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ABSTRACT 

The MSER algorithm for determining the warm-up period in steady-state simulations was introduced in 

1990.  Over the past two decades, empirical evaluations by different research teams have demonstrated 

the effectiveness of the procedure.  These extensive empirical results illustrate the relative advantage of 

MSER over other approaches under alternative bias scenarios.  In this paper, we develop parametric ex-

pressions to explore how MSER should behave in the case of simulation output with geometrically decay-

ing bias and white noise.  We derive a closed-form expression for the expected optimal truncation point 

for this scenario.  This permits computation of the threshold bias-to-noise ratio for bias detection in terms 

of the rate of decay of the initial bias and the strength of autocorrelation in the output sequence.   

1 INTRODUCTION 

Initialization bias arises when the  initial conditions for a steady-state simulation are chosen as a matter of 

convenience.  If these conditions are unrepresentative of steady-state operation (have small stationary 

probabilities and values that are far from the steady-state mean), bias is introduced in the estimation of 

output statistics.  The most common most means for reducing this bias is simply to delete the offending 

observations from the beginning of the trial and to compute statistics using only the remaining observa-

tions.  This technique is generally called truncation or deletion. 

The question remains as to how to determine the appropriate number of observations to truncate. In-

adequate truncation fails to remove the bias sufficiently;  over-truncation comes with a loss of precision.  

One method for selecting the truncation point is the MSER-5 algorithm (Spratt 1998), a modification of 

the original MSER heuristic described by White (1997).  (See, also, White et al. 2000 for a more readily 

available discussion of MSER-5.)  Though MSER-5 has been shown to work exceptionally well, requir-

ing little computational bandwidth or experimenter intervention (Hoad, Robinson, and Davies 2009), 

prior analyses have been largely empirical in nature. 

In this paper we introduce a parametric approach to analyzing the expected behavior of the MSER al-

gorithm and apply this approach to an output model with geometrically decaying bias and constant-

parameter AR(1) white noise.  With a parametric expression for the expected behavior, we can begin to 

drive to more fundamental understandings of MSER and can explore boundary conditions.  Such explora-

tions can also yield broader insights into simulation output analysis. 
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2 THE MSER CRITERION 

The MSER statistic is 
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where n is the simulation run length, d is an arbitrary truncation point, and 
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is the mean of the output series {yt; t=1,2,…,n} truncated at d.  The MSER criterion specifies the optimal 

truncation point as 

 

[ ]),(minarg* dnMSERd
nd <<

=  

3 A SURROGATE MODEL 

To explore the behavior of MSER, consider a general surrogate model for a simulation output variable 
 

ttt by εµ ++=  

 
The output has three components:  

 

(i) the steady-state mean of the output, the constant term µ ,  

(ii) a bias term, which vanishes in the limit, i.e., bt→0 as t→∞, and  

(iii) a zero-mean, stationary  process εt, which introduces white noise into the output observations.   
 

For this surrogate model, the expectation of the MSER statistic is 
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Consider a special case of the surrogate model suggested by Nelson (2009):  

 

 (i) a geometrically decaying bias term 
t

t brb =  

 

where 1>r>0 is the rate of bias decrease and b>0 is a scaling constant.  If the run length n is suffi-

ciently large, bn≈0 and the bias component of the MSER expectation is  
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 (ii) a constant-parameter, AR(1) noise process 

 

ttt ηφεε += −1  
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with positive parameter 1>ϕ>0 and ηt  a zero-mean, stationary process with variance σ2 and initial 

condition η0 =0.  The variance of this noise process is  
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and the autocorrelation function is 
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For n sufficiently large, the correlation component of the MSER expectation is 
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For this special case, the optimal truncation point corresponding to the expectation is 
 

( ) ( )( ) 























−−
+

−
=

+

drndrn

r
Ed

d

d )(1

1

)(
minarg*

22

)1(22
2

ϕ

β
σ        (1) 

 

where β=b/σ is the peak bias-to-noise ratio.  This normalizing constant allows us to express an arbitrary 
truncation point in terms of the ratio of the magnitude of the initial bias to the variability inherent in the 
noise process.  For the run length to be “sufficiently large”, define an effectively zero bias as, say, 

bn=γ<<1.  Then, a run length of  

n(r) =
log γ( )
log r( )

 

 

is sufficient to allow a decay of 100(1-γ)% the bias term at the termination of a run. 

4 ANALYSIS 

4.1 The optimal truncation point 

To determine the relationship between the optimal truncation point, d*, and the parameters of the surro-

gate model (β, r, ϕ) we solve for the zeros of the derivative of E[MSER]. Differentiating, 
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Therefore, d=d* (integer) yields the approximate zeros of the expectation when 
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For n>>d 
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and the optimal truncation point is  and the optimum truncation point is 
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Note that for n sufficiently large, since 1>r>0, the term 
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and is monotone increasing in d, approaching zero in the limit. Therefore there will be at most one change 

in sign in the derivative (negative to positive) as d increases.  This change indicates that the zero has been 

“trapped” between succeeding integer values d. 

4.2 Interpretation  

Consider first the combinations of (β, r, ϕ) which imply no truncation.  The detection threshold values of  

β correspond to d*=d+δ < 1, where δ  is vanishingly small.  Hence 
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The threshold values for β are plotted in Figure 1(a) as a function of r for selected values of  ϕ.  These 

curves define the initial signal-to-noise ratio β  below which bias cannot be detected.  In effect, the bias 

gets lost in the noise.  As a check, the treshold values also were determined empirically.  These values are 

shown in Figure 1(b).  While the empirical curves are modestly steeper, the shape of the curves agree. 

As shown, the threshold increases with increasing autocorrelation—greater variance in the noise 

process makes the bias increasingly difficult to identify.  The threshold also increases as the rate of bias 

decay approaches zero.  As r→0, the bias decays to zero almost instantaneously, contributing little to the 

sample mean; as r→1, the bias persists and E[MSER] adjusts by requiring a lower initial bias in order to 

allow later samples to overwhelm the effects of that initial bias.  These results are consistent with the gen-
eral observations of White and Robinson (2010). These observations also explain why MSER-5 provides 
improvement over MSER, smoothing the output time-series and thereby increasing the bias-to-noise ratio. 
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(a) (b) 

 

Figure 1: Threshold values of β, r, and ϕ that give E[d*] ≈ 0.   

 

Next consider the general case where t< d*< t+1, and t observations are truncated.  In this instance, 

the maximum threshold is βt =βr
t and 
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Therefore, d* is the smallest integer t such that Inequality (2) is true. 

4.3 An Example 

Consider the special case of the surrogate model with parameters µ=100, r=0.9, b=10, ϕ=0.9, σ=10, and 

γ=0.001.  For these parameter values, β=1, Var(εt)=1000, and n(r)=65.56.  β is well below the threshold 
value of 1.80 and therefore d*=0.  An instance of the output is shown in Figure 2(a).   

Consider also an instance of the output shown in Figure 2(b), where the initial bias is increased ten-

fold (b=100) and all of the other parameters are unchanged.  β=10 is well above the threshold and the 
truncation point is d*=13. 

The “trunc mean” line in Figures 2(a) and 2(b) is the computation of the expected sample mean if we 

truncate prior to time index t.  In Figure 2(a), we notice that this line doesn’t move noticeably from the 

mean of µ = 100, which agrees with our expectation that E[d*] = 0.  In the example of Figure 2(b), where 

we expect d* to be equal to 13, we indeed see that the truncated mean values approach the mean of µ = 
100 between t = 10 and t = 20. 
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(a) (b) 

Figure 2: Example of initial bias below (a) and above (b) detection threshold 

 

4.4 Using larger n 

In practice we don’t know n(r).  Implementations of MSER include a rule that forces more data to be 
collected if the selected d* falls in the second half of the collected sample.  Practical guidance also sug-
gests that we should use n much larger than 65, regardless of the mean estimation method used, simply to 

improve our confidence in the estimate about the mean.  So, what happens when we use n much larger?  It 
turns out that the estimate of d* generated in the case we’ve been examining is highly resilient to increas-

es in the value of n chosen.  In Figure 3 we repeat the bias-to-noise plot of Figure 1, but replace the com-
puted n(r) value with a fixed value of n = 1000.  The effect is roughly to shift the curves for each value of 

ϕ left by r = -0.03 and slightly increase the second partial derivative with respect to r.  

 

 
 

Figure 3: Threshold values of β, r, and ϕ that give E[d*] = 0, where n = 1000 
 

Of special interest is a slight non-monotonicity introduced at values of r approaching 1.  At these ex-

treme values of r, the initial bias damps out so slowly that a larger bias signal, relative to the variance of 
the noise, is required to create a condition where MSER concludes that truncation is required.  An exam-

ple where r = 0.99 is shown in Figure 4.  The other values are µ = 100, b = 10, ϕ = 0.9, σ = 10, and, thus, 

β = 1. 
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Figure 4: Example case where r = 0.99 

5 CONCLUSIONS 

In this paper, we introduced a technique for analyzing the expected behavior of the MSER bias truncation 

algorithm.  This technique was used to analyze the expected behavior for the particular case where the 
bias takes the form of a geometrically decaying bias signal.  We found that for a given noise correlation 

value and bias decay parameter, we can find the threshold bias-to-noise ratio required for MSER to return 
any specified truncation value.  For bias magnitudes below this threshold, the bias cannot be distinguished 
from the noise. We noted that higher correlation values lead to higher values of the threshold.  Likewise, 

cases where the bias decays more rapidly, the number of biased samples is small enough that a larger bias 
relative to the noise variance is required for MSER to recommend truncation.  These results are consistent 

with the observation of White and Robinson (2010) that initialization bias increases not only with the 
magnitude of the bias, but also with the autocorrelation of the output. These observations also explain 
why MSER-5 provides improvement over MSER, smoothing the output time-series and thereby increas-

ing the bias-to-noise ratio. 
The techniques used in this paper can be used for other types of bias descriptions to examine the rela-

tionship between the expected results of MSER and the parameters of the bias description. 
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