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ABSTRACT

Simulating crowds is a challenging but important problem. There are various methodologies in the literature ranging from
macroscopic numerical flow simulations to detailed, microscopic agent simulations. One key issue for all crowd simulations
is scalability. Some methods address this issue through abstraction, describing global properties of homogeneous crowds.
However, ideally a modeler should be able to simulate large heterogeneous crowds at fine levels of detail. We are attempting to
achieve scalability through the application of distributed simulation techniques to agent-based crowd simulation. Distributed
simulation, however, introduces its own challenges, in particular how to efficiently partition the load between a number of
machines. In this paper we introduce a method of partitioning agents onto machines using an adapted k-means clustering
algorithm. We present, validate and use an analysis tool to compare the proposed clustered partitioning approach with a
series of existing methods.

1 INTRODUCTION

Crowds are highly dynamic complex systems that have recently drawn significant research efforts from a variety of fields.
Agent-based simulation has been the tool of choice for many researchers as it allows modelers to incorporate complex
individual models of human behaviors and motion. Simulation studies of crowds have been applied in a variety of scenarios
including emergency or evacuation situations (Santos and Aguirre 2004). While agent-based models afford higher complexity
and finer granularity they also require more computational resource. Modelers are currently faced with a trade-off between
the complexity of individuals in the crowd and the size of the crowd. This means for large crowds, modeling individuals with
complex rules becomes infeasible, typically individuals will instead be modeled as simple particles. Distributed simulation
techniques can be used as a solution to this problem, allowing large scale high granularity simulations. In distributed
simulation a collections of machines (or nodes) are used to model various parts of the simulation. The simulation is then
divided up with the set of agents and/or environment being shared equally amongst the machines. Distribution has been
applied to agent-based crowd simulations previously (Lozano et al. 2007) with promising results. However, distribution
introduces its own challenges. The machines must communicate and synchronize, ensuring each agent does not perceive
contradictions in the environment. It may not be necessary for every agent to have a completely consistent view of the world
but it is essential that it does so for any information it uses when making decisions. We adopt terminology from the field of
Distributed Virtual Environments (DVEs) where this problem is termed awareness. When the level of distribution becomes
large the cost associated with this communication can become significant which in turn reduces the overall performance
of the system. With the objective of distribution being to speed-up the simulation, the overhead of communication must
not outweigh any benefit achieved through distribution. Therefore, keeping communication overhead low is essential for
improving the overall performance and scalability of the system.

The key problem in minimizing communication overhead is how to partition the state and agents evenly amongst the
nodes while maintaining a low communication overhead. To do so it is necessary to partition the agents so that agents reside
on the same nodes as the other agents with which they interact most. Crowd simulations are highly dynamic and agents
will interact with different agents and different regions of the environment state at different times. Therefore, the ideal
partitioning will change over time and the system may need to adapt or load balance to reflect the new optimal partitioning.
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Tracking this ideal partitioning incurs additional overhead, another complication to consider when devising approaches to
perform the dynamic load balancing.

Crowd formation and characteristics have been studied for patterns and predictable behavior using a variety of techniques
including Lagrangian motion (Ali and Shah 2007). Individuals in crowds rarely act in random or unpredictable ways and it
is often possible to see patterns or clusters forming in the crowd. We propose that it is possible to exploit this clustering
and these patterns to develop a partitioning algorithm which should be highly effective in a large number of different crowd
scenarios. In this paper we present an adapted k-means partitioning algorithm and compare this with two other partitioning
approaches: fast adaptive (Zhang et al. 2009) and static environment partitioning. We show that for agent-based crowd
simulation a partitioning approach which identifies the inherent clustering and patterns of crowds outperforms traditional
methods.

The remainder of this paper is organized as follows, in the following section we present a selection of related work in
the areas of partitioning for distributed agent simulation and pattern based partitioning. Section 3 introduces the concepts of
agent-based crowd simulation and the COSMOS framework being developed at Nanyang Technological University (NTU) (Luo
et al. 2008). The subsequent section introduces the notion of partitioning and outlines various types of approaches. Section 5
outlines the k-means based algorithm we propose for agent-based crowd simulation. The following sections describe our
experimental work and conclusions in testing the cluster based approach.

2 RELATED WORK

In this section we look at previous work in the area of clustered partitioning and of partitioning in agent-based simulation
and DVEs. To the best of our knowledge clustered partitioning has not been applied in distributed agent-based simulation.
K-means has actually been applied to N-body physics problems as a means of partitioning (Marzouk and Ghoniem 2005)
for parallel simulation. The paper investigates Vortex particle methods for fluid dynamics. The test case considered involves
evaluation of vortical velocities in a transverse jet. The authors adopt a slightly modified algorithm which scales each of
the clusters by some constant. This constant is then modified at runtime and is adapted according to the load imbalance
among the various processors. While k-means will give a balanced partitioning in terms of number of entities it does not
guarantee a balanced load in terms of CPU. This weighting factor enables the algorithm to skew the clusters according to
the CPU load imbalance during the last calculation period. For their test cases they consider large numbers of particles
(157297) using 1, 16, 64, 128, 512 and 1024 clusters and nodes. In the best case scenarios they report a parallel efficiency
of 98% (overhead of 2%) with 1024 nodes. They also show that with dynamic load balancing a much narrower variation
in load among the various processors is observed when the k-means approach is adopted. Finally and most importantly, the
dynamic load balancing is shown to significantly reduce the overall calculation time required for the problem.

In (Oguara et al. 2005) an approach is presented which considers agents access patterns to the shared state as a means
of partitioning agents onto processors. The framework uses a different model of shared state, with the common state of the
environment residing on different processors to the agents. To reduce communication load the state is moved closer to agents
which access the same state. This approach uses the concept of Spheres of Influence (SoI) to partition agents, meaning
agents which interact with the same area of state are also close in terms of the system infrastructure. A second assumption
is that the SoIs of agents do not change drastically over short time periods, but instead change gradually over the course of
the simulation. To prevent the SoIs changing dramatically the environment must be large in comparison to the velocity at
which the agents operate, i.e., an agent cannot move from one side of the environment to the other in a few time steps.

Many distributed multi-agent systems adopt a static environment decomposition (for example (Lees et al. 2007, Lees
et al. 2007)). In some agent systems this may be sensible as the movement of the agents forms no particular pattern or
is very restricted . In many cases however, this approach is adopted for simplicity and not because of some significant
observation. The suitability of a given partitioning algorithm depends on many characteristics of an agent simulation, the
density of agents, movement of the agents, distribution of agents, etc. A general approach which identifies clustering of the
agents should provide a good solution in those cases where the environment is not fully packed with agents.

The problem of partitioning DVEs is very similar to partitioning agent-based simulations. Generally there are characters
moving and interacting within an environment and the problem involves assigning avatars (clients) to servers and in doing so
maintaining low latency between avatars without overloading any given server. In (Morillo et al. 2004) an analysis of various
approaches to the problem of partitioning in DVEs are presented. An algorithm which uses an ant colony heuristic is shown
to give the best performance and overhead trade-off for large DVEs. The ant colony algorithm is based on the system of
pheromones that ant colonies use for locating food. Each ant intermittently places the pheromone along the path which they
follow. Subsequent ants will then follow paths with high pheromone concentrations. The algorithm defines border avatars
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(clients) as those avatars which reside on a different server to other avatars within their Area of Influence (AOI). A virtual
ant colony is then used to search a set of candidate servers for all border avatars, see (Morillo et al. 2004) for details.

3 CROWD SIMULATION

Modeling crowds is a difficult but valuable problem which has been investigated from a number of research fields including:
military simulation, safety engineering, architectural design and digital entertainment. Generating accurate and believable
crowds remains an open problem due to its multi-faceted nature. Various behavioral models have been developed (Musse
and Thalmann 2001, Sung et al. 2004); simulation architectures designed (Nguyen et al. 2005, Pan et al. 2005); virtual
environment representations studied (Paris et al. 2006, Pettre et al. 2006). In addition, commercial crowd simulation
middlewares, such as AI.Implant (Engenuity Technologies Inc 2006) and Massive (Massive Software 2007), have been
successfully utilized in digital production applications (e.g., Lord of Rings, Age of Empires 3, and Hannibal v Rome).

Crowd simulation is studied at a variety of different levels using a number of different approaches and techniques. There
are three core strategies in the literature: flow-based models, particle models and agent-based models. These methodologies
offer different benefits for modeling crowds. With flow-based models for example, the resolution of the phenomena which
can be investigated is sacrificed for scalability. These models can simulate large crowds and offer basic insight about the
crowd as a whole. However, they will often neglect individual behaviors and assume the crowd inhabitants are generally
homogeneous. At the other extreme agent-based models (individual models) have a complete model of each individual in
the crowd. Every individual has different behaviors, emotions, and movement rules. The computational requirements of such
high resolution modeling are significant and executing simulations with large numbers of these agents can be challenging.
One key issue which is still an open problem in crowd simulation is choosing the correct level of abstraction for the model.
The level at which a crowd is modeled determines the phenomena which can be studied and the questions which can be asked.
The modeler must therefore know the significance of different aspects of the model and ensure relevant issues are included in
the model. Again the trade-off of resolution and scale is important. Choosing the wrong scale can mean essential phenomena
are not captured. Developing a scalable high resolution simulation should help overcome this problem. Implementing a
distributed simulation of an agent-based model is one way to achieve this.

The COSMOS project (Luo et al. 2008) is investigating large scale (≈ 100000 individuals), high resolution agent-based
models of crowds. Each agent contains a complex model of human behaviors and different types of individuals have unique
experience sets resulting in highly believable and accurate simulations. Route and Motion planning is done through a
combined A∗ planner (Dechter and Pearl 1985) and RVO (van den Berg et al. 2008) collision avoidance mechanism which
results in realistic emergent crowd motion. With such complexity and scale in the COSMOS framework it is necessary to
execute the models using distributed simulation techniques. The key challenge when distributing these models effectively is
that of partitioning and how agents should be assigned to processors.

4 PARTITIONING

The problem we investigate is how to dynamically determine a balanced assignment of agents to nodes while ensuring
communication between nodes is kept to a minimum. For purposes of explanation we first define a few concepts. We assume
each agent operates with an Area of Interest (AOI) (Area of interest is a term from DVEs, an equivalent term Sphere of
Influence is defined for agent simulation (Logan and Theodoropoulos 2001)), which defines an area of the environment
with which the character can interact (i.e., read and write to state). Messages between nodes are necessary when the AOI of
an agent Ai, which belongs to a node N j, includes an object or a different agent which does not belong to N j. We can now
state that in order to minimize communication cost over a period of time the agents should be partitioned such that overlaps
of AOIs between agents on different servers are kept to a minimum. Obviously as the environment is dynamic the optimal
partitioning changes over time and tracking this optimal is the key challenge of load balancing. Load balancing itself has
associated costs. Firstly data must be collected and analyzed to determine the quality of the current partition and determine
the need for re-partitioning. Secondly, to re-partition and re-balance load, agents must be migrated with their state from one
node to another.

It is possible to classify partitioning approaches according to how they maintain state and how they distribute the load
amongst processors. There are four main approaches: centralized virtual environment, replicated virtual environment, divided
virtual environment with agents and divide the virtual environment independently. Using a centralized virtual environment
involves a single machine maintaining the agents environment, agents are then distributed on the remaining machines. Agents
all interact with the same single view of the world which means maintaining consistency is straightforward. However, when
the environment becomes large and the number of agents becomes large the central server will become a bottle-neck. A
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replicated approach involves executing the agents of different servers with each server also maintaining a complete copy of
the entire virtual environment. This approach avoids the problem of a single communication bottleneck, however, maintaining
consistency among the copies of the virtual environments becomes costly when the environment is highly dynamic and
there are large numbers of machines. The third approach involves dividing the environment among the nodes. The set of
agents modeled by each node then changes depending on which agents are within the region of the environment being
modeled. In this approach techniques can be used to avoid the need to broadcast updates when maintaining consistency. It
is not necessary for every node to have a completely consistent view of the world but it must have a consistent view of
any state with which it interacts. The final approach is to decouple the division of state and agents completely, with two
groups of nodes modeling the state and agents separately. Consistency is then maintained among the environment nodes
only, but the number of machines required for the same distributed performance is higher (this is assuming the majority of
the computational requirements are due to processing the agents).

5 CLUSTERED PARTITIONING

Crowds have been shown to naturally form groups and flow patterns (Ali and Shah 2007). Exploiting this with an appropriate
partitioning algorithm should enable efficient distribution of crowd simulation. In this paper we investigate the application
of a clustering based partitioning algorithm for distributed simulation of crowds. Clustering is a technique used to group
similar objects or values together. The notion of similarity can be defined in a number of ways. For agent simulation the
objective is to cluster agents such that those which interact most frequently are grouped in the same cluster. For crowd
simulation and agent simulation in general communication occurs when the AOIs (defined by the sensor range) of distributed
agents overlap. If we assume that agents interact with objects and other agents within their AOI then agents within close
proximity should be clustered together. This simple approach is fine for a given snapshot of a simulation and the agents
should be clustered according to their position. However, as agents are constantly(In some cases they may wait for short
periods) moving, clustering on position alone may not always be the best option in the long run. Consider for example two
distinct groups of agents moving perpendicular to one another which will overlap at some point in the future.

Figure 1: Group crossing pattern

Figure 1 illustrates this common scenario in crowd simulation with two groups merging at an intersection. The most
appropriate approach when partitioning this scenario depends on a number of factors: the number of time steps the groups
spend overlapping, the relative size of the groups, the movement of the agents after merging, etc. The partitioning algorithm
can do one of two things. Firstly it can merge the crossing agents into a cluster for the period in which they remain in close
proximity. Then if the agents split after the intersection the cluster will split into the original configuration. The problem with
such an approach is the cost of migrating the agents from node to node, the overhead of which is far higher than for sending
messages. The second approach is to retain the original clusters in some way, inuring extra communication overhead for the
period that the two clusters overlap. Again the effectiveness of either approach depends on the length of time of overlap and
other factors. In general however, unlike N-body problems (where gravity or other attractive forces cause clustering), agents
will not always remain in the same clusters. The behavior of the agents will depend on the internal state of the agent and its
beliefs and goals. We believe it may be possible to cluster agents based on a combination of the agents position, velocity
and internal state. The assumption being that agents close to each other with the same behaviors are likely to interact now
and also in the future. In this paper however, we investigate the first scenario and attempt to re-cluster agents whenever their
AOIs overlap.

To achieve the clustering of agents into groups we use the K-means (Marzouk and Ghoniem 2005) clustering algorithm
which groups objects into k clusters based on some attributes which are assumed to form a vector space. K-means has been
applied in a wide variety of disciplines which use statistics including Sociology, Geography and Computer Science. In this
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paper we investigate a single method of clustering using the k-menas metric. We consider the agents positions as attributes
which span a 2D euclidean vector space, the environment.

The method minimizes J given n agents; k clusters each with center ci; and agent ai at position pi:

J =
k

∑
j=1

n

∑
i=1

∥∥ pi− c j
∥∥ 2

For the analysis here the k-means clusters are calculated using Floyd’s (Floyd 1962) algorithm. However, there are
parallel algorithms which can be used to calculate the clusters (Gürsoy 2003). The cluster centers are initialized to the
position of a randomly chosen agent and each agent is then assigned to the cluster with the closest centroid. Once each
agent has been assigned to a cluster the centroids of each cluster are recalculated by determining the center of mass of all
the agents in the cluster. The algorithm then calculates the change in the centroid of each cluster which it uses to determine
when the clustering has converged and hence terminate the procedure. If the change in centroid is not below some given
threshold then the process repeats, re-calculating the centroids and then the clusters. The k-means algorithm is executed at
pre-defined intervals, with more frequent calculations resulting in better tracking of the partitions but at extra cost. However,
the number of iterations required at each re-calculation is determined by the deviance of the current centroids from the
previous. Therefore, longer periods between calculations may result in more iterations per calculation.

6 EXPERIMENTS

The experiments in this paper investigate the application of k-means partitioning to crowd simulation using an analysis
tool described in previous work (Wang et al. 2009). Designing, developing and implementing new partitioning algorithms
involves significant work. Different approaches may assume different underlying infrastructure and implementing the code
necessary for each new algorithm can be a considerable effort. The analyzer tool was developed to solve this problem
and allow rapid prototyping and testing of many partitioning algorithms. With the analyzer running in serial there is no
need to implement complex message passing systems. Real costs for communication, computation and migration can be
measured or varied between experiments. This provides a mechanism for evaluating each algorithm under different hardware
configurations simply by altering these costs. To further motivate the use of the analysis tool and to validate its results we
present an experimental validation, comparing results from a real system with that predicted by the analyzer.

6.1 Algorithms

We compare the clustered based partitioning algorithm outlined in section 5 with two other partitioning approaches: a grid
based method and a static environment partitioning.

6.1.1 Fast Adaptive Load Balancing

The Fast Adaptive Load Balancing (FALB) (Zhang, Jiang, and Li 2009) algorithm is an exension and form of grid generation
load balancing methods (Deng et al. 2000). These approaches involve dividing the simulation space (environment) into cells
arranged in a rectangular grid. Each cell is then assigned to a node and all agents contained within the cell are executed
on that node. Load balancing is traditionally performed by moving the vertices of the cells such that heavily loaded cells
effectively shrink, maintaining a smaller portion of the environment. In this paper we use the FALB method which adapts
the edges of cells rather than vertices to re-adjust load. This approach has the advantage that the cells remain rectangular
and thus the overhead associated with readjustment is reduced. If the vertices are free to move independently there can be
a large overhead associated with adjusting vertices when the load is highly imbalanced. The scale by which the Line Li is
adjusted is determined by the difference in load between the two cells which the line divides. An aggressiveness factor, ε ,
is used to determine how much cell scaling is done for a given difference in load.

6.1.2 Static Partition

The final approach we compare with is a standard static division of the environment. The environment is divided into n
regions or cells and all agents within that cell are modeled by a single node. As agents move between cells they are migrated
between the corresponding nodes. Clearly in some scenarios this method of decomposition will result in imbalance, especially
when the crowd is highly clustered or skewed. The method should perform reasonably well in crowds of uniform density.
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Table 1: Notation of costs

Cα(i) Cost of single migration form server i
Nα(i, j) Number of migrations of server i at step j

Cβ (i) Cost of single message from server i
Nβ (i, j) Number of messages of server i at step j

Cγ(i) Cost to execute one agent on server i
Nγ(i, j) Number of agents of server i at step j

Using this method it is possible to decompose the environment in a number of ways: in a regular grid, in vertical/horizontal
strips or in an irregular grid. In these experiments we consider a regular grid division. This seems the most appropriate
choice as it minimizes surface area to volume ratio of each cluster, which should in turn minimize communication.

6.2 Analyzer Validation

To evaluate the partitioning algorithms we use an analysis tool developed to analyze output traces from the COSMOS crowd
simulations (Wang et al. 2009). The analyzer can simulate and evaluate various partitioning algorithms, the assumptions and
characteristics about the underlying hardware can be specified for each experiment also. The system attempts to partition the
agents according to the selected algorithm and measures communication, load and migration costs for each. Three metrics
are considered during analysis:

• Number of Messages - An agent a residing on server s1 requires a message whenever its sensor range overlaps with
an agent b on a server s2, s1 6= s2. (Note we assume the only dynamic state here is the agents position)

• CPU load – We approximate the CPU load of each node over time by recording the total number of agents on each.
• Number of Migrations – A migration happens when an agent a residing on server s1 at time t1 moves to server s2,

at time t2, s1 6= s2.

During the analysis, the above metrics are collected for each partition. These metrics are combined with some measured
real costs to produce an overall measure of effectiveness for the considered partitioning mechanism. The following equations
detail the calculations used in the analysis tool to evaluate the performance. We assume a time-step simulation with all
servers synchronizing and blocking at the end of every time step. To calculate the overall cost of a partitioning algorithm
we analyze the cost at each time step. The cost incurred on the server for partition i (referred to as server i hereafter) at
simulation step j is:

cost(i, j) = Cα(i)∗Nα(i, j)
+Cβ (i)∗Nβ (i, j) (1)
+Cγ(i)∗Nγ(i, j)

Nα(i, j), Nβ (i, j), and Nγ(i, j) are performance data which are collected during the simulation and generated from an
analysis of a particular partitioning mechanism for server i at step j. The overall performance criteria of any partitioning
algorithm is simulation execution time, which is determined by the slowest server. We define the step cost of a partitioning
algorithm (overall cost per time step) as the maximum cost of any single partition at each time step. The step cost of a
partitioning algorithm incurred at simulation step j is then:

cost( j) = max(cost(i, j)) ∀ server i (2)

The total cost of one partitioning mechanism for a given scenario is then the summation of the step costs incurred during
the entire simulation (assuming end time t):

cost =
t

∑
j=1

cost( j) (3)
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By comparing the step costs and the total cost, we can evaluate the performance of each partitioning mechanism for a given
scenario. Experiments were performed to estimate real values for the various associated costs: communication, computation
and migration. The distributed simulation system to be developed will use desktop computers with the following hardware
configuration: Intel(R) Core(TM)2 CPU 6700@2.66GHz, 2.00GB of RAM. The computers are connected via 100MB Ethernet.
The distributed system will be HLA/RTI (Kuhl et al. 1999) compliant and implemented using the DMSO RTI1.3NG-V6. The
communication cost and migration cost are estimated using a test case with two computers each running a federate. With
HLA/RTI their is an associated synchronization overhead at each time step due to time advance requests. To approximate
this we configure a test case with two servers and no messages and calculate the time needed to execute one hundred time
advance requests. To estimate the communication cost, a simulation with two machines is setup and one hundred messages
are passed between them. This synchronization cost is then factored out and then the execution time is divided by the total
number of messages to approximate the cost of sending a single message. We adopt this strategy rather than a single round
trip time to account for packet buffering which may occur in the under lying network infrastructure (we assume that with
buffering sending one hundred messages from RTI will not be as expensive as one hundred round trip costs). The cost
of a single migration is calculated in the same way, but rather than sending messages each machine performs a series of
migrations. This means the ownership transfer between federates is considered in the cost. The computation cost value is
the average time that the sequential simulator takes to execute a single agent at one simulation step. The costs obtained
from the experiments are shown in Table 2.

Table 2: Calculated costs

Metric Cost(ms)
Computation Cα 8.074

Communication Cβ 6.02
Migration Cγ 51.01

We assume a simple agent architecture with little in the way of deliberation. However, the analyzer can easily be
adapted to evaluate situations with much heavier weight agents. The importance of the costs is not their absolute values
but the relative weighting between each. Table 2 shows that for this case, migration is fifty times more expensive than
communication and a little over six times more expensive that computation. It is the relative costs of each metric which
determines the effectiveness of each partitioning algorithm.

To validate this and previous work (Wang et al. 2009) we have compared the results generated from the analyzer with
real experimental results. To do this we tested the two aforementioned partitioning algorithms: FALB and static partitioning
in various configurations and compared the results of a real implementation with that predicted by the analyzer. The test
case considered was of 200 agents moving within a square environment of 100x100. Each of the agents was initialized with
a random location within the environment and moved from left to right with a fixed velocity of (0.5,0). Once the x location
of an agent reaches 100 it is moved back to the center, x = 50. The simulation is run over 200 time steps with 2 and 4 nodes
and the total execution time is then recorded. This configuration essentially starts with an evenly balanced distribution of
agents in the environment and then over time the right side of the environment becomes more heavily loaded. The analyzer
does not account for the inherent overhead within the system due to synchronization. The real system was therefore first
tested without any agents or communication to calculate the synchronization overhead. This overhead was then subtracted
from the result obtained from the real system for direct comparison with the analyzer. This overhead is fixed for all cases
so should not invalidate comparisons made between two algorithms using the analyzer.

Figure 2 shows the comparison between what the analyzer predicts and the real system output. It clearly shows that the
analyzer prediction is very close to the output of the real system. Figure 5 shows how the analyzer prediction compares in
the case of the FALB with four nodes. Again the results are very similar. However, in all cases the analyzer does slightly
under-predict, which is to be expected as the analyzer does not consider the overhead associated with execution of the
partitioning algorithms. The key issue, which the results corroborate, is that the analyzers predictions follow the overall
trend of the real system for a variety of different parameters.

6.3 K-Means Test Results

In the following section we use the analyzer tool to investigate the k-means clustered partitioning algorithm described in
Section 5. The experimental setup is similar to the validation case except with more agents. The experiment consists
of 500 agents executing for 200 time steps in an environment of 100x100. In all cases agents are created at randomly
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Figure 2: Analyzer Prediction and Real System Output for Static Algorithm and 2 Nodes

Figure 3: Analyzer Prediction and Real System Output for Static Algorithm and 4 Nodes

initialized positions within the environment. However, the crowd movement is varied using grouped movement and random
movement. Under grouped movement a number of leaders are defined which in turn defines the number of groups, the
remaining agents are then assigned to groups evenly. The group members follow the leaders while maintaining a minimum
distance. The experiments also consider a standard situation and an emergency situation. Under normal circumstances the
groups or individuals move randomly. In grouped movement it is the leaders who move randomly and the group members
follow. In the emergency situation the agents move randomly until time step 5 at which point a bomb is detonated and
the crowd subsequently attempts to escape via a single exit. This gives four test cases for comparison: Random normal,
Random emergency, Group normal and Group emergency.

The results presented are execution times calculated using the analyzer. Figure 6 shows the average total simulation time
(over 5 different runs of 100 time steps) predicted by the analyzer for each partitioning mechanism. In Random normal test
case, these three partitioning strategies give almost identical performance. Since the loads on the servers remain in balance
for most of the time after initialization, the FALB strategy would offer no performance benefit over the static partitioning
strategy. Since no clustering occurs in this scenario, the k-means strategy will not achieve any significant benefit either.
Under the Normal emergency test case, k-means provides the best performance among the three strategies. Once the bomb is
detonated, instead of wandering around, individuals will move towards the same goal to evacuate via the exit. This will cause
the agents to group together, something which can be exploited by the k-means partitioning algorithm. Since individuals
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Figure 4: Analyzer Prediction and Real System Output for FALB Algorithm and 2 Nodes

Figure 5: Analyzer Prediction and Real System Output for FALB Algorithm and 4 Nodes

share the same goal, the movement of each formed cluster is paced which results in less migrations between partitions. For
FALB, the boundaries of each partition will be adjusted in order to balance the load in each partition. Migration can therefore
occur in two ways: through movement of the partition boundaries and by agents transitioning between two partitions. In
this test case, the static strategy faces extreme load imbalance which is why it has poor performance.

In both Group normal and Group emergency test cases, k-means provides the best performance among the three algorithms.
Since the composition of each cluster is more or less constant - with the exception of when individuals join or leave the
group - the migration cost is low. At the same time, maintaining the clustering also means the local states are kept within in
each partition, which reduces the communication as well. Note that, although the number of groups in the experiments is
the same as the number of k-means clusters the algorithm still performs well when the grouping in the experiment changes
(i.e., during the emergency). The FALB algorithm is not suitable for grouped scenarios as it tends to emphasize balancing
load rather than minimizing communication cost. Figure 7 shows a case that the FALB strategy divides a group into two
different servers (the lines depict the division of the clusters). In this scenario the dark group (top right) is divided across
two partitions. If the partition boundary is changed slightly or whenever the group moves there will be frequent migrations.
While one may consider a grouped scenario to be engineered toward a clustering approach, we argue that grouping is relevant
for crowd simulation. The results also show that for random configurations the k-means algorithm performs equivalently
to a standard static approach. Perhaps more interestingly, the emergency scenarios are important for crowd simulation and
DVEs in general. In previous work (Greenhalgh 1997) the notion of Hot points was introduced to describe the notion of
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Figure 6: Performance Comparison of Different Partitioning Strategies

areas of the environment where avatars or agents would congregate. If partitioning is done by environment (e.g., static or
FALB) the areas around these hot points will typically be handled by a single server. With many agents clustered around
these areas and the servers that maintain them will have high load imbalance. It is these scenarios in which we expect the
clustering approaches to work best.

Figure 7: Partitions under Group normal scenario

Also because the group is divided across the two servers, there will be a large amount of communication among the
servers. Both the static and FALB strategies have more migrations than the k-means when individuals cross the boundaries
of each partition. The Group emergency scenario shows similar results for the same reason as above, again with the k-means
out-performing both of the other algorithms.

7 CONCLUSION AND FUTURE WORK

In this paper we have motivated the application of cluster partitioning algorithms for agent-based crowd simulation. Using
an analyzer tool we have shown that for some typical crowd scenarios where groups form, our k-means load-balancing
algorithm outperforms other approaches. We have also validated the use of our analyzer and shown it to be an effective tool
for efficiently comparing different load balancing and partitioning algorithms. The only current limitation of the analyzer is
that it does not include the overhead associated with the execution of each algorithm. Incorporating this directly into the
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tool would be difficult but we plan to investigate ways of manually including an approximated overhead for each tested
algorithm.

In future work we plan to investigate other cluster based partitioning mechanisms (grid-based clustering) and compare
their performance to the k-means algorithm. One issue with cluster based approaches is how the crossing problem (see
Figure 1) can be solved. If groups (or clusters) form intermittently, the methods which automatically cluster agents may
cause unnecessary migration. Therefore, we hope to look at applying pattern recognition techniques to try and analyze and
predict crowd movement to aid partitioning.
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