scenarios by interpolating among the simulation estimates of P&L at design points. Interpolation makes sense when
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there is a spatial structure of scenarios. For example, in Figure 1 below, a scenario consists of the prices of two stocks, and
it lies in the positive orthant of the real plane. The present article draws upon ideas from both branches of the literature.

We improve upon the pioneering work on interpolation-based methods for risk management simulation in three ways.

1. Instead of ordinary interpolation, we use stochastic kriging Ankenman, Nelson, and Staum (2008). This method is
more powerful because it interpolates using simulation outputs from all the design points, not just those nearest to
the scenario under consideration. Stochastic kriging can also be more accurate because it takes into account the
inner-level sampling error.

2. We create a two-stage experiment design suited for estimating ES. An experiment design is a way of choosing
the design points. After the first stage of the simulation, our procedure learns which scenarios are most likely to
entail the large losses that contribute to ES. It adds these scenarios to the set of design points used at the second
stage. The related but different methods of Oakley (2004), who created a two-stage experiment design for a kriging
procedure that estimates a quantile (VaR), inspired this aspect of our procedure.

3. We allocate a fixed budget of inner-level replications to the design points unequally, in a way that is optimal
according to the framework of stochastic kriging.

The result is a procedure that attained a root mean squared error (RMSE) dozens of times smaller than a standard simulation
procedure in experiments that we ran. In these experiments, our procedure was also significantly more accurate in estimating
ES than the advanced simulation procedure of Liu, Nelson, and Staum (2008). Our procedure’s advantage over that of Liu,
Nelson, and Staum (2008) is particularly great when the number of scenarios is large or when the computational budget is
small—in such examples our procedure’s RMSE was three or four times smaller than that of Liu, Nelson, and Staum (2008).

The rest of the paper is structured as follows. First we give a motivating example of a risk management simulation
problem in Section 2. In Section 3, we review stochastic kriging and show how to use it to estimate ES. We present our
new simulation procedure in Section 4. In Section 5, we provide the results of simulation experiments in which we applied
our procedure to this example, and we demonstrate its advantages over other simulation procedures that estimate ES. We
offer some conclusions and directions for future research in Section 6.

2 MOTIVATING EXAMPLE

The example is almost identical to the one we considered in Liu, Nelson, and Staum (2008), to which we refer for details
about the model and the data sources. We consider a portfolio of call options on the stocks of Cisco (CSCO) or of Sun
Microsystems (JAVA), shown in Table 1. The example differs from that of Liu, Nelson, and Staum (2008) only in the
portfolio’s positions in the options; we explain the reason for considering a different portfolio in Section 4.3. In the table,
the position is expressed as the number of shares of stock the option owner is entitled to buy, where a negative position
means a short position in the call option.

Table 1: Portfolio of call options

Underlying Maturity Risk Free Implied
Stock

Position Strike
(years)

Price
Rate Volatility

CSCO 200 $27.5 0.315 $1.65 4.82% 26.66%

CSCO -400 $30 0.315 $0.7 4.82% 25.64%

CSCO 200 $27.5 0.564 $2.5 5.01% 28.36%

CSCO -200 $30 0.564 $1.4 5.01% 26.91%

JAVA 900 $5 0.315 $0.435 4.82% 35.19%

JAVA 1200 $6 0.315 $0.125 4.82% 35.67%

JAVA -900 $5 0.564 $0.615 5.01% 36.42%

JAVA -500 $6 0.564 $0.26 5.01% 35.94%

The simulation problem is to estimate the ES of this portfolio for a one-day time horizon. The scenario is the pair of
tomorrow’s stock prices. The model for P&L is that tomorrow, each option’s value is given by the Black-Scholes pricing

1250



Liu and Staum

formula evaluated at the implied volatility given in Table 1. Figure 1 plots portfolio loss versus scenario; the vertical axis
measures loss, the negative of P&L, so that the regions with the largest losses, which contribute to ES, are highest and most
visually prominent.

We consider two versions of this example, with different kinds of outer-level simulation. In one version, the outer-level
simulation is historical simulation, with a fixed set of one thousand scenarios, portrayed also in Figure 1. The other version
uses Monte Carlo simulation, specifying a bivariate lognormal distribution for the pair of stock prices. For details, see Liu,
Nelson, and Staum (2008).

Figure 1: Portfolio loss as a function of scenarios for tomorrow’s stock prices of Cisco (CSCO) and Sun Microsystems
(JAVA) and scatter plot of 1000 scenarios from historical simulation

When P&L is a known function of scenario, as in this example, there is no need for inner-level simulation. However, the
purpose of our procedure is to handle problems in which inner-level simulation is necessary, so in applying our procedure
to this example, we use inner-level simulation and not the Black-Scholes formula. An advantage of considering a simple
example in which P&L is a known function of scenario is that it is easy to compute ES and thus to evaluate the accuracy
of ES estimates.

3 STOCHASTIC KRIGING

Interpolation is one kind of simulation metamodeling (Barton and Meckesheimer 2006, Kleijnen 2008). The strategy of
metamodeling is to run computationally expensive simulations only of certain scenarios, the design points, then use the
simulation outputs to build a metamodel of the simulation model. In risk management simulation, the metamodel can be
thought of as an approximation to the unknown loss surface depicted in Figure 1. The metamodel can quickly provide an
estimate of P&L in a scenario even if there has been no inner-level simulation of that scenario.

Stochastic kriging (Ankenman, Nelson, and Staum 2008) is an interpolation-based metamodeling technique. It takes
account of the variance that arises from inner-level simulation. Therefore, the metamodel, when evaluated at a scenario, may
not equal the inner-level simulation estimate of that scenario’s P&L: stochastic kriging knows that the inner-level simulation
estimate may not be exactly correct. The significance of this property is that we can afford to use small sample sizes for
inner-level simulation of some scenarios, because stochastic kriging smooths out the resulting noise. The following summary
of stochastic kriging is based on Ankenman, Nelson, and Staum (2008).

We model the P&L Y(x) in a scenario x as Y(x) = β0 +M(x) where the scenario x = [x1,x2, . . . ,xd ]> is a vector of
risk factors, M is a stationary Gaussian random field with mean zero, and β0 represents the overall mean. Treating M as a
random field captures our uncertainty about P&L before running simulations. Ankenman, Nelson, and Staum (2008) call this
extrinsic uncertainty. We adopt a model frequently used in kriging, under which M is second-order stationary with a Gaussian
correlation function. This means Cov[M(x),M(x′)] = τ2 exp(−∑

d
j=1 θ j(x j−x′j)

2). That is, τ2 is the variance of M(x) for all
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x, and the correlation between M(x) and M(x′) depends only on x−x′, with the parameter vector θ = [θ1, . . . ,θd]> governing
the importance of each dimension.

In addition to extrinsic uncertainty, there is also the intrinsic uncertainty that is inherent in Monte Carlo simulation:
even after running an inner-level simulation for a scenario x, we remain uncertain about the P&L Y(x) in that scenario. The
model for simulation replication j at design point x is Y j(x) = β0 +M(x)+ ε j(x), where ε1(x),ε2(x), . . . are normal with
mean zero and variance V(x), and independent of each other and of M. The simulation output at xi after ni replications is
Ȳ (xi) := n−1

i ∑
ni
j=1 Y j(xi), which is an estimator of the P&L Y(xi). Let Ȳ := [Ȳ (x1), . . . , Ȳ (xk)]> represent the vector of

simulation outputs at all k design points, where ni inner-level simulation replications are run for scenario xi.
We use the metamodel to estimate P&L at K scenarios XXX1, . . . ,XXXK , referred to as prediction points. Before presenting the

stochastic kriging predictor that provides these estimates, we define some notation. The vector of P&L at the design points
is Yk := [Y(x1), . . . ,Y(xk)]

> and the vector of P&L at the prediction points is YK := [Y(XXX1), . . . ,Y(XXXK)]>. Let ΣΣΣ
kk denote

the covariance matrix of Yk, ΣΣΣ
kK denote the k×K covariance matrix of Yk with YK , and ΣΣΣ

Kk be its transpose. Because
simulations at different design points are independent, the covariance matrix of the intrinsic noise Ȳ −Yk is diagonal. It
equals VVV NNN−1 where VVV and NNN are diagonal matrices whose ith elements are respectively V(xi) and ni. Define ΣΣΣ :=VVV NNN−1 +ΣΣΣ

kk,
the sum of intrinsic and extrinsic covariance matrices for the design points. Let 111K and 111k be K×1 and k×1 vectors whose
elements are all one. The stochastic kriging prediction is the Bayesian posterior mean of YK given observation Ȳ ,

Ŷ
K

= β0111K +ΣΣΣ
Kk

ΣΣΣ
−1(Ȳ −β0111k). (2)

Ankenman, Nelson, and Staum (2008) also give the covariance matrix of the Bayesian posterior distribution of YK , which
we use in Section 4.3.

Some parameters in (2) are unknown in practice: β0, τ2, θ1, . . . , θd , and V(x1), . . . , V(xk). As detailed by Ankenman,
Nelson, and Staum (2008), after running simulations, we compute maximum likelihood estimates of β0, τ2, and θ , and we
estimate V(x1), . . . , V(xk) with sample variances. The output of the metamodel at XXX1, . . . ,XXXK is given by (2) with these
estimates plugged in. Let Ŷi represent the metamodel output at XXX i.

We use the metamodel as the basis for an estimator of ES. In the examples we consider here, we estimate ES at the
1− p level using a number K of scenarios such that K p is an integer. Our methods are applicable when K p is not an integer;
for details on this case, see Liu, Nelson, and Staum (2008). Our estimator of ES based on the kriging metamodel is

ÊS1−p =− 1
K p

K p

∑
i=1

Ŷ(i) (3)

where Ŷ(i) is the ith lowest value among the stochastic kriging predictions Ŷ1, . . . , ŶK at the prediction points; cf. (1).

4 PROCEDURE

In this section, we present our simulation procedure for estimating ES using stochastic kriging. We provide an outline in
Section 4.1 and supply the details in subsequent sections.

4.1 Outline of the Procedure

Our procedure uses stochastic kriging metamodels three times, so we split the description of the procedure into three stages.
The estimator in (3) uses only the third metamodel. The purpose of the first two metamodels is to guide the allocation of
computational resources during the simulation procedure: deciding where to add design points and how many simulation
replications to run at each design point.

The user must specify some parameters that govern the behavior of the procedure. The most important parameter is the
computational budget C, which is the total number of inner-level simulation replications that the procedure can use. In the
applications that we envision, inner-level simulation dominates the computational cost. Then, given the computing platform
available, the computational budget roughly determines the time that the simulation procedure takes, so the user can set the
computational budget to fill the time available before an answer is required. The other parameters are the target numbers k1
of Stage I design points and k2 of Stage II design points, the number n0 of replications to use at each design point during
Stages I and II, and the number M of times to sample from the posterior distribution of YK during Stage II. We provide
some guidance about choosing these parameters after outlining the procedure.
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In the outline, we refer to figures that illustrate the performance of our procedure. These figures are based on one run of
the procedure on the historical simulation example of Section 2, using a computational budget C of 2 million replications,
K = 1000 prediction points, a target of k1 = 50 Stage I design points and k2 = 30 Stage II design points, n0 = 5000 replications
per design point in Stages I and II, and sampling M = 300 times from the posterior distribution of P&L at the design points.
Figure 4.1 lists the procedure’s steps.

Stage I.
1. Generate K prediction points through outer-level simulation (historical or Monte Carlo). See Figure 1.

2. Given these prediction points, generate Stage I design points. See Section 4.2 and the left panel of
Figure 3.

3. Simulate n0 replications for each of the Stage I design points. Based on the simulation outputs, create
a stochastic kriging metamodel (right panel of Figure 3).

Stage II.
1. Sample a vector of P&L at each prediction point from its posterior distribution given the data generated

in Stage I simulation. Based on M such samples, select the prediction points that seem likeliest to be
tail scenarios, and add them to the set of design points. See Section 4.3 and Figure 4.

2. Simulate n0 replications for the new Stage II design points. Based on the simulation outputs, create a
stochastic kriging metamodel (Figure 4).

Stage III.
1. Allocate the remaining computational budget to all design points. See Section 4.4 and Figure 5.

2. Perform further simulation at the design points. Based on the simulation outputs, create a stochastic
kriging metamodel (Figure 5).

3. Compute the ES estimator in (3) using the final metamodel.

Figure 2: Outline of the procedure

The performance of the procedure, that is, the accuracy of the ES estimator it produces, depends on the target numbers
k1 and k2 of design points and the number n0 of replications at each design point in Stages I and II. It is not easy to optimize
the procedure’s performance by choosing these parameters. We find that, with a little experience in applying the procedure
to a class of problems, it is not too hard to choose parameters that result in good performance. Here we merely provide
some guidelines based on our experience:

• There should be enough Stage I design points that, if P&L were known for all these scenarios, interpolation could
provide a fairly accurate metamodel—sufficiently accurate to identify the region in which the tail scenarios lie. If
there are too few Stage I design points to do this, the procedure’s performance may be poor. The requisite number
of design points is smaller in lower dimension d and when P&L is a smoother function of the scenario.

• It can be beneficial to add at least K p design points in Stage II, which makes it possible for all K p tail scenarios
to become design points.

• In order to estimate the inner-level variance V well enough, the number n0 of replications must be at least 10, or
more if there is high kurtosis in inner-level sampling.

• We found that it worked well when (k1 + k2)n0, the number of replications planned for simulation during Stages I
and II, is a substantial fraction of the computational budget C, but less than half.

• In general, it is desirable to use a large number of design points, subject to two limitations. It may be counterproductive
to use so many design points that n0 needs to be too small. Also, if there are too many design points, the computer
time required to perform stochastic kriging may become significant, or one may encounter difficulties with memory
management because some matrices involved in stochastic kriging have size proportional to the square of the number
of design points. This effect depends on the computing environment.
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• As the number M of samples from the posterior distribution increases, the choice of Stage II design points converges
to the set of scenarios that are likeliest to be tail scenarios, according to stochastic kriging. It is desirable to let M
be large as long as this does not use up too much computer time, but M can also be much smaller than the values
we use without causing major problems.

4.2 Choosing Stage I Design Points

As is standard in simulation metamodeling, we begin with a space-filling experiment design; the goal is to make sure that
the prediction points are all near design points. In particular, we use a maximin Latin hypercube design (Santner, Williams,
and Notz 2003). The space that we want to fill with design points is the convex hull X of the prediction points XXX1, . . . ,XXXK .
Kriging should not be used for extrapolation (Kleijnen and van Beers 2004), so we include among the design points all
prediction points that fall on the boundary of the convex hull. Let kc be the number of such points, and let G be the smallest
d-dimensional box containing all the prediction points. In the absence of an algorithm for generating a space-filling design
inside the convex set X , we use a standard algorithm for generating a maximin Latin hypercube design in the box G
(Santner, Williams, and Notz 2003). We only use the points in this design that fall inside X , because the other points are
too far away from the design points.

We want to have k1− kc such points. The fraction of the points in the maximin Latin hypercube design falling in X
will be approximately the ratio of the volume of X to the volume of G . The volume of a convex hull can be calculated
efficiently (Barber, Dobkin, and Huhdanpaa 1996), so we can calculate this ratio f . Therefore we choose the number of
points in the maximin Latin hypercube design to be d(k1− kc)/ f e. However, the fraction of these points that actually falls
in X may not be exactly f . Consequently, the number of Stage I design points may not be exactly k1.

The left panel of Figure 3 shows the Stage I design points chosen on one run of the procedure. The number of design
points is 48, which is close to the planned number k1 = 50. The right panel of Figure 3 shows the absolute value of the
error Ŷ−Y of the stochastic kriging metamodel built in Stage I on this run of the procedure.

Figure 3: Design points chosen in Stage I and absolute value of the error of the Stage I metamodel on one run of the
procedure

4.3 Choosing Stage II Design Points

By comparing (1) and (3), we see that our goal in experiment design for metamodeling should be to identify the tail scenarios
and make the metamodel accurate in estimating their P&L. In Stage II, we attempt to identify the prediction points that are
tail scenarios. We then add these points to the set of design points, and perform inner-level simulation of these scenarios,
to learn more about their P&L.

After performing stochastic kriging in Stage I, we have the posterior distribution of YK , the vector of P&L for all
prediction points, which is multivariate normal (Ankenman, Nelson, and Staum 2008). Because we are uncertain about YK ,
we are uncertain about which prediction points are tail scenarios. Using a vector Ỹ sampled from the posterior distribution
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of YK , we could try to guess which scenarios belong to the tail. We would guess that scenario i belongs to the tail if Ỹi

is among the K p lowest components of Ỹ. However, for two reasons, this strategy of guessing would be likely to miss
tail scenarios. One reason is that, if we select only K p scenarios, we are unlikely to guess all the tail scenarios correctly.
The other reason is that a single sample from the posterior distribution of YK may be unrepresentative of that distribution.
Therefore, we proceed as follows in selecting up to k2 additional design points; we envision that k2 > K p, which improves
the chances of selecting tail scenarios. We sample M vectors Ỹ(1), . . . , Ỹ(M) independently from the posterior distribution of
YK . Let T ( j)

i be an indicator function that equals one if Ỹ
( j)
i is among the K p lowest components of Ỹ( j), that is, scenario i

is in the tail for the jth sample from the posterior distribution; otherwise, T ( j)
i = 0. Our estimated probability that scenario i

is a tail scenario is q̂i := ∑
M
j=1 T ( j)

i /M. We will use these estimated probabilities again in Stage III. In Stage II, we select the
scenarios with the k2 highest estimated probabilities, judging them likeliest to be among the tail scenarios, and make them
design points. However, if fewer than k2 scenarios have positive estimated probabilities, we only select these.

The left panel of Figure 4 shows the design points chosen on one run of the procedure. Although k2 = 30, only 17
design points were added in Stage II: the other scenarios’ values were never among the K p = 10 lowest in M = 300 samples
from the posterior distribution of YK . On this run of the procedure, all 10 tail scenarios were selected as design points,
which is a success for the procedure.

Most of the additional design points are near each other and near the tail scenarios, but two are in a different region
with a higher stock price for Cisco. Given the data available after Stage I, the procedure judges it possible that this other
region might contain one of the tail scenarios, so it allocates computational resources to exploring this region. Indeed, in
some risk management simulation problems, the tail scenarios may occupy multiple distant regions, and one tail scenario
can be isolated from the others. The portfolio that we used as an example in Liu, Nelson, and Staum (2008) has this type of
structure, which is more challenging for an interpolation-based procedure. Although our procedure works on that portfolio,
we use a different portfolio here so as to show the procedure’s performance on the type of problem for which it works best,
which is a common type.

The right panel of Figure 4 shows the absolute value of the error Ŷ−Y of the stochastic kriging metamodel built in
Stage II on this run of the procedure.

Figure 4: Design points chosen in Stages I and II and absolute value of the error of the Stage II metamodel on one run of
the procedure

4.4 Allocating the Remaining Computational Budget

In Stage III we allocate the remaining computational budget to inner-level simulation of the k design points chosen in Stages I
and II. (The target number of design points is k1 + k2, but because of the way we choose design points, k may not exactly
equal k1 + k2.) We choose an allocation with the aim of minimizing the posterior variance of the ES estimator in (3). In
our procedure, we consider a simplified version of that minimization problem by solving the optimization problem (4). A
derivation that explains why we consider this simplified optimization problem (4) appears in an expanded version of this
paper. The decision variable in problem (4) is the vector nnn specifying the number of replications at each design point.
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Because these numbers are large, we relax the integer constraint and allow them to be real numbers, without worrying about
rounding. Recall from Section 3 that VVV is a diagonal matrix with ith element V(xi), the intrinsic variance at the design point
xi, NNN is a diagonal matrix with ith element ni, and ΣΣΣ

kk and ΣΣΣ
kK are extrinsic covariance matrices. ES can be written as www>YK

where wi is −1/K p if scenario i is a tail scenario, and 0 otherwise. Define UUU := (ΣΣΣkk +VVV/n0)−1ΣΣΣ
kKwww. The optimization

problem is to

minimize UUU>VVV NNN−1UUU subject to nnn>111k = C, nnn≥ n0. (4)

In practice, we use maximum likelihood estimates of ΣΣΣ
kk and ΣΣΣ

kK and we use sample variances in estimating VVV , as discussed
in Section 3. Likewise, we substitute −q̂i/K p for wi, where q̂i is the estimated probability that scenario i is a tail scenario,
explained in Section 4.3. The optimization problem (4) can be solved by a variable pegging procedure (Bitran and Hax
1981; Bretthauer, Ross, and Shetty 1999):

Step 1. Initialize the iteration counter m = 1, the index set I(1) = {1, . . . ,k}, and the unallocated budget C(1) = C.
Step 2. For all i ∈ I(m), compute ni(m) = C(m)Ui

√
V(xi)/∑ j∈I(m)U j

√
V(x j).

Step 3. If ni(m)≥ n0 for all i ∈ I(m), the solution is nnn(m) and we are done. Otherwise, the set of indices of design points
that may yet receive more than n0 replications is I(m+1) = {i : ni(m) > n0}; all other design points will receive n0
replications: ni(m+1) = n0 for i /∈ I(m+1); and the unallocated budget is reduced toC(m+1) =C−(k−|I(m+1)|)n0.
Let m = m+1 and go to Step 2.

To get sample sizes from this procedure, we round the results to the nearest integers.
The left panel of Figure 5 shows the allocation on one run of the procedure. The computational budget is spent primarily

on design points that are tail scenarios or are near tail scenarios. Simulation replications run at design points near the tail
scenarios are not wasted: stochastic kriging uses them to improve the inference about the P&L in tail scenarios.

The right panel of Figure 5 shows the absolute value of the error Ŷ−Y of the stochastic kriging metamodel built in
Stage III on this run of the procedure. Comparing Figure 5 with Figure 4, we see that the error in estimating P&L of the
tail scenarios has shrunk dramatically because of Stage III, and is now reasonably small. The error is still large in some
regions, but this does not affect the quality of the ES estimation.

Figure 5: Number of simulation replications allocated to each design point and absolute value of the error of the Stage III
metamodel on one run of the procedure

5 NUMERICAL STUDY

To illustrate the performance of our procedure, we use the example described in Section 2. We present the results of simulation
experiments to compare our procedure, which we call the “SK procedure,” to two other procedures. One is the procedure,
based on methods of statistical ranking and selection, that we proposed in Liu, Nelson, and Staum (2008), which we call
the “RS procedure.” The other is a standard procedure, involving an equal allocation of inner-level simulation replications
to each scenario. It is described in detail in Liu, Nelson, and Staum (2008).
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5.1 Historical Simulation Example

In this section we consider the version of the example that uses historical simulation in the outer level. We first estimate
ES at the 1− p = 99% level. For the SK procedure we target k1 = 50 design points in Stage I and k2 = 30 design points
in Stage II, use M = 300 samples from the posterior distribution of P&L, and take sample sizes of n0 = 5000 in Stages I
and II. For the RS procedure, we use sample sizes that start at n0 = 30 in the first stage and grow by R = 1.1 per stage; see
Liu, Nelson, and Staum (2008). We run 1000 macro-replications of the simulation experiments. The left panel of Figure 6
shows the resulting estimate of the relative root mean squared error (RRMSE) of the three procedures’ ES estimators, with
error bars representing 95% confidence intervals for RRMSE.

Figure 6: Accuracy in estimating expected shortfall for the historical simulation example at the 99% level (left) and 95%
level (right)

From the left panel of Figure 6, we see that both the SK and RS procedures are far more accurate than the standard
procedure for this example. For small computational budgets, the SK procedure is much more accurate than the RS procedure.
It is possible to fit a straight line passing through the four error bars that describe the performance of the SK procedure, with
slope roughly -0.5. The RMSE of ordinary Monte Carlo simulation procedures converges as O(C−0.5) as the computational
budget grows, but the convergence rate can be less favorable for two-level simulation procedures (Lee 1998; Lan, Nelson,
and Staum 2008). We have observed this behavior only over a moderate range of budgets and do not know under what
conditions, if any, the SK procedure has this behavior asymptotically.

Next we estimate the ES at the 1− p = 95% level. The parameters of RS procedure are the same as before. Because
K p = 50 is now much larger than in the previous experiment, in which it was 10, we adjust the parameters of the SK
procedure. We still target k1 = 50 design points in Stage I, but we allow for k2 = 60 > K p additional design points in
Stage II. We also increase the number M of samples from the posterior distribution of P&L to 600 because it is more difficult
to identify the tail scenarios in this simulation problem. We still use sample sizes of n0 = 5000 in Stages I and II when
the budget C is at least 1 million. However, (k1 + k2)5000 > 0.5 million, so when C = 0.5 million, we choose n0 = 2000
instead. We run 1000 macro-replications of the simulation experiments, and show the resulting estimates of the procedures’
RRMSE in the right panel of Figure 6.

Comparing the left and right panels of Figure 6, we see that the advantage of the SK procedure over the RS procedure
is greater when estimating ES0.95 than ES0.99 in this example. This happens because there are more prediction points whose
P&L is around the 5th percentile of P&L than around the 1st percentile. The RS procedure tries to “screen out” as many
non-tail scenarios as possible, so as to devote the remaining computational budget primarily to tail scenarios (Liu, Nelson,
and Staum 2008). When there are many prediction points whose portfolio losses are around the pth percentile of P&L, it is
hard to screen them out, so the RS procedure tends to use a lot of simulation replications in attempting to do so. Because it
does not use that data in estimating ES, fewer simulation replications can be allocated to estimating ES, leading to larger error
(Liu, Nelson, and Staum 2008). The SK procedure does not suffer from this shortcoming: all of the simulation replications
contribute to the ES estimator. The curse of two-level risk management simulation is a bias that arises because, when we
use simulation output to guess which scenarios entail large losses, we are likely to choose a scenario whose estimated loss
is larger than its true loss (Lee 1998; Lan, Nelson, and Staum 2007; Gordy and Juneja 2008). Stochastic kriging mitigates
this problem by smoothing the estimated P&L across neighboring scenarios.
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5.2 Example with Outer-Level Monte Carlo Simulation

In this section we consider the version of the example that uses Monte Carlo simulation in the outer level. We investigate
the effect of changing the number K of scenarios sampled at the outer level. In a two-level simulation with Monte Carlo at
the outer level, K must grow for the simulation estimator to converge to the true value; however, if K is too large relative
to the computational budget C, the estimator is poor due to excessive inner-level noise (Lee 1998; Gordy and Juneja 2008;
Lan, Nelson, and Staum 2008).

Figure 7 shows the results of 1000 macro-replications of a simulation experiment to estimate ES at the 1− p = 99%
level. The computational budget C is 2 million in each of these experiments. The parameters of the RS procedure are the
same as before. For the SK procedure, once again we target k1 = 50 design points in Stage I and take sample sizes of
n0 = 5000 in Stages I and II. We allow for k2 = 40 design points in Stage II because 40 exceeds K p even for the largest
number K of scenarios we consider here, K = 3000. Compared to the version of this simulation with historical simulation in
the outer level, it is more difficult to identify the tail scenarios, so we increase the number M of samples from the posterior
distribution of P&L to 400.

Figure 7: Accuracy in estimating expected shortfall at the 99% level for the two-level simulation example

In Figure 7, we see that, given the budget C = 2 million, the best choice of K for the standard procedure and the RS
procedure is around K = 2000, and they become much less accurate when the number of scenarios increases to K = 3000.
When K is small, the empirical distribution of the K scenarios is far from the true outer-level distribution; when K is large,
there is a lot of inner-level noise in estimating each scenario’s P&L, resulting in large bias in estimating ES (Lan, Nelson,
and Staum 2008; Lan 2009). It is challenging to choose K well, and the procedure’s performance depends greatly on this
choice (Lan 2009). By contrast, in the SK procedure, we can increase the number of K outer-level scenarios, i.e. prediction
points, without increasing the number k of design points. Therefore the inner-level sample size for each design point can
stay the same as we increase K. As Figure 7 illustrates, the RRMSE of the SK procedure’s ES estimator decreases in K.
Arguments in Oakley and O’Hagan (2002) suggest that the RRMSE converges to a positive value as K goes to infinity with
computational budget C fixed.

We do not explore this effect in Figure 7 because, when K is very large, our MATLAB implementation of stochastic
kriging encounters memory constraints on a PC with 3.4 GB of RAM. When K is very large, the RS and SK procedures
have significant space and time requirements for operations other than inner-level simulation. These have to do, respectively,
with comparing many scenarios to each other, and with operations involving large matrices. Because these effects depend
greatly on the computing environment, we do not explore them here, instead treating inner-level simulation replications as
the primary computational cost.

This experiment suggests two advantages of the SK procedure over the standard and RS procedures when using outer-level
Monte Carlo simulation. The user need not worry about finding an optimal, moderate number K of outer-level scenarios,
where the optimal K varies greatly from one simulation problem to another (Lan 2009). Instead, one can always use the
largest K such that stochastic kriging does not impose an excessive computational burden. Also, we believe that, as in
Figure 7, for many simulation problems, the SK procedure with large K performs better than the standard and RS procedures
with optimal K.
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6 CONCLUSIONS AND FUTURE RESEARCH

Stochastic kriging enables better estimation of expected shortfall. Our simulation procedure is well suited to dealing with
small computational budgets. It works especially well compared to other procedures when the spatial structure of the
simulation problem is such that most tail scenarios lie near other scenarios and P&L is a smooth function of the scenario,
but it also works even when the problem does not have these properties. Another advantage of our procedure over its
competitors is that it makes it far easier for the user to choose the number of outer-level Monte Carlo simulation replications.
There are several opportunities for further investigation and improvement of risk management simulation procedures based
on stochastic kriging.

We used two-dimensional examples to illustrate our method. It remains to be seen how well it performs for higher-
dimensional examples. Higher-dimensional problems are more challenging for kriging methods: it is more difficult to find
a good experiment design, and the error of the metamodel tends to increase. Dimension-reduction methods, such as those
proposed by Frye (1998) and Shaw (1998), should help. However, kriging methods are capable of handling significantly
higher-dimensional examples.

When the number of prediction points is very large, stochastic kriging may take up a great deal of memory and CPU
time. This happens when stochastic kriging considers the influence of simulation at all design points on predictions at
each prediction point, or the posterior covariance between P&L at every pair of prediction points. Using spatial correlation
functions that imply zero correlation between sufficiently distant points (Santner, Williams, and Notz 2003) reduces the
number of pairs that must be considered and should help to make it feasible to use more prediction points.

In our study, we used the simplest version of stochastic kriging, which builds a metamodel purely by interpolation.
However, stochastic kriging can incorporate regression methods in simulation metamodeling (Barton and Meckesheimer
2006, Kleijnen 2008). Many portfolios have structure that regression can capture (e.g. an increasing trend in P&L with the
level of a global equity index), in which case regression will lead to lower error in metamodeling.

Our procedure uses a simple first-stage experiment design, which could be improved. In some simulation problems,
there would be too many prediction points on the convex hull. A modification of the experiment design would find a larger
convex polytope, with fewer vertices, still containing all the prediction points.

The second-stage experiment design worked well in the problems we studied, in which there were relatively few tail
scenarios. This allowed us to aim to include all the tail scenarios among the design points and to ignore the spatial relationships
among the scenarios that seemed likely to be tail scenarios. When there are many tail scenarios, it might be better to create
a second-stage experiment design with a different goal: to aim to have some design point near every scenario that is likely
to be a tail scenario.

ACKNOWLEDGMENTS

This paper is based upon work supported by the National Science Foundation under Grant No. DMI-0555485. The authors
are grateful for the assistance of Hai Lan, discussions with Barry Nelson, and comments from Lisa Goldberg and Michael
Hayes.

REFERENCES

Acerbi, C., and D. Tasche. 2002. On the coherence of expected shortfall. Journal of Banking and Finance 26 (7): 1487–1503.
Ankenman, B., B. L. Nelson, and J. Staum. 2008. Stochastic kriging for simulation metamodeling. Operations Research.

Forthcoming.
Barber, C. B., D. P. Dobkin, and H. T. Huhdanpaa. 1996. The quickhull algorithm for convex hulls. ACM Transactions on

Mathematical Software 22 (4): 469–483.
Barton, R. R., and M. Meckesheimer. 2006. Metamodel-based simulation optimization. In Handbooks in Operations Research

and Management Science: Simulation, ed. S. G. Henderson and B. L. Nelson, Chapter 19. New York: Elsevier.
Bitran, G. R., and A. C. Hax. 1981. Disaggregation and resource allocation using convex knapsack problems with bounded

variables. Management Science 27:431–441.
Bretthauer, K. M., A. Ross, and B. Shetty. 1999. Nonlinear integer programming for optimal allocation in stratified sampling.

European Journal of Operational Research 116:667–680.
Frye, J. 1998, November. Monte Carlo by day. Risk 11:66–71.
Glasserman, P. 2004. Monte Carlo methods in financial engineering. New York: Springer-Verlag.

1259



Liu and Staum

Gordy, M. B., and S. Juneja. 2008, April. Nested simulation in portfolio risk measurement. Finance and Economics Discussion
Series 2008-21, Federal Reserve Board.

Kleijnen, J. P. C. 2008. Design and analysis of simulation experiments. New York: Springer-Verlag.
Kleijnen, J. P. C., and W. C. M. van Beers. 2004. Application-driven sequential designs for simulation experiments: Kriging

metamodeling. Journal of the Operational Research Society 55 (8): 876–883.
Lan, H. 2009. Tuning the parameters of a two-level simulation procedure with screening. Working paper, Dept. of IEMS,

Northwestern University.
Lan, H., B. L. Nelson, and J. Staum. 2007. Two-level simulations for risk management. In Proceedings of the 2007 INFORMS

Simulation Society Research Workshop, ed. S. Chick, C.-H. Chen, S. G. Henderson, and E. Yücesan, 102–107.
Fontainebleau, France: INSEAD. Available via http://www.informs-cs.org/2007informs-csworkshop/
23.pdf.

Lan, H., B. L. Nelson, and J. Staum. 2008. Confidence interval procedures for expected shortfall via two-level simulation.
Working paper 08-02, Dept. of IEMS, Northwestern University.

Lee, S.-H. 1998. Monte Carlo computation of conditional expectation quantiles. Ph. D. thesis, Stanford University.
Liu, M., B. L. Nelson, and J. Staum. 2008. An efficient simulation procedure for point estimation of expected shortfall.

Working paper 08-03, Dept. of IEMS, Northwestern University.
Oakley, J. 2004. Estimating percentiles of uncertain computer code outputs. Applied Statistics 53:83–93.
Oakley, J., and A. O’Hagan. 2002. Bayesian inference for the uncertainty distribution of computer model outputs.

Biometrika 89(4):769–784.
Santner, T. J., B. J. Williams, and W. I. Notz. 2003. Design and analysis of computer experiments. New York: Springer-Verlag.
Shaw, J. 1998. Beyond VAR and stress testing. In Monte Carlo: Methodologies and Applications for Pricing and Risk

Management, ed. B. Dupire, 231–244. London: Risk Books.

AUTHOR BIOGRAPHIES

MING LIU is a Ph. D. student in the Department of Industrial Engineering and Management Sciences at Northwestern University.
His e-mail and web addresses are<mingliu2010@u.northwestern.edu> andusers.iems.northwestern.edu/
˜mingl.

JEREMY STAUM is Associate Professor of Industrial Engineering and Management Sciences and holds the Pentair-Nugent
Chair at Northwestern University. He is a fellow of the FDIC Center for Financial Research. He coordinated the Risk Analysis
track of the 2007 Winter Simulation Conference and serves as department editor for financial engineering at IIE Transactions
and as an associate editor at Operations Research. His website is <users.iems.northwestern.edu/˜staum>.

1260


