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ABSTRACT

An aggregate modeling methodology is proposed to predict flow time distributions of an end-of-aisle
order picking workstation in parts-to-picker automated warehouses with overtaking. The proposed
aggregate model uses as input an aggregated process time referred to as the effective process time in
combination with overtaking distributions and decision probabilities, which we measure directly from
product arrival and departure data. Experimental results show that the predicted flow time distributions
are accurate, with prediction errors of the flow time mean and squared coefficient of variation less
than 4% and 9%, respectively. As a case study, we use data collected from a real, operating warehouse
and show that the predicted flow time distributions resemble the flow time distributions measured
from the data.

1 INTRODUCTION

An automated warehouse is a network of processing units that store, transport, and consolidate vast
amount of products. Some typical processing units in such a warehouse are automated storage/retrieval
systems, automated transport systems (e.g., conveyors, automated guided vehicles), and order picking
workstations. For such a system, performance evaluation is essential to provide feedback about how
a specific design or operational policy performs compared with the requirements, and how it can be
improved (Gu, Goetschalckx, and McGinnis 2010).

This paper focuses on performance analysis of one particular processing unit of a parts-to-picker
automated warehouse, namely the order picking workstation. An order picking workstation is a crucial
value-adding processing unit that collects numerous products retrieved from the storage area to fulfill
customer orders. We are mainly interested in predicting the mean and variability of product and order
flow times at such a workstation. Flow time distribution gives an important insight on warehouse
reliability in meeting customer due dates.

Some previous works on flow time prediction of different types of order picking workstations are
available. Koo (2009) compared the mean order flow time and the mean order pick rate of a zone
picking system, a bucket brigade picking, and a combination of the two called zoned bucket brigade
picking. Using a number of simulation experiments, he showed that under certain assumptions the
zoned bucket brigade performs better than the other two systems. Yu and De Koster (2008, 2009)
developed an approximation method based on a G/G/m queueing network to evaluate the mean order
flow time in a pick-and-pass order picking system. Their method produces accurate prediction of
mean order flow time, which is practical for quick evaluation of alternative system designs.

There is only limited literature on performance analysis that considers both the mean and the
variability of flow times for an order picking workstation. A performance analysis method that is able
to quantify these two measures will provide a better insight on the performance of the workstation. In
our previous work (Andriansyah, Etman, and Rooda 2009), we proposed a method based on aggregate
process time for predicting the performance of an end-of-aisle, unit-load order picking workstation.
Assuming a FIFO (First-In-First-Out) processing at the workstation, we were able to predict the mean
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and the variability of product and order flow times. However, overtaking of products and orders,
which often occurs in practice, were not taken into account.

In this paper we extend our previous work on performance analysis of an end-of-aisle order
picking workstation. We relax the assumption of FIFO processing, allowing products and orders to
overtake at the workstation. We propose a simplified simulation model that only requires limited
data obtainable from the shop-floor. We refer to this model as the aggregate model. The key
aspect of this model is that we do not model in detail the stochastic behavior that are typically
difficult to quantify (Rouwenhorst et al. 2000), e.g., the picking time, picking faults, setup times,
equipment failures, etc. Instead, these are all aggregated into a so-called EPT (Effective Process
Time) (Hopp and Spearman 2008). We measure the EPTs directly from arrival and departure times of
products using a sample path equation. Overtaking distributions and a so-called decision probability
are also measured. The aggregate model uses the EPT distribution, the overtaking distributions, and
the decision probability as input. We show that the aggregate model predicts the mean and variability
of product and order flow time with satisfactory accuracy.

The remainder of this paper is organized as follows. Section 2 describes the end-of-aisle order
picking workstation. Section 3 describes the proposed aggregate model. Section 4 elaborates a number
of simulation experiments to validate the aggregate model. Section 5 presents a case study in which
the proposed aggregate modeling methodology is applied to data from a real, operating order picking
workstation. Finally, Section 6 concludes the paper.

2 END-OF-AISLE ORDER PICKING WORKSTATION

A typical layout of a goods-to-men automated warehouse is shown in Figure 1(a). We consider an
end-of-aisle, unit-load order picking workstation as shown in Figure 1(b), which is a part of the
automated warehouse. Products are delivered in totes via conveyors to the workstation. A product
tote contains items of the same SKU (Stock Keeping Unit). An order consists of a number of SKUs
to be picked, which is referred to as the order length. When a picker is idle and the required product
tote is present, the tote is sent to the picker. The picker picks the number of required items out of the
product tote and puts them in an order tote. Note that the picker processes one order at a time. The
order being processed is called the active order, and the totes belonging to this order are referred to
as the active totes. If there are no active totes present in the buffer, then the picker will be idle even
though totes for other orders may be available. Product totes that still contain items after picking are
returned to the storage area.

(a) System layout. (b) Order picking workstation.

Figure 1: An automated warehouse with end-of-aisle order picking workstations.

Tote and order overtaking may occur at this workstation. A tote overtaking takes place when the
next tote processed by the picker is not the oldest active tote in the buffer. We distinguish two types of
tote overtaking. Overtaking by an available tote happens if the picker processes one of the active totes
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in the buffer, but not the oldest one. Overtaking by an unavailable tote happens when the picker does
not pick any active tote, even though one or more active totes are present in the buffer. Instead, the
picker waits for another active tote and picks this tote upon its arrival. Similarly, an order overtaking
occurs when upon finishing an order the picker processes another order that is not the oldest in the
buffer.

3 AGGREGATE MODEL

We propose an aggregate model as shown in Figure 2. It is essentially a single-server queueing system
with an infinite buffer. Within the buffer there are a number of infinite queues, each containing totes
for the same order. When the server is idle, an active tote in the buffer may be processed based
on a so-called decision probability and overtaking distribution. The decision probability gives the
probability that an active tote will be processed or not by the idle picker. The overtaking distribution
is used to determine which active tote in the buffer will be selected as the next tote to be processed.
The server then processes the selected active tote with a processing time sampled from the Effective
Process Time (EPT) distribution.

Figure 2: Aggregate model of an end-of-aisle order picking workstation with overtaking.

Figure 2 shows an example of both tote and order overtaking. The server is currently processing
tote 2.2, which is the 2nd arriving tote of order 2. However, order 1 arrived earlier than order 2 (that
is, order 1 is positioned in front of order 2). Hence, order 2 overtakes order 1. Also, the 1st arriving
tote of order 2 (tote 2.1) has not been processed yet. As such, the 2nd tote of order 2 overtakes the
1st tote of order 2.

We measure the inputs for the aggregate model directly from tote arrival and departure data of an
operating order picking workstation. Having the inputs, we then use the aggregate model to predict
the mean and variability of tote and order flow times of the operating order picking workstation.

3.1 Calculating EPTs

We aggregate all process time components involved in an order picking workstation, e.g., raw pick
time, setup time, and outages, picker unavailability, breakdowns, etc., into a single EPT distribu-
tion. The EPTs are obtained directly from arrival and departure data using either an EPT algorithm
(e.g., Jacobs et al. (2003)) or using a sample path equation (e.g., Kock, Etman, and Rooda (2008)),
depending on how the aggregate model is defined. For the aggregate model proposed here, we will
use a sample path equation to calculate the EPTs.

To illustrate how EPTs are calculated, we use an example of arrivals (A) and departures (D) of
three active totes as shown in Figure 3. There is no tote overtaking in this example; totes are processed
in a FIFO sequence. The EPTs of the three totes are depicted at the bottom part of the figure. We
use the following sample path equation to calculate the EPTs:

EPTi = Di −max{Ai,Di−1}. (1)

Di denotes the departure time of i-th departing tote. Ai denotes the arrival time of the corresponding
i-th departing tote. Note that the EPT of tote 1 (EPT 1) is comprised of a setup (time 0–3) and picking
(time 3–7), while the EPT of tote 3 (EPT 3) is comprised of picking (time 11–13.5 and time 15.5–18)
and a disruption (time 13.5–15.5).
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Figure 3: Tote-time diagram for active totes with order length k = 3, FIFO processing.

An EPT distribution is created when the EPTs of all totes have been calculated. We use a gamma
distribution to represent the EPT distribution, but other suitable distributions may be used as well.
The EPT distribution is used to sample the processing times of totes in the aggregate model.

3.2 Measuring Overtaking

We model tote overtaking by means of wip-dependant overtaking distributions. The following variables
are used:

w = the number of active totes in the buffer.
wR = the number of remaining active totes not yet arrived.
pos= the position of the active tote in the buffer that is processed next by the picker.

Let us observe the tote-time diagram in Figure 3. The picker finishes processing tote 1 at time 7.
At that moment, totes 2 and 3 are in the buffer and the next tote processed is the oldest tote (according
to FIFO processing). Hence, at time 7 we have w = 2 and pos = 1. With the FIFO assumption, the
value of pos will always be equal to 1 since the next tote to be processed is always the active tote
located at the first position in the buffer.

Relaxing the FIFO assumption, we distinguish two types of tote overtaking, namely overtaking
by an available tote and overtaking by an unavailable tote. Figure 4 depicts the two different types
of tote overtaking.

(a) Tote overtaking by an available tote. (b) Tote overtaking by an unavailable tote.

Figure 4: Tote-time diagram for active totes with order length k = 3, with tote overtaking.

Let d be the decision of whether or not an active tote is immediately processed once the picker
is idle and there is at least one active tote in the buffer, where:

d =

{

1, A tote is processed.

0, A tote is not processed.
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In the case of overtaking by an available tote (Figure 4(a)), a tote is always processed if the picker is
idle and there is at least one active tote present in the buffer. Therefore, we always have d = 1. The
tote processed next is not the oldest active tote in the buffer. In Figure 4(a), tote 3 is processed earlier
than tote 2, although tote 2 arrived earlier than tote 3. Hence, tote 3 overtakes tote 2. At time 7 we
register pos = 2 since the active tote processed next (tote 3) is located at the second position in the
buffer (behind tote 2). In general, pos > 1 indicates a tote overtaking.

In the case of overtaking by an unavailable tote (Figure 4(b)), it is possible that a tote is not
processed even though the picker is idle and there is an active tote present in the buffer. In Figure
4(b), the picker is idle at time 7 and tote 2 is present in the buffer. However, the picker does not
immediately process this tote. Thus, we register d = 0. Note that two out of three active totes have
arrived (given order length k = 3). Hence, we register the number of remaining active totes not yet
arrived wR = 1 at time 7. Tote 3 arrives at time 9; it is processed immediately. At that moment we
register the number of active totes that has been waited by the picker n = 1, because there is only one
new active tote waited for (tote 3) after d = 0 at time 7. We consider time 7–9 as capacity loss.

Figure 5 illustrates order overtaking. There are three orders: P, Q, and R, which arrived at times
0, 1, and 8, respectively. Note that the arrival time of an order is equal to the arrival time of the first
tote of that order. Each order consists of two totes. Order R overtakes order Q at time 11. To measure
order overtaking, we use the same variables w and pos as in measuring tote overtaking. However,
here w represents the number of orders in the buffer and pos represents the position of the order that
is processed next by the picker. These two variables are evaluated every time a picker has finished
an order.

Figure 5: Tote-time diagram illustrating order overtaking.

A number of wip-dependant overtaking distributions and wip-dependant decision probabilities are
created once all tote and order overtaking have been measured. For the overtaking distribution, the
wip level represents the number of active totes (tote overtaking) or orders (order overtaking) in the
buffer. For the decision probabilities, the wip level represents the number of remaining active totes
not yet arrived.

3.3 Predicting Flow Times

We simulate the aggregate model with the EPT distribution, wip-dependant overtaking distributions,
and wip-dependant decision probabilities as input. The mean and variability of tote and order flow
times are then obtained.

The aggregate model works as follows. We generate totes in the aggregate model with an arrival
process representing the operating order picking workstation. If the server is idle and the buffer
contains one or more active totes, then we make a decision on whether or not one of the active totes
is processed. This decision is based on the value sampled from the correct wip-dependant decision
probabilities. Here, the wip corresponds to the number of remaining active totes not yet arrived. If it is
decided that a tote should be processed, then we sample a wip-dependant tote overtaking distribution
to determine which active tote will be processed. Here, the wip corresponds to the number of active
totes in the buffer. On the contrary, if it is decided that none of the active totes in the buffer should
be processed, then we sample the number of active totes that should be waited for. The server stays
idle until the number of arriving active totes is equal to the sampled value. In this way, we model
the capacity losses explicitly in the aggregate model. The selected tote will be sent to the server to
be processed with a processing time sampled from the EPT distribution. If the picker has finished
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an order, the next order to be processed is determined using the wip-dependant order overtaking
distribution.

The aggregate model gives tote and order flow times at output. Tote flow time is defined as the
total time spent by a tote at the order picking workstation, which starts when a tote arrives at the
workstation and ends when it departs the workstation. Order flow time is defined as the time required
to complete an order, which starts when the first tote of an order arrives at the workstation and ends
when the last tote of the order departs the workstation.

4 MODEL VALIDATION

We conducted a number of simulation experiments to validate the aggregate model. First, we need
tote arrival and departure times to calculate the inputs for the aggregate model. Ideally, these arrival
and departure times are obtained from a real, operating order picking workstation. However, for
validation purposes we create a simulation model of the workstation in Figure 1(b) to generate tote
arrival and departure times. These are generated at one utilization level called the training point. We
refer to this “simulated” operating order picking workstation as the detailed model. Subsequently,
we determine from the arrival and departure data the EPT distributions, overtaking distributions, and
the decision probabilities. The detailed and aggregate models are then simulated at various utilization
levels to compare the flow times from both models.

Some parameters used in the detailed model are as follows. Totes from three orders arrive
simultaneously at the workstation according to a Poisson process with a total arrival rate of δ . Once
all totes of an order have arrived, the totes from a new order start arriving. Hence, totes from three orders
are continuously arriving. We assume a uniformly distributed order length in the range {1,2, ...,20}.
Four types of process time are modeled. Raw pick time is the time required to pick a tote. A setup,
which includes activities such as moving the active order tote to the take away conveyor, scanning
the barcode of a new order tote, and placing the new order tote at the pick position, is performed only
when the picker processes the first tote of an order. Disruptions such as incorrect tote administration,
unreadable barcode, or distraction from other pickers occur during order picking. Table 1 summarizes
the values of parameters used in three experiments with the detailed model.

Table 1: Parameters for the detailed model.

Distribution type Parameter(s)
Raw pick time Gamma mean = 17.5 seconds, SCV = 0.8
Setup time Uniform min = 10.0 seconds, max = 15.0 seconds
Time between disruptions Exponential mean = 30 minutes
Disruptions length Exponential mean = 2 minutes

In the first two experiments we create only tote overtaking in the detailed model. We assume that
upon departure of a tote, all active totes in the buffer and a pre-defined number of remaining active
totes not yet arrived have the same probability to be selected as the next tote to be processed. That
is, the next tote to be processed is the x-th arriving active tote, which is selected with the probability

p(x) =
1

N +min{nT,(k−m)}
. (2)

In this equation, N is the number of active totes in the buffer, k is the order length of the active order,
m is the number of active totes that have arrived at the buffer so far, and nT is a user-defined tote
overtaking parameter representing the number of remaining active totes not yet arrived that can also
be selected as the next tote to be processed. Note that if all active totes have arrived (m = k), the
next tote to be processed will be one of the active totes in the buffer (N). Figure 6 illustrates tote
overtaking in the detailed model with nT = 3 and order length k = 10.

To model the two types of tote overtaking (see Section 3.2), we set nT = {0,1,3,5}. Overtaking
by an available tote is modeled with nT = 0, which suggests that the next tote to be processed may
only be selected from the active totes present in the buffer. With nT = {1,3,5}, we model overtaking
by an unavailable tote at different extents.
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Figure 6: Tote overtaking in the detailed model: each active tote at positions N + nT has the same probability given
by Equation (2) to be selected as the next tote to be processed by the server S.

In the third experiment we create both tote and order overtaking in the detailed model. For the
tote overtaking we set nT = {0,3}. For the order overtaking we assume that when an order has been
finished, each order in the buffer has the same probability to be selected as the next order.

The experimental setup is as follows. At each value of nT, arrival and departure data of 1,000,000
totes are generated from one simulation run of the detailed model. This is performed at training point
u = 0.8, where u = δ/δmax, δ is the total tote arrival rate, and δmax is the maximum throughput. To
obtain the mean and variability of flow times, we run the detailed model and the aggregate model at
utilization levels u = {0.30,0.32,0.34, ...,0.98}. Fifty simulation runs are performed at each utilization
level for both models. Each run length covers 300,000 totes excluding a warm up period of 30,000
totes.

Figure 7 depicts the frequency and probability of tote overtaking under different values of nT
from 1,000,000 totes. The frequency of overtaking by available totes increases with nT, while the
frequency of overtaking by unavailable totes decreases slightly with larger nT (see Figure 7(a)). Yet,
larger nT leads to higher probability of overtaking many totes, as more remaining active totes that
have not yet arrived may also be selected as the next tote to be processed (see Figure 7(b)).

(a) Frequency. (b) Probability.

Figure 7: Tote overtaking under different values of nT.

4.1 Tote Overtaking by an Available Tote

For tote overtaking by an available tote (nT = 0), each active tote in the buffer has the same probability
of 1/N to be selected as the next tote (see Equation 2).

Figure 8 shows the EPT distributions and some of the wip-dependant overtaking distributions
measured from tote arrival and departure data. There are two EPT distributions as shown in Figure
8(a), namely the EPTs of the first tote of an order (EPTs 1st) and the EPTs of the remaining totes
of an order (EPTs 2+). We sort the EPTs into two distributions because these two sorts of EPTs are
not identically distributed. This is because EPTs 1st always contain setup times, whereas no setup
time is involved in EPTs 2+. This approach is referred to as the 1st tote difference EPT approach
(Andriansyah, Etman, and Rooda 2009). The significant difference between EPTs 1st and EPTs 2+
can be seen from their CDF (Cumulative Distribution Function) in Figure 8(a).

Figure 8(b) depicts tote overtaking distributions for the number of active totes in the buffer
w = {2,4,6,8,10}. Since each active tote has the probability of 1/N to be selected as the next tote
according to Equation (2), we expect to see a uniform distribution for all values of w. This is verified in
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Figure 8(b), where the active totes at the 1st until the w-th position in the buffer have equal probability
to be selected.

In the case of tote overtaking by an available tote, an idle picker always processes an active tote
as long as there is at least one active tote in the buffer (see Figure 4(a)). This is modeled explicitly
in the aggregate model.

Figure 9 compares the mean flow times at various utilization levels u from the detailed model and
the aggregate model. The flow time prediction by the aggregate model is very accurate as compared
to the detailed model, with prediction errors of less than 0.25% for the mean flow times and 5.3%
for the Squared Coefficient of Variation (SCV) of the flow times at all simulated utilization levels.

(a) CDF of EPTs. (b) Tote overtaking distributions for wip levels w.

Figure 8: Measured input for the aggregate model with tote overtaking by an available tote.

(a) Tote. (b) Order.

Figure 9: Mean flow times in case of tote overtaking by an available tote.

4.2 Tote Overtaking by an Unavailable Tote

Tote overtaking by an unavailable tote is modeled in the detailed model by setting nT = {1,3,5}. By
having different values of nT, we investigate the effect of intensity of overtaking by an unavailable
tote on the flow time prediction accuracy by the aggregate model.

Figure 10 depicts the wip-dependant decision probabilities p(1) of processing an active tote in
the buffer when the picker is idle. In this figure, the wip level wR indicates the number of remaining
active totes that have not arrived. As expected, p(1) decreases with increasing wR. That is, the more
remaining active totes not yet arrived, the lower the probability that one of the active totes in the
buffer is processed. We also verify that larger nT leads to lower p(1), given the same utilization level.
This is because larger nT allows for more remaining active totes not yet arrived to be selected, hence
lower p(1). Note that these decision probabilities are measured from the detailed model at utilization
level u = 0.8 and are used in the aggregate model to predict the flow times at various utilization levels
u = {0.30,0.32,0.34, ...,0.98}.

At all three settings, the aggregate model accurately predicts the mean and variability of tote and
order flow times. The prediction errors for the mean tote and order flow times are less than 3.71%
and 2.18%, respectively. The prediction errors for the SCV of tote and order flow times are less than
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Figure 10: Measured decision probabilities from the detailed model at utilization level u = 0.8.

8.54% and 3.00%, respectively. Figure 11 compares the mean tote and order flow times from the
detailed and the aggregate model.

(a) nT = 1. (b) nT = 3. (c) nT = 5.

Figure 11: Mean tote flow times in case of tote overtaking by an unavailable tote.

4.3 Tote and Order Overtaking

We now consider the case where tote and order overtaking happen at the workstation. We allow tote
overtaking by an available and an unavailable tote. Order overtaking occurs only between available
orders; each order in the buffer has an equal probability to be selected as the next order.

Figure 12 compares the results from the aggregate model with and without order overtaking
distribution to the results from the detailed model with nT = 3. Without overtaking distribution, the
aggregate model assumes a FIFO processing of orders. The figures suggest that the order overtaking
distribution is significant to flow time prediction accuracy. This is because order overtaking happens
very often in the detailed model. Furthermore, the flow time prediction by the aggregate model is less
accurate at very high and very low utilization levels. Recall that the wip-dependant order overtaking
distributions are obtained from the detailed model run at training point u = 0.8 and then used for
all utilization levels in the aggregate model. However, when the aggregate model is run at a high
utilization level (e.g., 0.98) it is very likely that an order overtaking distribution required for a high
wip level is not available, simply because this high wip level was not encountered at the training
point. In this case, we use the order overtaking distribution for the maximum available wip level
instead. This way of compromising for missing order overtaking distribution decreases the prediction
accuracy. Note that the aggregate model predicts the flow times more accurately given a detailed
model with nT = 0.

5 CASE STUDY

A real, operating automated warehouse is used as a case study to show the application of the proposed
aggregate modeling methodology. We consider an automated warehouse that supplies a number of
supermarket chains in the Netherlands. This warehouse consists of five miniloads, a conveyor loop,
and three end-of-aisle order picking workstations as shown previously in Figure 1(a).
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(a) Tote. (b) Order.

Figure 12: Mean flow times in case of tote and order overtaking, nT = 3.

(a) Sorts. (b) CDF.

Figure 13: Different sorts of EPTs measured from the case study data.

We collected tote arrival and departure data of three working days from all three workstations. The
data is comparable to the one that was generated using the detailed model for validation purposes in
the previous section. Each tote arrival or departure contains information about the time of occurrence,
tote ID, order ID, and order length. A total of 18.3% tote overtaking has been measured, in which
15.9% is overtaking by available totes and the remaining 2.4% is overtaking by unavailable totes.
There is also 4.6% order overtaking in the data.

All parameters for the aggregate model are obtained only from tote arrival and departure data. We
measure separately for each workstation the overtaking distributions, the decision probabilities, and
the EPT distributions. Subsequently, we reconstruct the arrival process of totes at each workstation
such that the interarrival time of totes and the interarrival time of orders are correctly represented.

A closer examination to the EPTs measured from the data reveals that there are several sorts of
EPTs. As expected, the EPTs of the first totes of an order are larger than the EPTs of the remaining
totes of an order due to the setup applied to every first totes of an order. Furthermore, we observed
that many large EPTs occur when not all totes for the active order are present in the buffer. A possible
cause is that the pickers hesitate to wait for totes so they leave the workstations when the totes are
not yet complete in the buffer. Since time during which the picker leaves the workstation is included
in the EPT of the next tote to be processed, a large EPT occurs. As such, we sort the EPTs based
on the completeness of totes in the buffer when the picker starts picking a tote. We also consistently
found in the data that EPTs of the first totes after a capacity loss (e.g., EPT of tote 3 in Figure 4(b))
are substantially larger than other EPTs. The reason is because these EPTs include the time when
the pickers actually have not returned yet after leaving the workstation following a capacity loss.
Thus, we also treat these EPTs separately and label them as EPT After Capacity Loss (ACL). Figure
13 shows the different sorts of EPT and the Cumulative Distribution Functions (CDF) of EPTs for
workstation 1.
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(a) Workstation 1. (b) Workstation 2. (c) Workstation 3.

Figure 14: Tote flow time distributions.

(a) Workstation 1. (b) Workstation 2. (c) Workstation 3.

Figure 15: Order flow time distributions.

We simulated the aggregate model with 50 replications, each with a run length of 1,000,000 totes
excluding a warm-up period of 300,000 totes. We simulate each workstation separately. The resulting
flow time distributions from the aggregate model are compared with those measured from the data.
Figures 14 and 15 show the comparisons for all three workstations. Note that in reality, the three
workstations operate within limited working hours. For non steady-state analysis, we also performed
50 simulation runs in which the simulation is terminated once the number of product totes processed
in one working day has been reached. The results are compared to the real data obtained from the
three working days.

In general, the tote flow time distributions are accurately predicted by the aggregate model for all
three workstations. The prediction accuracy of order flow time distributions is slightly less compared
to that of tote flow time distributions. The prediction errors for the mean tote and order flow times
are less than 1.35% and 6.31%, respectively. The absolute difference of SCV of tote and order flow
times between the data and the aggregate model are less than 0.11 and 0.08, respectively. These
values applies to all three workstations. Results from the non steady-state simulation also shows that
the 95% confidence interval of the mean flow time from the aggregate model contains the flow times
from the real data.

6 CONCLUSIONS

In this paper we have proposed an aggregate modeling methodology to predict the flow time performance
of an end-of-aisle order picking workstation with product overtaking. We require only limited,
measurable data namely the arrival and departure data of totes. Based on this data, we reconstruct the
effective process time distribution, overtaking distribution, and the decision probability to be used in
the aggregate model. Using a number of simulation experiments, we have shown that the aggregate
model predicts flow time of product and order accurately. We have also applied the methodology to
data obtained from a real, operating automated warehouse. The resulting flow time prediction shows
satisfactory accuracy.

The proposed aggregate modeling methodology should be of value for analyzing system per-
formance under different settings of order release strategies, product interarrival rates, order length
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distributions, etc. We also foresee the use of effective process time as a real-time performance
monitoring tool for such an order picking workstation.

Future research will be directed towards aggregate modeling methodology for end-of-aisle order
picking workstations where pickers are allowed to process multiple orders simultaneously. This
particular type of system is often encountered in practice since it allows for significantly higher
throughput.
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