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ABSTRACT 

In the application of kriging model in the field of simulation, the parameters of the model are likely to be estimated from the 
simulated data.  This introduces parameter estimation uncertainties into the overall prediction error, and this uncertainty can 
be further aggravated by random noise in stochastic simulations.  In this paper, we study the effects of stochastic noise on pa-
rameter estimation and the overall prediction error.  A two-point tractable problem and three numerical experiments are pro-
vided to show that the random noise in stochastic simulations can increase the parameter estimation uncertainties and the 
overall prediction error.  Among the three kriging model forms studied in this paper, the modified nugget effect model cap-
tures well the various components of uncertainty and has the best performance in terms of the overall prediction error. 

1 INTRODUCTION  

The kriging model has been used as a meta-model in the design and analysis of computer experiments (DACE) since Sacks et 
al. (1989).  Although kriging originated in geostatistics, see Matheron (1963), it has been successfully applied in many de-
terministic computer experiments (Pham and Wagner 1999; Roshan 2006; Gupta et al. 2006; Wu and Sun 2007).  The gener-
al kriging approach assumes that the sample observations are realizations of a random process given as: 

 
  (1) 
 
where μ is the mean of the process, also known as the large-scale variation; δ is the zero-mean L2-continuous, second order 
stationary process used to model the difference between single observation and process mean, also known as the small-scale 
variation; and ε represents the random measure error (random noise).  In the deterministic (noiseless) simulation context of 
DACE, ε is not present and μ(x)+δ(x) is denoted as the deterministic signal function S. μ(x) is typically modeled with a con-
stant term or a polynomial function, and δ a Gaussian random process with a mean of 0 and a spatial correlation function.  

In building the kriging model and its predictor, in addition to the sample observations y, the best linear unbiased predic-
tor depends on the parameters in μ(x) and the covariance parameters in δ(x).  In an ideal situation, these parameters are as-
sumed known.  In practice however, these parameters can only be estimated from sample data, making them random va-
riables dependent on the experimental design and sample observations.  Moreover, the prediction error of the kriging model, 
which is a commonly used quality measure of the fit and accuracy of the model, is a function of sample data and model pa-
rameters. In the ideal case when the parameters are known, the prediction error measures the “true” prediction error. Typical-
ly however, the parameters are unknown and the prediction error is estimated by replacing the unknown parameters with 
point estimates.  This ‘plug-in’ estimator will however underestimate the true prediction error as it does not take into account 
the uncertainty of the model parameters. In some cases, it can cause overconfidence in the predictors.  This additional error is 
also noted in Cressie (1993). 

Similar problems in parameter uncertainty have been studied in time series models, heteroscedastic regression models, 
mixed linear models (Khatri and Shah 1981, Kackar and Harville 1984, Reinsel 1984) and general linear models (Toyooka 
1982, Harville 1985, Harville and Jeske 1992).  Zimmerman and Cressie (1992) extended this research in parameter estima-
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tion uncertainty to the mean squared prediction error  (MSPE) of spatial linear models, and examined the appropriateness of 
the ‘plug-in’ estimator of the MSPE with alternative approximations. Hertog, Kleijnen and Siem (2006) studied the similar 
problem with the sensitivity parameter θ of the deterministic kriging model with a boot-strapping approach, and showed that 
the traditional kriging variance underestimates the true kriging variance as noted in Cressie (1993).  These studies demon-
strate that the problem of parameter uncertainty in spatially correlated models can have a large influence on the prediction er-
ror in the deterministic (noiseless) case.  In stochastic simulations, this problem can be amplified by the random noise ε of the 
system as it increases the variability of the parameter estimates (see illustrative example below).  In this paper, we extend 
previous studies to look at the effects of stochastic noise on parameter estimation and the overall prediction error.  We further 
decompose the mean squared error into individual components reflecting parameter uncertainty, response model misspecifi-
cation and the stochastic noise.  

To illustrate the influence of random noise in stochastic simulation on parameter estimation and prediction error, consid-
er the example where the response is Y(x) = sin(x) + ε, and ε ~ N(0, σε

 2).  Observations are obtained at seven equally spaced 
input locations from [0, 2π] for various levels of σε

 2.  Suppose a deterministic kriging model with an exponential correlation 
function is used to fit the data.  For each level of σε

 2, 1000 replications of observations are taken.  For each replication, we 
estimate the sensitivity parameter θ of the exponential correlation function and compute the overall prediction error at the 
point x0=3π/4, where the overall prediction error is the squared differences between the estimated kriging predictor and the 
signal function E[Y(x0)] = S(x0) = sin(x0).  Table 1 summarizes the results.   

 
Table 1: Numerical results on the parameter estimation and prediction error. 

 
Variance of the ε, σε

 2 Variance of the θ estimator Averaged Overall Prediction Error 
0.1 9.161*E-12 0.0159 
0.2 5.044*E-11 0.0268 
0.5 1.181*E-8 0.1335 
1 1.894*E-7 0.5923 

 
From Table 1, we see that both of the variance of the estimated θ and averaged overall prediction error increase as the va-
riance of the random noise ε increases.  As the input design for x is fixed for all four noise levels, the inherent model misspe-
cification error is the same throughout, and hence, the increase in the overall prediction error can be attributed to the noisy 
sample data.   

The results from this example show that the performance of deterministic kriging model worsens as the noise level in-
creases.  This indicates that a more appropriate model reflecting the stochastic inputs is required when the noise levels are 
high.  In such situations, the kriging model has been improved.  Under homoscedastic assumptions on the noise, the kriging 
model with the nugget effect (nugget effect model) has been proposed and applied (Cressie 1993, Huang et al. 2006).  Yin, 
Ng, and Ng (2008) and Nelson, Staum, and Ankenman (2008) propose the modified nugget effect model and the stochastic 
kriging model  respectively to address the more general heteroscedastic case.  Although the mathematical predictor forms of 
both models are equivalent, their initial assumptions differ in that the modified nugget effect model treats the additional noise 
component ε as a non stationary component of the random process; and the stochastic kriging model considers the additional 
noise component ε as the intrinsic uncertainty of the simulation itself and use it to model the effect of common random num-
ber (CRN).  

In this paper, we will look more closely at the influence of random noise in stochastic simulations on three different 
model types: traditional deterministic kriging model (Cressie, 1993), nugget effect kriging model (Cressie, 1993), and the 
modified nugget effect kriging model (Yin, Ng and Ng 2008).  We first decompose the prediction error into components re-
flecting the model misspecification error, parameter estimation error and the stochastic error.  We will then examine a simple 
two-point tractable problem and provide some insights on the effects of the random noise in stochastic simulations on the in-
dividual components of the three different model types.  Finally, we provide a numerical study on three additional examples.  
In the next section, we first review the three different forms of the kriging model considered.     

2 KRIGING MODELS FOR STOCHASTIC SIMULATION 

Deterministic kriging model, nugget effect model and modified nugget effect model are the three kriging model forms we 
will study in this paper.  The nugget effect model and modified nugget effect model are developed on the basis of the deter-
ministic kriging model.  In this section, we will review the basic theory of kriging model and summarize the structures and 
characteristics of these three models. 
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2.1 Kriging model basis 

The basic model form and structure for the kriging model is given in (1).  Based on the model assumption, we can derive the 
general kriging predictor.  The kriging predictor is a combination of all the observations y(xk) and the “kriging weights” λ, 
which is also a function of the observed data: 

 

where     
 

  (2) 

 
 

and r=(corr(d01), corr(d02),…, corr(d0m)), the vector of the correlations between the point to be estimated and all the m ob-
servations.  It is a function of the distances d0i of the observations to the prediction point x0.  R is the correlation matrix of all 
the observation points, and ek is the vector of ones of length m. 

Under the second-order stationarity assumption (Cressie 1993), the covariance between any two points is only dependent 
on the distance between these two points: 

 

  (3) 

       
 

where c0 is the nugget effect representing the random noise component ε in the model; c1 is the “partial sill” which models 
the variance of the random process without the random noise.  The correlation function corr(~) is a function of distance only. 
In this paper, we focus on the exponential family correlation functions which are most commonly applied for its smooth out-
put and fast convergence.  The form of the exponential family correlation functions are given as follows: 
 
  (4) 

      
Equation (4) becomes the exponential correlation function when q=1, and Gaussian correlation function when q=2. It 
represents the relationship between the points in the sample space.  The sensitivity parameter θ is typically estimated by the 
maximum likelihood estimation method.  Given the functional forms of (3) and (4), the kriging predictor in (2) is not a linear 
function of θ.   

2.2 Kriging models for deterministic case and stochastic case 

 The three different forms of the kriging model applied in this research can be distinguished from each other by the ran-
dom noise component ε in (1).  For the predictor and kriging weight, all three models have the same structure in (2).  The on-
ly difference is in the correlation matrix R.  For the traditional deterministic model, the random error ε is assumed to be 0.  
Combining the covariance function in (3), with the nugget effect term c0 = 0, the correlation matrix R of the deterministic 
kriging model is:  
 

  (5) 

        
Under the stochastic assumptions, we further divide it into two sub-cases: homoscedastic case and heteroscedastic case.  With 
the homoscedastic assumption, the variance of the random noise component ε is a constant throughout the whole sample 
space.  From the definition in (3), the correlation matrix R of the nugget effect model can be written as: 
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  (6) 

      
The only difference between (5) and (6) is the nugget effect term added onto the diagonal.  For the heteroscedastic assump-
tion, the variance of the random noise ε is a variable.  Assuming ε to be independent but not necessarily identical, the nugget 
effect terms added onto the diagonal will also be a variable.  The correlation matrix R for the modified nugget effect model 
can be given as: 
 

  (7) 

       

 
where ci

* stands for the local variance for the ith location observation, or σεi
2.  From (5), (6) and (7), we see that the nugget 

effect model is a special case of modified nugget effect model when all the ci
* are the same and deterministic kriging model is 

a special case of nugget effect model when c0=0.

 

3 DECOMPOSITION OF THE OVERALL PREDICTION ERROR 

The additional error caused by parameter estimation uncertainty is reported in several different research papers.  For the krig-
ing model, the sensitivity parameter estimation uncertainty’s influence on prediction error has been discussed in Hertog, 
Kleijnen and Siem (2006).  Bootstrapping numerical experiments show that the actual kriging model prediction error which 
correctly accounts for parameter estimation uncertainty is larger than the traditional kriging variance given the known para-
meter.  

Assuming the predictor P[S(x0)]Y is a linear function of the parameter θ and the estimator for θ is unbiased, from the re-
sults of Kacker and Harville (1984), the prediction error with unknown parameter can be approximated by: 

 
  (8) 

      
where tr[A(θ)B(θ)] is an approximation of the additional error introduced when the estimator  is used, 

, and . The second component of the right-hand side of (8) is the tra-
ditional mean squared error (MSE) when  is used,  and this can be further decomposed as:  
 

  (9) 

    
The first term on the right hand side of (9) is the prediction error caused by model misspecification.  The second term is the 
direct effect of the stochastic noise ε on the prediction error, and is a function of the variance of ε.  Combining (8) and (9) to-
gether, we find that the overall prediction error can be decomposed into the following three error components:  
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  (10) 

         
The prediction error caused by model misspecification is inherent in the metamodel selection and will not be the focus in this 
research.  In the next section, we analyze how the random noise ε affects the parameter estimation of θ and the additional er-
ror caused by parameter estimation uncertainty (the last term in (10)). 

4 TWO-POINT PROBLEM 

We design a simple two-point problem to provide some theoretical insights to the parameter estimation problem for the krig-
ing model: 
 

 
 

Figure 1. Design for two-point problem 
 

Points V0, V1 and V2 are evenly spaced.  Take points V1 and V2 to be the observation points, and point V0 to be the prediction 
point.  Suppose that the signal function s is an unknown Gaussian random process with the mean function μ and bias function 
δ.  The additional random noise function ε follows the normal distribution with zero mean and unknown heterogeneous va-
riance function σε

2(Vi). Then at points: 
 
  (11) 

                      
In the next subsection, we describe the parameter estimation techniques for the unknown parameter before discussing its ef-
fects on the overall prediction error. 

4.1 Maximum Likelihood Estimation and Restricted Maximum Likelihood Estimation 

The Maximum Likelihood Estimation (MLE) method is commonly used in kriging model’s estimation.  Assuming a Gaus-
sian random process, the log-likelihood function is given by: 

 

  (12) 

          
where F is the design matrix for the ordinary least squares model, β is the regression parameters and Fβ represents the mean 
function μ; σS

2  is the variance of the Gaussian random process S, which indicates the variability of an unknown point in S.  
Here we write the correlation matrix as R(θ) to denote that it is a function of parameter θ, as seen in equations (4) – (7).  We 
can find the estimators for μ, θ and σS

2  by taking the first order derivatives: 

 

Solving the above three equations, the MLE estimators for μ and σS
2 result as functions of θ.  For simplification purposes, 

μ and σ2 are typically assumed fixed or known in order to estimate the sensitivity parameter θ.  This simplifies the likelihood 
function to a function of θ only. 

However, in this simplification, the MLE estimator for θ is biased as the estimation of θ depends also on β, which is 
usually unknown (see Cressie 1993).  In order to simplify the approximation in (8), we use instead the restricted maximum 
likelihood (REML) proposed by Patterson and Thompson (1971, 1974) which provides an unbiased estimator of θ for this 
Gaussian random process.  With this unbiased estimator, B(θ) will equal to the variance of the θ estimator.  The log-
likelihood function for the REML is given by:   

678



Yin, Ng and Ng 
 

  (13) 

    
which is independent of β.  The difference between (12) and (13) is especially significant in the small sample case, like the 
two-point problem here (see Cressie, 1993). 

For this two-point problem, the terms in (13) are given as:  

 

As mentioned in section 2.1, the kriging predictor is not a linear function of the parameter θ in this two-point case.  In order 
to make the predictor a linear function of the estimated parameter to apply the approximation in (8), a re-parameterization is 
made as follows: 

 

With this reparameterization, (13) becomes a function of ρ instead of θ: 
 

  (14) 

  

4.2 Analytical Results 

For the three different model forms described in (5), (6) and (7), maximizing (14), we obtain have the following results: 
Deterministic kriging model: 

 

 
Nugget effect model: 

 

 
Modified nugget effect model: 

 

Following, the expectation and variance of the parameter estimators are given as: 
          

  (15) 

           
From (11), it is straightforward  to see that y1 follows normal distribution with mean s1 and variance σε1

2, and y2 follows nor-
mal distribution with mean s2 and variance σε2

2.  Separating the signal and pure noise components, we get: 
       

  (16) 

       
Combining (15) and (16),  
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  (17) 

        
Similarly, for the nugget effect model and modified nugget effect model, we obtain the following: 

        

  (18) 

          

  (19) 

          
For deterministic model, we see from (17) that the expectation and variance of the estimated parameter are functions of the 
input variance σε1

2 and σε2
2.  If the input variances increase, the variance of the estimated parameter will also increase and its 

mean will decrease, indicating a weaker correlation-ship between the points.   From (17), the expectation of the estimated pa-
rameter can be negative if the variance σε1

2 and σε2
2 are high enough.  However as we assume the exponential correlation 

function in this two-point problem, we consider only non-negative correlations.  For the cases when estimated ρ is negative, 
the restricted likelihood function is monotonically decreasing, indicating that extra sample data is needed.  For the modified 
nugget effect model, from (19), we see that the influence of the input variance can cancel out if c1

* and c2
* are the exact esti-

mators of σε1
2 and σε2

2.  Similarly, from (18), we see that the nugget effect model can have the same results when the nugget 
value c0 equals to the average of σε1

2 and σε2
2. 

This partially explains what was observed in (Yin, Ng, and Ng 2008), where it was observed that the estimated θ’s for 
the modified nugget effect model and nugget effect model is closer to the optimal value than the deterministic model.   

4.3 Influence of Parameter Estimation on Overall Prediction Error 

From the approximation in (8), the additional prediction error caused by parameter estimation uncertainty can be approx-
imated as , where tr[Q] stands for trace of matrix Q.  Based on the REML,  can be computed (Harville and 
Jeske 1992) and  is the variance of .  As a result, we can formulate the approximation as a function of ρ: 

 

The detailed derivation is given in the appendix. Since the variance of the estimator is the same for all three models, an esti-
mator  closer to 1 is favorable.  Comparing (17) and (19), the modified nugget effect estimator  is closer to one in expec-
tation than the estimated parameter given with deterministic kriging model.  With careful selection of the nugget value c0 in 
(18), the additional error incurred by the nugget effect model can be as small as the modified nugget effect model.  
 In this simple example, we see that in stochastic situations where random noise is present, selection of the appropriate 
stochastic model can reduce the additional error introduced by parameter estimation in θ.  Furthermore, although not ad-
dressed in this paper, good knowledge or accurate estimation of σε

2’s can also improve the estimation error.  

5 NUMERICAL EXPERIMENTS 

The two-point problem given in the section 4 illustrates how the random noise ε affects the parameter estimation uncertainty 
and increases the additional prediction error in the end.  In order to simultaneously study the effects of the random noise on 
the three individual error components, three numerical examples are further studied in this section.  The first example is a 
one-dimension problem with a step variance function studied in Yin, Ng and Ng (2008).  In this example, the correlation is 
strong in the noiseless case.  The second example extends to a two-dimension problem with a step variance function.   Several 
different noise level scenarios are studied in this example.  The third example is more complex functional form taken from 
Hussain et al. (2002) with a continuous heterogeneous variance function.  
  For each numerical example, 1000 replications are applied.  The mean and variance of the θ estimator, prediction error 
caused by model misspecification, additional prediction error caused by noisy data and additional prediction error caused by 
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parameter estimation uncertainty are provided based on all the 1000 replications.  For notation convenience, we use the fol-
lowing abbreviations in the numerical experiments: 

 
Table 2. Abbreviations for notations 

 
DK Deterministic kriging model 
NK Nugget effect kriging model 
MK Modified nugget kriging model 
ErrA Overall prediction error 
ErrM Prediction error caused by model misspecification 
ErrN Additional prediction error caused by noisy data 
ErrP Additional prediction error caused by parameter estimation uncertainty (approximation) 
 θ* The estimated θ based on noiseless observations 

 
The ErrA, ErrM, ErrN and ErrP refer to the individual components of the prediction error decomposition in (10).  θ* is 

the θ estimated based on noiseless observations.  The comparison between θ* and θ̂  estimated based on the noisy sample data 
can provide an insight of parameter estimation uncertainty in the stochastic case. 

5.1 One Dimension Quadratic Test Function 

The quadratic test function y=x2 was used in Yin, Ng, and Ng (2008). The function has the following shape: 
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Figure 2. Quadratic test function,  
 

where ε is the additional noise function with step variance σε
2=0.083 when x∈[-5,2), σε

2=8.3 when x∈[2,5].  Observation 
points are located at x=[-5,-4,-3,-2,-1,0,1,2,3,4,5], and the prediction point is located at x=[-0.5].  The results are given in Ta-
ble 3: 
 

Table 3. Results for the quadratic test function 
 

Estimation based on noisy data 
Estimation 
based on 

noiseless data 
DK NK MK 

θ* ErrM θ̂  ErrA ErrN ErrP θ̂  ErrA ErrN ErrP θ̂  ErrA ErrN ErrP 
Mean Var Mean Var Mean Var 

0.832 5.261 1.375 1.102 0.123 0.245 0.625 0.573 0.427 0.003 0.007 0.001 0.294 0.205 2E-
7 0.002 5E-

13 
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From Table 3, we see that the modified nugget effect model helps in reducing the overall prediction error ErrA.  Both the 
prediction error caused by the noisy data and parameter estimation uncertainty for the modified nugget effect model are lower 
than the other two models.  Considering the ErrP to ErrA ratio, an indicator of the fraction of the overall error attributed to 
the parameter estimation uncertainty, we see that the modified nugget effect model has a lower ratio than the other two mod-
els.  As for the estimator, we see from the last two columns that the θ* and prediction error caused by model misspecification 
are very small.  This indicates that there is sufficient samples in the sample space and the correlation is strong in the noiseless 
case.  The estimated θ is higher than the θ* for all three models, which indicates the correlation is weakened by the random 
noise.  Comparing all the three estimated θ’s, the modified nugget effect model has the estimator the closest to θ*.   

5.2 Two Dimension Linear Function 

The two dimension linear function is given as follows: S=x1+ x2 
 

 
 

Figure 3. Two dimension linear test function 
 

Observation points are located at Pi(x1,x2)=[P1(1,1),P2(0,1), P3(-1,1), P4(-1,0), P5(-1,-1), P6(0,-1), P7(1,-1), P8(1,0)], and the 
prediction point is located at P0(x1,x2)=[(0,0)].  To find out how the three models perform as the variance levels at the differ-
ent locations increase, several different noise level scenarios for  σεi

2, i=1,…,8 (shown in Table 4) are tested.  The results are 
given in Table 5. 

 
Table 4. Noise level scenarios for two dimension linear test function 

 
Scenarios σε1

2 σε2
2 σε3

2 σε4
2 σε5

2 σε6
2 σε7

2 σε8
2 

L1 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 
L2 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 
L3 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.1 

 
Table 5. Results for the two dimension linear test function 

 
 

Estimation based on noisy data 

Estimation 
based on 
noiseless 

data 
 DK NK MK θ* ErrM 
 θ̂  ErrA ErrN ErrP θ̂  ErrA ErrN ErrP θ̂  ErrA ErrN ErrP 

1E-
3 

1E-
14 

Mean Var Mean Var Mean Var 
L1 0.10  0.01 0.06 0.05 2E-4 0.09 4E-3 0.03 0.02 1E-4 0.04  2E-3 0.01 0.01 6E-5 
L2 0.18  0.02 0.10 0.09 0.01 0.10  0.01 0.06 0.05 3E-3 0.07  0.01 0.04 0.03 1E-3 
L3 0.36 10.0 0.21 0.13 0.05 0.17 4.24 0.11 0.07 0.02 0.17  3.40 0.08 0.06 0.02 
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Similar results are observed in Table 5.  The modified nugget effect model performs better that the nugget effect model and 
deterministic kriging model in all the three scenarios.  As the variance of the input random noise ε increases from L1 to L3, 
the overall prediction error and all the additional error components increase for all three models.  The ErrP to ErrA ratio also 
increases from L1 to L3.  In L1 where the variance of the random noise is relatively low, the ErrP is not significant consider-
ing the scale of ErrN.  In L3 the ErrP cannot be ignored as it consists of about 20% of the ErrA.  

5.3 Two Dimension Sinusoidal Function 

The sinusoidal function is taken from Hussain et al. (2002).  The plot of the function and design are given as: 
 

 
 

Figure 4. Two dimension sinusoidal test function 

 
 

Figure 5. Design of the sinusoidal test function 
 

The mathematical form of sinusoidal function is: 
 

The additional noise component ε follows normal distribution with zero mean and variance .  Observation points are 
located at Pi(x1,x2)=[P1(0,2),P2(-1,1),P3(1,1),P4(-2,0),P5(2,0),P6(-1,-1),P7(1,-1),P8(0,-2)], and prediction points are located 
at Pj(x1,x2)=[P9(0,0),P10(2,-1)].  The results are given in the following Table 6:  
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Table 6. Results for the two dimension sinusoidal test function 
 

 

Estimation based on noisy data 

Estimation 
based on 
noiseless 
data 

 DK NK MK θ* ErrM 

θ̂  ErrA ErrN ErrP θ̂  ErrA ErrN ErrP θ̂  ErrA ErrN ErrP 14. 
39 

Mean Var Mean Var Mean Var 
P9 118.2 5E3 0.199 0.191 0.005 49.81 4E3 0.192 0.180 0.004 16.26 2E3 0.148 0.129 0.002 0 
P10 7.220 0.317 0.128 7.131 0.242 0.096 7.097 0.224 0.036 6.72 

 
From the results in Table 6, we know that the correlation is rather weak as θ* is large.  For the interpolation at P9, the overall 
prediction error is low compared with the extrapolation case at P10.  The prediction error caused by model misspecification 
in P10 is considerably larger than the one at P9 due to the lack of information for extrapolation.  In this case, considering the 
more appropriate ErrP to ErrN ratio, we see the additional prediction error caused by parameter estimation uncertainty is sig-
nificant in the extrapolation case. 
 Based on the results of the three numerical experiments, some conclusions can be made.  The random noise ε inflates the 
overall prediction error as σε

2 increases.  The additional prediction error caused by parameter estimation uncertainty becomes 
more important when the correlation is weak. This is aligned with the results and conclusions observed in Zimmerman and 
Cressie (1992).  Overall, the modified nugget effect model performs better than the nugget effect model and deterministic 
kriging model as observed in Yin, Ng and Ng (2008).   

6 CONCLUSION  

In this paper, we investigate the impact of parameter estimation uncertainty on three different kriging model forms in sto-
chastic simulations.  We analyzed theoretically a simple two-point problem and conducted three numerical studies.  Based on 
the results of these studies, we find that the sensitivity parameter θ estimated by kriging model is affected by the random 
noise in the stochastic system, and the additional prediction error caused by parameter estimation uncertainty increases as the 
variance of the random noise ε increases.  The proportion of the additional prediction error caused by parameter estimation 
uncertainty in overall prediction error increases when the variance of the random noise ε increases.  In the case when the va-
riability of the noise is low and sufficient sample data is available, this additional error becomes negligible.  Among the three 
kriging model forms studied in this paper, the modified nugget effect model seems to have the best performance in both the 
overall prediction error and additional prediction error caused by parameter estimation uncertainty.  This phenomenon is par-
tially explained in the two-point problem. 

In this paper, we assume that the covariance parameters σS
2 and σε

2 are known or can be accurately estimated. In practice 
however, these parameters are likely to be estimated from the data too.  In the next step of this research, σS

2 and σε
2 should be 

considered in the parameter estimation problem.  In this study also, the approximation used in (8) assumes that the predictor 
is a linear function of estimated parameters.  This however may not hold in many cases and the approximation can be deteri-
orated.  Further studies in alternative approximations can be done. 

A  APPENDIX 

According to Harville and Jeske (1992), the ijth element of A(θ) is: 
 

where in this two-point problem, 

 

 

 

 
As a result, we have:  
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