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ABSTRACT 

This paper presents the study and expansion of a dynamic simulation model for aging and death (Hargrove 1998), which 
contemplates the representation of physiological capacity and the generation of events of risk in the life of an individual. The 
study identified the most influential parameters in the results of the simulations and a health impact and recovery module was 
included. The simulation model incorporates a fuzzy module to treat uncertainty. The expansion conducted allowed adapting 
the results of the simulation to real mortality curves. The reproduction of mortality curves allowed the study of populations 
with similar characteristics as well as the factors that could influence their development. This is interesting principally 
because it is possible to calibrate parameters with risk values for diseases that have high associated costs for both public and 
private health plans.   

1 INTRODUCTION 

The system modeled is characterized by its complexity. The greatest difficulties are related to the events and their effects 
over time. For this reason, this project opted to use the precepts of continuous dynamic modeling. According to Thesen and 
Travis (1989), the finality of Continuous Dynamic Modeling is to capture gradual changes that occur over time caused by the 
controls, such as the gradual change that occurs when turning the steering wheel of a car. Studies in the health field with 
dynamic modeling have been conducted for applications such as: the dynamic of canine rabies (Ortega, Sallum and Massad 
2000), the dynamism of HIV (Jafelice 2003), the functioning of the central nervous system (Nebot et al. 2003), smoking 
(Ahmad 2005; Ahmad and Franz 2008), aging (Penna 1995), etc. 
 In this work, the principal process modeled is that of aging. Various theories are used to explain aging, and can be 
classified in two large groups: (a) those based on progreammed events and (b) those based on random events. Nevertheless, 
even though they explore various factors involved in this process, these theories are not considered either totally valid or 
invalid (Hayflick 1997). 
 One consolidated equation is that described by the Gompertz’ Theory (Gompertz 1825), which predicts that a mortality 
rate grows exponentially after 30 years of age. In equation (1), which is Gompertz’ equation, mR  represents the rate of 
mortality, 0R  the initial rate of mortality, α  the rate of aging and t the time. 
 

t
m eRR α

0=      (1) 
 
 Over the years, it was realized that there was a need to readapt this idea to represent accidental risks to life. Thus the 
term  A of equation (2) comes to exercise this role. 
 

AeRR t
m += α

0      (2) 
 
 According to Satuffer (2007), while there are many theories that seek to explain aging, there are not  many computer 
simulation models that seek to do so. Computer simulation models developed for this purpose enables studies regarding the 
factors associated to life evolution of the population. A widely known computational simulation model is the Penna model 
(1995), based on the theory of mutations (one of the theories of programmed events). Also based on the theory of mutations 
are the works of Stauffer and Radomski (2001), Maksymowicz et al. (1999), etc. 

2078978-1-4244-5771-7/09/$26.00 ©2009 IEEE



Schwaab and Freitas Filho 
 

 The support model for the development of this study is that proposed by Hargrove (1998), created to replicate the 
behavior of an individual, from birth until death. For this reason the author delineated the physiological capacity of an 
individual and the generation of random events, responsible for the occurrence of diseases and accidents. The complementary 
work proposed here expand his model, allowing the inclusion of improvements regarding the treatment of uncertainty and 
better match the reality with the inclusion of a module of health impact and recovery. The model expanded in this study can 
be classified as belonging to the theories based on random events because the determination of the occurrence and intensity 
of the risk are random. 
 The preliminary results are encouraging. Once calibrated, the model allows replicating the behavior of a given 
population being studied and establishing parameters for it, to simulate the influence of specific variables. In the case of this 
research, the objective of the final model is to reproduce real curves of mortality, that is, given the frequency distribution of 
total deaths by age of a real population, is expected to achieve similar results by running the model. The following steps were 
investigated: 
 

• Changes and expansion in the structure of the base model by using a fuzzy system to determine of the speed of 
recovery of the individuals considering their situations of risk.  

• Identification of the principal parameters and their influence on the behavior of the model. 
• Simulation of the temporal changes over time of morbimortality of groups of individuals. 

2 METHODOLOGY 

The methodology used was that of Systems Dynamics (Forrester 1961), allowing development of a continuous dynamic 
simulation model. This type of modeling allows better understanding of systems considered complex, which involve the 
relationship of a large number of variables over time (Kettenis 1982). The main diagrams which give support to this metho-
dology are the stock-flow diagram and the causal-loop diagram (Forrester, 1961). The Flow Chart is the graphic 
representation of the simulation model and the principal tool for its development. In it, building blocks provide an 
understanding of the state variables (by means of stocks), of the transformations that took place in the variables (by means of 
flows) and of auxiliary elements, known as converters. In this work we use the Stella simulation environment (Stella isee 
Systems) to construct the Flow Chart. The causal-loop diagram shows the causal relationship between the elements of a sys-
tem providing the identification of the type of relation (positive or negative) and the formation of feedback loops. On a posi-
tive causal relationship the changes in an element causes the same type of variation in the consequent element, for example, 
an increase in an element takes to an increase in the consequent element. In the negative case, if there is a decrease of one, the 
resulting factor will increase. 
  Hargrove’s work, the suport model of this study, does not include a detailed study of the model and of the influence of 
the parameters on the final result. For this reason, more detailed studies of the basic model are justified as well as a proposal 
to expand that work in order to extend its applications. To understand and identify the parameters that most influence the 
behavior of the model, a preliminary investigative study was conducted with a complete factorial experiment design (2k). The 
parameters investigated were: growth rate, reserve rate, senescence rate, age independent risks, age dependent factors and 
risk factor. A total of sixty-four experiments were conducted (26 combinations). Each combination was replicated 1,000 
times, representing the behavior of a population of one thousand individuals.  
 The preparation of the fuzzy logic model (Zadeh 1965) follows the steps of a fuzzy inference system in which the inputs 
are the data of the problem that should be addressed. These inputs undergo a process of fuzzyfication, which is a mapping of 
the membership function of the fuzzy sets defined. After the fuzzyfication, the amounts pass through the inference machine, 
which activates all the rules in parallel. Each rule generates a fuzzy set as an output, and at the end, all the outputs are added 
to form the resulting fuzzy set. Finally, the resulting set passes through defuzzification and become a numeric value.  

3 THE BASE MODEL 

The Hargrove model (Hargrove 1998), represented in Figure 1, offers a simulation of events that can occur during the life of 
an individual. The generation of events is conditioned on characteristics intrinsic to the individual and his or her environment. 
In addition, both the generation and the intensity of a risk event  are of a stochastic nature. According to Hargrove (1998), the 
model incorporates stochastic characteristics because it is not known exactly when a risk situation will occur as well as the 
state of health of the individual, at that time, to confront the risk. 
 The structure of Figure 1 is composed mostly of converters that conduct the calculations that determine the future of an 
individual at each instant of time (dt). Each simulation produces events for an individual, given that n replications of a 
simulation represent the behavior of n individuals with similar characteristics. 
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 The model considers that the characteristics of a person, with normal aging, are dependent on three parameters: growth 
rate, reserve rate, and senescence rate. These three factors define the Reserve, Aging and Function functions, which are 
responsible for the representation of some aspects of functional capacity. The Function element can be understood as a 
quantum of energy that everyone has until death. The Reserve is related to the functional capacity that increases until the 
adult phase and gradually decreases until the end of life. Aging is opposed to the Function and to Reserve, being a vector that 
causes the total capacity to decrease. The intensity of each element is calibrated by means of the parameters. 
 The model also contemplates the occurrence of accidental problems during a life (through the Age Independent Risk 
parameter) as well as the number of problems that can occur with age (through the Age Dependent Factors parameter, such as 
cardiovascular diseases). Based on these two parameters and on the Relative Capacity (resulting from the Total Capacity) of 
the subject, the occurrence of a risk event is determined, by the Monte Carlo stochastic method, which is executed at each 
step of the simulation. With this occurrence, the Risk Level will determine the intensity of the event. This value will be 
compared to a Survival Limit. If this limit is higher than the intensity of the event, the subject will survive the episode.   
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Figure 1: Structure of the Basic Model. Adapted from Hargrove (1998) 
  
 Figure 2 indicates that the function grows until the adult phase (approximately 25 years of age) and after this the value 
remains constant, given that this behavior corresponds to the activities of daily life responsible for our autonomy. 
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Figure 2: Behavior of the Function of an individual during a lifespan considering three different growth rates 
 
 Meanwhile, the Reserve (Figure 3) increases until approximately 15 years of age, and then decreases until the end of life. 
It represents the extra capacity that each organ has to resist greater than normal stresses (accidents, infections). 
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Figure 3: Behavior of the Reserve of an individual during his or her lifespan considering three different reserve rates 
 
Aging begins at 25 years and increases over time. Although this seems precocious, it is a reality in terms of performance and 
is caused by cardiovascular aging (Figure 4). 
The controllable factors are determined in the following manner: 

 
• Growth Rate: specifies the speed of an individual’s growth function. After finding the maximum value, the function 

remains constant for the rest of an individual’s life. Considering F the Function, GR the Growth Rate and T the time 
of simulation, the Function is calculated with equation (2). 
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Figure 4: Behavior of the Aging of an individual considering three different senescence rates 
 

)))exp(1(40(40 TGRF ×−−×+=       (2) 
 
 In equation (1) it can be seen that the minimum value of the Function is forty. With the increase of time, the result of the 
calculation of the exponential approximates to zero, which, at the maximum, causes the amount of F to approximate to 80. In 
Figure 2, it is possible to note that the greater the Growth Rate, the faster the maximum point is found.  

 
• Reserve Rate: determines the speed of growth of the Reserve Function. With R the Reserve and RR the reserve rate, 

the function between these terms and the time is demonstrated by equation  (3). 
 

))04.0exp(1(10))exp(1(1010 TTRRR ×−−×−×−−×+=        (3) 
 
 Figure 3 presents the reserve function from three different reserve rates. The higher the rate, the faster the growth of the 
function. Note that this function both grows and declines. The decline begins at the beginning of the adult phase.  

 
• Senescence Rate: influences the Aging function. Senescence is a process that occurs after an individual’s organism 

has reached a maximum stage of development, at around 25 years of age. The higher the Senescence Rate, the faster 
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the individual ages. This function is expressed by equation (4). Consider S the Senescence and SR the Senescence 
Rate. 

 





<
≥−×−−×

=
25,0

25))),25(exp(1(90
Tse

TseTSR
S       (4) 

 
 Figure 4 shows the application of three different senescence rates in equation (4). Note, both equation (4) and figure 4 
indicate that aging begins at twenty five years of age and is more accentuated for higher rates.  
 

• Age Independent Risk: is a value that represents any other type of risk that an individual may suffer,  which is not 
related to his or her state of health, such as, the risk of accidents.  

• Age Dependent Factor: represents the vulnerability to unexpected risks that can take place with age, such as, for 
example, exposure to pathogenic microorganisms, whose impact is greater in older people (Hargrove 1998). 

• Risk Factor: aggregate values of Geller-Gesner survival tables (Hall and Zwemer 1979) which are calculated 
according to the health conditions of the public being studied. The calculation is thus realized in accordance, for 
example, with the presence of diseases (diabetes, high cholesterol, etc) and living habits (exercise, sedentariness, 
etc).  

 
 The Total Capacity is a characteristic determined by Function, by Reserve and by Aging. The Function and the Reserve 
add value to the Total Capacity. Senescence, in turn, causes the capacity of an individual to decrease. This can be observed 
by equation (5), where TC is the Total Capacity, F is the Function, R is the Reserve, S Senescence and T time. 
 

))01.0exp(1(10)1.0( TTSRFTC ×−−×−×−−+=        (5) 
 
 In equation (5), in addition to Senescence, there are other adjustments that reduce Total Capacity. These adjustments are 
based on the individual’s age. 
 The Relative Capacity, based on the Total Capacity, is responsible for representing the effective capacity with which an 
individual will confront situations of risk, such as immunity, for example. In equation  (6), consider RC the Relative Capacity 
and TC  the Total Capacity. 
 

100
67.87

×=
TCRC       (6) 

 
 The Survival Limit represents the existing force at a given moment to support life in a situation of risk. It means saying 
that if the occurrence of a risk had a value greater than the Survival Limit, the individual would not survive. In equation  (7) 
note that the Survival Limit represents 45% of the total of the relative capacity. Consider SL to be the survival limit and RC 
the Relative Capacity. 
 

RCSL ×= 45.0       (7) 
 
 The influence of three factors is necessary for an event that is a risk to health to take place: the relative capacity of the 
individual, the age independent risks and the age dependent factors. This can be observed in equation  (8), which executes a 
Monte Carlos method. Consider TAC (Time and Chance) the decision of the occurrence of a Risk event, AIR the Age 
Independent Risks and ADF the Age Dependent Factors.  
 

))()2((
RC

TADFAIRMonteCarloTAC ×+×
=         (8) 

 
 Equation (8) indicates that the weight of the age dependent factors increases with the years. Meanwhile, the age 
independent risk is constant throughout a lifetime. Since the relative capacity decreases with time, the chances of events of 
risk increase. Figure 5 presents the relative capacity of an individual who has a Growth Rate (GR) and Reserve Rate (RR) 
equal to 0.14; and Senescence Rate equal to 0.018. 
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Figure 5: Relative Capacity of an individual 
 
 The Risk Level is the value resulting from the perspective of how much the occurrence of a risk event will mean for a 
person’s health. Its significance will depend on the relative capacity and on the risk factor. Death occurs if the risk level is 
greater than the survival limit. The risk level is determined with equation (9). Consider RL the risk, RF the risk factor and RC 
the relative capacity. The risk level is calculated only if the occurrence of a risk event is programmed. If there is an 
occurrence, the value of the level will be random.  
 





=
=×

=
0,0

1),,0(
TACif

TACifRCRFRandom
RL        (9) 

 

4 THE DESIGN OF  THE EXPERIMENTS 

Table 1 shows the influence that each one of the factors causes in the average life time and in the mortality rate of the 
population until 100 years of age. It is possible to observe that at the lower level of the ADF (Age Dependent Factors), the 
number of people who die before the age of 100 is reduced and the average life time is greater. Meanwhile, in the lower level 
of AIR (Age Independent Risk) the average life time increases and deaths decrease. In the upper level of the GR the life 
expectancy increases, but the number of total deaths nearly does not change. In the case of the RR, there were no significant 
changes for both the average life time and the average mortality, for the levels tested. 
  

Table 1: The  influence of factors in the mortality of a population. 
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 The experiments conducted indicate that the model was more sensitive to the parameters: Age Independent Risk, Risk 
Factor and Senescence Rate. In addition, the first two have a considerable interaction. The Reserve Rate, in turn, was the least 
significant factor in the results. 
 

5 THE  PROPOSAL FOR EXPANSION OF  THE MODEL 

The study conducted allowed identifying some issues that can be improved. The identification of these considerations was 
conducted with the assistance of specialists in the field.  
 The risk factor initially acted with the same intensity during a person’s entire life. This is to say that upon birth, a person 
already has a risk factor equal to that it would be at the end of his or her life. With the change implemented, this amount acts 
in a distinct form for different age ranges, being more intense after the moment in which it is known that the person has a 
certain health problem. This modification was principally implemented by the fact that the risk factor represented a damage 
that is formed, above all, by living habits. This fact thus allows this amount to increase or decrease over time. 
 Another question considered is that in the occurrence of a risk event, the total capacity of an individual does not suffer. 
That is, if a individual suffers an accident to his or her health there is no depreciation for this event. This should not be the 
case, because given that it could lead to death, a risk event could generate a consequence. To change this condition, a new 
module was implemented that calculates the impact of the risk event, but that also allows recovery from a health problem. In 
this way, the model abbreviates the life at the time when a risk situation occurs and allows for recovery, observing the 
chances for survival and the current capacity for dealing with a risk situation.  
 The impact suffered can have a variety of interpretations such as consequences left by the risk event, which may be 
reduced over time, physical conditions that are momentarily affected, or even non-apparent conditions. Therefore, there are 
various types of interpretation of  an impact. In this simulation model, the impact does not necessarily result in the 
deterioration of the physical condition or apparent physical state of the individual, but in how much his or her survival limit 
was affected.  
 

Survival Limit

Risk Level

Health Impact

Relative Capacity

Recovery

Survival Chance

Recovery ability

 
 

Figure 6: Module for impact and recovery 
 
 Figure 6 presents the module that calculates the impact and the recovery from a health problem. The Health Impact  (HI) 
depends on the survival limit and on the risk level and is calculated with equation (10). 
 





 >>>

=
unless

SLRLandSLandRLif
SL
RL

HI
,0

)00(,        (10) 

 
 Equation (10) indicates that the impact represents the affected magnitude of the survival limit. This amount influences 
the relative capacity, the estimate for which is altered until there is improvement in the individual’s health. 
 The recovery module was prepared with the assistance of specialists in the healthcare field. Given that there are no exact 
values for this representation, it was decided to use a fuzzy system, considering the age of the individual and the size of the 
impact. The recovery ability depends mainly on the age of the individual, which leads us to conclude that the higher the age, 
the lower the recovery ability. This chance for recovery is mentioned by  Hayflick (1997), who explains that the recovery 
from an event, such as a fall, is different in young people and the elderly, given that it is slower for the latter.  Concerning 
recovery, Finkelstein (2006) clarifies that the quality of the reduction of the accumualted damage during a lifetime decreases 
with increased age. Based on these ideas, the fuzzy system represents the ability to improve, that is, it determines the speed 
with which improvement can occur. This amount is modeled through a base of rules and fuzzy reasoning. 
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 The difficulty in finding mathematical functions capable of describing the variables involved is raised by Ortega, Barros 
and Massad (2003), who explains that for this reason the majority of the models are described through the experience of a 
specialist in the field.  

5.1 Implementation of the Fuzzy Module 

Artificial Intelligence techniques represent a suitable form of representation of knowledge. Fuzzy logic applications allow 
conducting inference in domains of uncertainty that may be characterized by imprecision and vagueness. For this reason, this 
study uses fuzzy modeling to handle one of the points of uncertainty for a model of senescence, that is the recovery ability of 
an individual facing a situation of risk. 
 The fuzzy inference module is constructed to verify the individual’s speed of recovery. Because there is no knowledge 
about the type of problem the individual suffered, a generic means of representation can be considered. It is known that an 
individual, after surviving a risk situation, undergoes a period of recuperation that can vary from slow to fast. Or there may 
be no recovery. Thus, to realize this type of inference a modeling was conducted with the knowledge of healthcare 
specialists.  
 It was considered that the recovery depends on how the health was affected and the individual’s age, and is thus not 
equal for everyone. There are no known mathematical functions capable of precisely determining the time needed for 
recovery. It is known, however, that healthcare specialists, through practical knowledge, have the ability to make qualitative 
determinations of this recuperation. This being the case, fuzzy modeling was chosen, given that the problem is characterized 
by haziness and imprecision. The proposal is for a system with a rule base that employs approximate reasoning in the 
determination of the speed of recovery given the occurrence of an impact to health. This will allow determining if the 
individual would have a fast or slow recovery.  
 The fuzzy system is formed by two inputs, age and impact suffered, and by an output that is recovery. During the 
simulation, these values are dynamically altered and the recuperation is then determined. Thus, three membership functions 
are created, two for the inputs and one for an output, with each one of them composed of four sets.  
 The age is determined for an interval of 0-100 years and is composed by the sets: child, youth, adult and elderly. Each 
one of these sets was prepared as a function of trapezoidal pertinence. The function of trapezoidal membership was chosen 
for this representation because it is simple and represents ranges of values that are approximately known. Figure 7 shows the 
sets defined by age.  

  

 
 

Figure 7: Membership function by age 
 
 To represent the impact, the membership function resulting from the product of the two sigmoid functions for the 
moderate and average sets was adopted; as well as the sigmoid for the weak and strong sets. This is because it involves an 
input with greater imprecision. It can be said that this is a case in which haziness predominates, or that is, there are no known 
values that allow reaching an approximation with a better defined range of values. The impact can be: weak, moderate, 
medium and strong. The impact can vary from 0 -1. The membership function for this input is presented in Figure 8.  
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Figure 8: Membership function for the impact 
 
 To represent the recovery output the sigmoid function and the product of two sigmoid functions was also elected. This 
output can be classified as slow, moderate, medium or fast. The amounts that the system  can assume vary from 0 -1. Figure 9 
represents the definition of the sets of this output. 

   

 
 

Figure 9: Membership function for the recovery from a heath problem 
 

 The construction of the rule base considered the fact that the vital function of the individual decreased with the passing 
of years, which, consequently caused the ability to recover to decrease, making the recovery process increasingly slower. The 
rule base used for the inference is presented in Table 2.  
 

Table 2: Rule Base. 
 

1. If (age is child) and (impact is strong) then (recovery is moderate) 
2. If (age is child) and (impact is medium) then (recovery is medium) 
3. If (age is child) and (impact is moderate) then (recovery is fast) 
4. If (age is child) and (impact is weak) then (recovery is fast) 
5. If (age is youth) and (impact is strong) then (recovery is medium) 
6. If (age is youth) and (impact is medium) then (recovery is medium) 
7. If (age is youth) and (impact is moderate) then (recovery is fast) 
8. If (age is youth) and (impact is weak) then (recovery is fast) 
9. If (age is adult) and (impact is strong) then (recovery is moderate) 
10.If (age is adult) and (impact is medium) then (recovery is moderate) 
11.If (age is adult) and (impact is moderate) then (recovery is medium) 
12.If (age is adult) and (impact is weak) then (recovery is medium) 
13.If (age is elderly) and (impact is strong) then (recovery is slow) 
14.If (age is elderly) and (impact is medium) then (recovery is slow) 
15.If (age is elderly) and (impact is moderate) then (recovery is slow) 
16.If (age is elderly) and (impact is weak) then (recovery is moderate) 

 
 The parameters of the fuzzy system were determined through simulations. A result was reached that is in keeping with 
the expectations (based on mortality data for real populations) using the following methods for inference:  
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• And (t-norma): product 
• Implication: product 
• Aggregation: maximum 
• Defuzzification: som (smallest of maximum) 

 
 The  response surface is presented in Figure 10. It reveals that for high values of age  and impact the recovery has low 
values. While for low input values, the output is higher. 
 

  
 

Figure 10: Response surface 

6 RESULTS 

To validate the results found by the model, adjustments to the parameters were realized so that it would be possible to 
reproduce the mortality curve for Santa Catarina State, Brazil. The information used was derived from a database of the fed-
eral government (DATASUS - Database of the Unified Health System). We took the overall mortality values for the year 
2007, which a total of 31,106 people distributed by age classes. Since it concerns the mortality for the state as a whole,  any 
one specific disease is not considered. Therefore, the risk factor, which is responsible for the representation of the health 
condition and the living habits, had its values associated to health conditions for which the risk of death is not very high. 
The results expected could be achieved with the following parameters:  
 

• Growth Rate: 0.14 
• Senescence Rate: 0.018 
• Reserve Rate: 0.05 
• Age Independent Risk: 100 
• Age Dependent Factors: 4 

 
 The risk factor varied with the age ranges, beginning at 0.485 and terminating at 0.70. Considering the age ranges in 
question, the significance of these values for the risk factor, indicates a state of health considered reasonable. This would be, 
for example, the risks attributed to people who are non-smokers or who are smokers in recovery (Hall and Zwemer 1979). 
That is, the fact that a person is 80 years old with a risk factor of 0.70 does not mean that he has grave problems.  
 The graph in Figure 11 indicates the curve generated by the model, the true curve and the  curves of the confidence 
interval, considering α =0.01%. 
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Figure 11: Results of the simulator with the implementation of changes in the model 

 
 Figure 11 allows observing that the result achieved by the model is in keeping with the reality observed. Figure 12 
presents the results generated by the original model, which with the same values for the parameters, does not achieve a result 
close to reality. 
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Figure 12: Results of the simulator of the original model 

7 CONCLUSIONS 

This work presents the study and expansion of  a simulation model of aging and death. To do so, it began with the work of 
Hargrove (1998), which was important for the representation of physiological aging, but which did not suitably represent 
some situations that take place during and after the occurrence of risk events, such as, the decline of the ability to recover. 
 The experimental design showed that the Age Independent Risks, Risk Factor and Senescence Rate are those which most 
influence the simulation’s results. This result collaborated in the determination of the values of the parameters, and indicated 
that the parameters not related to natural aging have notable influence on the results.  
 The changes implemented in the base model (the impact and the fuzzy recovery module) allowed smoother results. This 
is because the change in the values of the most influential parameters caused sharp changes in the results. Moreover, the 
amount set for the risk factor does not allow notable distinctions in mortality between the age groups. In this way, the impact 
and the fuzzy recovery module contributes to a situation of equilibrium. The simulation technique in conjunction with a 
specialist fuzzy system allows proper modeling of uncertainty caused by imprecision -  which is highly present in the 
elements involved in aging. This type of modeling allows that the experience of specialists in the fields to be represented in 
order to contribute to the validation of the model through its imitation of reality. 
 The modeling of the fuzzy system proves to be suitable for this context, considering that there are no precise 
mathematical representations for the calculation of recovery of an individual. In general, the module contributes to the 
realization of distinctions between capacities for recovery, so that individuals who suffer impacts and have different ages can 
be particularized.  
 The results of the changes realized on the base model were validated for the mortality curve for Santa Catarina State 
Brazil. It was found that the expanded model made the results of the simulation more robust. The model can be of great 
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importance, because it is sensitive to variables that are routinely collected in epidemiological data bases and survival tables 
for risk factors. In addition, it is now sensitive to modifiable factors that increase the morbimortality of a population. By 
allowing the replication of morbidity curves, it can be applied to simulate the impact of policies and interventions for the 
promotion of long term health of populations, as well as for the realization of calculations and planning of health care costs 
for example. To be applied to other realities, it is necessary to observe population development factors, such as economic and 
social issues, in the determination of parameters.  
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