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ABSTRACT

Metamodels have been used frequently by the simulation community. However, not much research has been
done with nonparametric metamodels compared with parametric metamodels. In this paper, smoothing splines
for performing nonparametric metamodeling are presented. The use of smoothing splines on metamodeling
fitting may provide functions that better approximate the behavior of the target simulation model, compared
with linear and nonlinear regression metamodels. The smoothing splines tolerance parameter can be used to
tune the smoothness of the resulting metamodel. A good experimental design is crucial for obtaining a better
smoothing spline metamodel fitting, as illustrated in the examples.

1 INTRODUCTION

Simulation models are commonly used for providing insight on the behavior of particular real systems.
They allow to estimate the changes on system performance produced by changes to the system design, and
consequently are used for decision making. However, experimentation with these models is, frequently,
time consuming, and metamodels are often constructed. A metamodel is a mathematical approximation of
the observed input-output relationship defined by the more detailed simulation model. By representing the
behavior of the original simulation model by a mathematical function, the metamodel captures the essential
characteristics of the system (Barton 1992). Metamodels may also be used as building blocks of larger
simulation models (Santos and Santos 2009). Metamodels may be parametric (for example, Y = θX2 + ε),
and nonparametric in which the metamodel structure is not specified a priori, that is, the nature and the
number of the unknown parameters are not fixed in advance. Little research has been done with nonparametric
metamodels compared with parametric metamodels (Keys and Rees 2004).

The general linear metamodel has been often used because of its simple construction and utiliza-
tion (Kleijnen 1975, Cheng and Kleijnen 1999, Kleijnen and Sargent 2000). The weakness of polynomial
metamodels is their inability to provide a global fit to smooth response functions of arbitrarily com-
plex shapes (Barton 1992). Some alternative metamodels have been proposed like, for example, rational
metamodels (Hendrickx and Dhaene 2005) and several nonlinear metamodels that allow a better and more
realistic global approximation of the input-output simulation behavior; for example, Bayesian metamod-
els (Cheng and Kleijnen 1999), Kriging metamodels (Kleijnen and van Beers 2004), nonlinear regression
metamodels (Santos and Nova 2006), and neural nets (Badiru and Sieger 1998).

High order polynomial fits are non robust. Consequently, if a quadratic approximation to the input-output
in inadequate, then a more accurate class of functions must be used. The drawbacks of the polynomial approach
are avoid if the experimental region is divided in several small sub-regions, and on each sub-region a low order
polynomial approximation is used (piecewise polynomial approximants). Consequently, an alternative for
metamodeling is to use spline functions. In simulation optimization context (Daughety and Turnquist 1978)
used splines for estimating, not only the optimal response from the simulation, but also for obtaining the
estimated response surface over the entire experimental region of the problem.

A description of spline metamodel construction techniques is presented by (Barton 1992). The same
author points out that the selection of an experimental design for fitting alternative models, such as spline
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metamodels, was still a drawback in their widespread use. However, interpolating spline approximation can
produce good approximations, if sufficiently accurate input-output values are available (de Boor 2001). This
is the case when the simulation model output response is deterministic, or when in stochastic simulation
the variance along the experimental region is not very large. Our approach is to use smoothing splines for
metamodeling. This approximation method using smoothing splines is based on the tradeoff between the
accuracy of the approximation at observed values, and the smoothness associated with the metamodel.

This paper addresses, in following Section, the use of smoothing spline functions as an approximation
method. In Section 3 the application of the Reinsch’s smoothing splines to the construction of simulation
metamodels is presented. Some issues in metamodel experimental design are explained in Section 4. Two
examples are used, in Section 5, to illustrate and discuss the proposed metamodeling procedure comparing
with other metamodeling approaches, and using different experimental designs. The Section 6 is reserved for
conclusions.

2 SPLINE ADJUSTMENT

To adequately approximate a function of various variables given only the value of the function, frequently
perturbed by noise, at several points in the dependent variable interval is a problem that appear in many
disciplines. The objective is to model the dependence of the response y as a function of one or more explanatory
variables x1, . . . ,xs. Suppose that the system that produced the data is described by

y = f (x)+ ε

over some interval [a;b] ∈ R, where ε is an additive stochastic component with zero expected value, and x is
one explanatory variable. A common used approach is to fit a parametric function to the data by least squares.
This approach does not permit large flexibility and is likely to generate accurate approximation functions only
when the hypothetical curve is close to the true functional form.

An alternative that allow more flexibility of the approximation is to combine piecewise and local parametric
fitting and roughness penalty methods (Friedman 1991). In piecewise parametric fitting the function f is
approximated by simple parametric functions on each sub-interval [xi;xi+1] of [a;b] (i = 1, . . . ,n−1); frequently
these simple functions are low order polynomials. The approximating function f is assumed to be continuous
and sometimes have continuous low order derivatives on [a;b]. The number of sub-intervals, and lowest
order derivative that is discontinuous, allow to control the tradeoff between smoothness and flexibility. The
most used piecewise polynomial fitting methods are based on splines. In this case, on each sub-interval, the
approximating function is a polynomial of degree m and the derivatives of the approximating function are
assumed to be continuous until order m−1; a common choice is m = 3.

Splines functions are inherently better compared to polynomials for approximating input-output relation-
ships whose behavior in a sub-region may be unrelated to the behavior in another sub-region or when the
response vary rapidly. Polynomials have global dependence on local behavior, that is, the behavior in a small
sub-region, of the experimental region, has a strong influence on their behavior along the entire experimental
region. Splines do not have this drawback because they are piecewise low polynomial functions. The idea
behind spline smoothing is to find an approximating function which fits accurately the input-output data, but
also is a smooth function. The lack of accuracy is frequently defined by the residual sum of squares

E( f ) =
n

∑
i=1

[yi − f (xi)]
2

so the fit term is formed by a sum of squared differences between the response values and the value of the
function at the predictor variable values. The function smoothness is measured by the integral of the square
of a derivative of the function over the interval [a;b]

I( f ) =

∫ b

a
[ f (d)(x)]2dx

The integral I( f ) is a functional that increases with increasing roughness of the function f .
A univariate piecewise polynomial, frequently constructed by interpolation or smoothing, is characterized

by its break sequence, and its polynomial coefficients on each sub-interval. The breaks are the design points
used for constructing the spline function, and it is assumed to be in a strictly increasing sequence, X1 < .. . < Xn;
so the number of polynomial pieces is n−1. The degree of the polynomial may vary along the sub-intervals,
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but within each spline all polynomials are of the same order m, i.e.,

θi,mxm + . . .+θi,2x2 +θi,1x+θi,0, if xi ≤ x < xi+1, i = 1, . . . ,n−1

Consequently, a univariate piecewise polynomial may be represented by the matrix (n−1)× (m+1)

Θ =









θ1,m . . . θ1,2 θ1,1 θ1,0
θ2,m . . . θ2,2 θ2,1 θ2,0

...
...

...
...

θn−1,m . . . θn−1,2 θn−1,1 θn−1,0









(1)

and the vector of breaks x = (x1, . . . ,xn)
T . When more and more design points are used, the row rank of the

matrix Θ becomes higher and the class of metamodels becomes more rich, allowing the representation of the
true input-output function with more and more detail. In spline modeling the number of unknown coefficients
depends on the number of design points. In this case, f is a function that is smooth in some sense. A common
assumption is to consider f to be twice continuously differentiable in the region of interest.

The smoothing spline functions introduced by (Schoenberg 1964) and (Reinsch 1967) has become the
most frequently used spline. The Reinsch’s smoothing spline f minimizes the total squared approximating
function curvature

∫ b

a
[ f (2)(x)]2dx (2)

among all functions such that

n

∑
i=1

[

yi − f (xi)

δyi

]2

≤ S, f ∈C2[a;b], (3)

where δyi’s are positive weights, and S ≥ 0 is a scaling parameter.
Smoothing spline estimators arise with (Schoenberg 1964) whose work was based on the idea of smoothing

presented by (Whittaker 1923), and a detailed survey on smoothing splines can be found in (Wahba 1990).
Smoothing splines was first developed in the numerical analysis context, and Wahba showed, followed by other
authors, that they had useful statistical properties. As a result, they began to be widely used in data analysis
and in various applications areas. In simulation context, (de Boer, Nicola, and Rubinstein 2000) used cubic
smoothing splines for estimating transition probability functions in the estimation of rare-event probabilities,
and (Keys and Rees 2004) used thin-plate smoothing splines for presenting a sequential simulation optimization
strategy.

3 SPLINE METAMODELS

In this paper, the simulation model is treated as the following black-box

z = η(x;τ) (4)

where only the inputs x, and the outputs z are observed and analyzed. The vector τ is composed by the
pseudo-random number streams that drive the simulation at x; in the black-box point of view, the values
of the internal variables and other knowledge about the internal functioning, of the simulation model, are
unobservable.

The combinations of the individual inputs (parameters or/and input variables) are named design points.
The set of design points defines an experimental design which is critical for providing a good fit. The
output may also be influenced by other factors like random error and initialization bias. The magnitude and
distribution of the random error can be estimated through the observation of the output multiple times at the
same design point (replication). In stochastic simulation, replication means that a given combination of inputs
i is simulated ri times using different pseudo random numbers, and the corresponding output are observed
yi1, . . . , yiri . Setting ri = r, the resulting sample means of the replicated responses

ȳi· =
1
r

r

∑
j=1

yi j
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have smaller variances than each individual response yi j. In this paper, for all design points, r simulation runs
must be carried out, and the simulation outputs data collected:

{yi j : i = 1, . . . ,n, j = 1 . . . ,r}

Selecting an input x and an output variable of interest y (y can be equal to some z j or a combinations of
z j’s), let the following metamodel be an approximation of the input-output relationship that is defined by the
simulation model (4):

ȳi· = f (x;θ)+ ε̄i·

where f is a smoothing spline function, ȳi· is the output of the simulation program correspondent to i-th
simulation configuration (or design point), with Yi j being the replication j of the i-th design point, and where
ε̄i· is the noise due to lack of fit of the metamodel, and inaccuracy caused by the pseudo-random streams,
with ε̄i· ∼ N(0,σ2). The vector θ is given by the vectorization of the transpose of Θ defined in (1):

θ = vec(ΘT ) = (θ1,m,θ2,m, . . . ,θn−1,m, . . . ,θ1,0,θ2,0, . . . ,θn−1,0)
T

The estimated smoothing spline function f (x, θ̂) is obtained applying the Reinsch’s approach (Reinsch 1967)
to the simulation context. This function minimizes

∫ b

a
[ f (2)(x;θ)]2dx (5)

among all functions such that

n

∑
i=1

[

ȳi· − f (xi;θ)

δȳi·

]2

≤ S, f ∈C2[a;b] (6)

The weights δȳi· , i = 1, . . . ,n control the magnitude of smoothing and are rescaled through the variation
of S.

4 EXPERIMENTAL DESIGN

The experimental design should effectively explore an experimental region of an input space through a small
number of design points. An experimental design is a set of input values, or design points, selected over a
range of interest. The points are chosen to efficiently investigate the relationship between the input and the
response.

A careful choice of an experimental design may better expose the relation between the inputs and the
response. For instance, a bad experimental design may suggest a linear relation between the inputs and the
response while the response is in fact nonlinear. The detection of such nonlinearities is important and can be
achieved with a larger number of input values or, better still, a careful selection of input values.

Assuming that the interesting features of the metamodel can belong to any part of the experimental region,
the design should be based on a selection of evenly distributed points throughout the region. Space-filling
designs provide coverage of the entire experimental region, providing a broad exploration of the model and
a valuable overview of what the response surface might look like. Whenever some parts of the experimental
region exhibit more interesting characteristics, the design should include more points to explore these parts.
These hybrid variations of evenly distributed and space-filling designs, may provide a better metamodel fit
since more detailed information on the relation between the inputs and the response is available.

The collection of simulation data requires some tactical decisions: perform a terminating or a steady-state
simulation; determine the initial conditions; choose the final conditions such as run time or number of events
completed; and decide on an appropriate balance between run length and the number of replications.

Terminating simulations are those that run until a specific event have occurred (including the event of
simulating a fixed amount of time). For terminating simulations, it may be necessary to censor results if we are
simulating rare events. Steady-state simulations have no natural termination point, and can keep generating
data for their analysis. For steady-state simulations, the warm-up period must be chosen carefully, and the
length of the warm-up period affects the total experimentation time.

In steady-state simulations, the initial conditions may generate rare sequences of events, that introduce a
warm-up period, until the system achieves statistical equilibrium. This warm-up creates bias in the simulation
output values. For example, when all queues are empty, the simulation program begins with a sequence of
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events that may have a low probability of occurring. So, the simulation output can be contaminated with an
initial bias (Law 2007, Section 9.5). To control the initial bias, that can be the greatest source of error in
the estimation of the metamodel parameters, an initial data deletion is performed. However, the initial data
deletion selection involves a compromise, since in a small deletion the bias can still affect the result, while a
large one may produce a large variance and it is not efficient. A good bias detection is important in the context
of the independent replications method, because usually many runs are needed. A survey of the initialization
bias problem can be found in (Pawlikowski 1990).

In this paper, we use the Welch’s procedure to detect the initial bias (Law 2007). For each replication
of the ith experimental point, we ignore the observations until the corresponding truncation point and collect
the remaining simulation results.

The selection of the number of replication in each design point is important since the response may be
affected by other factors, besides the selected input values. These factors introduce effects that can be referred
as unsystematic (random error or noise) and as systematic (bias). Replication allows the estimation of the
magnitude and distribution of random error, and the sample means of the replicated responses have smaller
variances than the individual responses.

5 ILLUSTRATIVE EXAMPLE

To illustrate the proposed fitting procedure, two examples are presented. The first example is the classical
M/M/1 queuing system and the second example is an automobile parts factory. All simulation experiments
were simulated using AweSim version 3.0 and the metamodels built in MATLAB 7.0 using the MATLAB’s
routine spaps which is based on the Reinsch’s method, and custom made routines.

5.1 Classical M/M/1 queuing system

In this example, the customers arrive according to a Poisson process with a constant expected arrival rate,
λ = 0.01, and that service times follow an exponential distribution with a mean service time, 1/µ . The
performance measure wherein we will concentrate is the mean time in system (response). The objective is to
express the mean time in system as a function of the mean service time (decision variable). The mean service
time values are between 5 and 75 minutes, corresponding to 0.05 ≤ ρ ≤ 0.75, where ρ = λ/µ = 1/(100µ)
is the traffic intensity.

For metamodel estimation, 8 different equally spaced values for mean service time were considered:

{1/µi : i = 1,8} = {5, 15, 25, 35, 45, 55, 65, 75}. (7)

For the metamodel validation, the following additional design points are used:

{1/µi : i = 1,7} = {10, 20, 30, 40, 50, 60, 70}. (8)

The measure of metamodel predictive accuracy is the error sum of squares

PSSE =
7

∑
i=1

(z̄i· − ẑi)
2 (9)

where ẑi is the predicted value using the fitted metamodel based on (7), and z̄i· = ∑r
j=1 zi j/r is the output of

the simulation program correspondent to i-th design point in (8).
For each of the 15 design points, r = 10 independent replications were used. All replications started with

an empty and idle system and the Welch’s procedure is used for initial data deletion (Law 2007).
For estimation purpose, we used several linear regression polynomials and cubic splines functions. For

each metamodel, we evaluate the error sum of squares based on the observations used on the fitting, and the
predictive error sum of squares (9); see Table 1. Among polynomials, the fourth degree polynomial has the
better SSE + PSSE and PSSE, although the the fifth degree polynomial has a better SSE. However, using
cubic splines we obtain the lowest SSE, as well as SSE+PSSE, compared with the other metamodels.

When using a polynomial a specific error sum of squares is obtained, whereas using spline metamodels,
the error sum of squares may be controlled with the tolerance S. When S approaches zero, SSE tends to
zero as expected from the observation of the condition (6). However, the sum SSE+PSSE does not tend to
zero and exhibits a minimum value of 187.0970 when the tolerance of approximately S = 230 is used; see
Figure 1.
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Table 1: Error sum of squares for several M/M/1 metamodels.

Metamodel SSE PSSE SSE+PSSE
second degree polynomial 1326.4 670.8715 1997.3
third degree polynomial 149.3073 148.6823 297.9896

fourth degree polynomial 103.5446 94.7659 198.3105
fifth degree polynomial∗ 92.4988 115.1810 207.6798

cubic spline with tolerance S = 230 24.8766 162.2204 187.0970
∗ numerical ill-conditioned fitting
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Figure 1: Error sum of squares (M/M/1 queuing system).

Letting m = 3 and a tolerance of S = 230, and using the matrix notation (1), the obtained spline metamodel
is represented by:

Θ =



















0.000345710 -4.44089e-17 1.26095 5.11365
6.77226e-5 0.0103713 1.36466 18.0688
0.00179552 0.0124030 1.59240 32.8203
-0.00323691 0.0662687 2.37912 51.7802
0.0108490 -0.0308387 2.73342 78.9614

-0.00521276 0.294631 5.37135 114.061
-0.00460828 0.138248 9.70014 192.025



















(10)

5.2 Automobile Parts Factory

An automobile parts factory model drills two different types of parts and then finishes the parts. Both operations
process only one part at a time. On the average, finishing operations have to be repeated 20 percent of the
time. If a part has been routed through finishing twice but still needs to be refinished, it must be drilled again.
The parts arrive according to gamma(2,λ1) and gamma(2,λ2), and take two and five minutes to be routed to
the drill area, respectively. Drilling time is triangularly distributed between 10 and 30 minutes, with a mode
of 15 minutes, while the finishing operation has a uniform distribution on the interval [2,5] minutes.

The response Y , average time in system, is expressed as a function of the mean time between arrivals
of one of the parts, corresponding to X = 2λ1 (decision variable). The other part is assumed to arrive at a
constant rate λ2 = 20. Two experimental designs were alternatively used, one for construction and the other
for validation. The first is the f ixed design which includes 19 equally spaced points:

{2λi : i = 1,19} = {0.5, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90}.
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The second is a f ill experimental design where the points are determined by a sequential procedure described
by (Santos and Santos 2008) since the response exhibits a nonlinear behavior:

{2λi : i = 1,19} = {0.5, 11.6875, 22.875, 28.4688, 31.2656,31.9648, 32.6641, 33.3633, 33.5381,

34.0625, 34.3138, 35.4609,36.8594, 39.6563, 45.25, 56.4375, 67.625, 78.8125, 90}.

At each point, for both experimental designs, 10 independent replications of 1500 observations each where
performed and 200 initial observations were removed to mitigate bias.

The mean response is modeled by the parametric arc-tangent function (Santos and Santos 2008) and two
spline metamodels. Using both designs, two metamodels were fitted through the nonlinear least-squares using
Trust-Region Reflective Newton method. The adjustments were performed by the Matlab’s fit routine, with
normalized points; see Table 2. Since there are no other controllable parameters, a better fitting can only be
obtained using a different function.

Table 2: Estimated metamodels for the parametric arc-tangent function.

Design Metamodel
f ill Arctan1 : y = 116.0−57.08 Arctan(−14.91 x−3.776)

f ixed Arctan2 : y = 116.5−56.97 Arctan(−19.83 x−8.246)

The splines defined in 5 and 6 can be tailored using a smooth tolerance parameter. Varying the tolerance
parameter values, metamodels can be constructed to match the SSE and PSSE error of sum squares of the
Arctan1 metamodel, respectively, using the same f ill design; see Table 3. Both metamodels present a worst
fitting than the Arctan1 as shown by the total error sum of squares SSE + PSSE. Nevertheless, a minimum
value of SSE + PSSE can be obtained with null tolerance (S = 0), as depicted in Figure 2. The parameters
for the resulting null tolerance cubic spline3 metamodel are the following

Θ =



























































-0.0038063 3.5404e-15 -0.25336 207.45
0.0046669 -0.051385 -0.48459 205.96
-0.0004535 0.018619 -0.64842 202.84
-0.0047819 0.011817 -0.49623 200.01

0.02845 -0.059911 -0.73671 197.22
-0.24952 0.36684 0.79794 195.6
0.40863 -3.3759 -14.248 177.57
-0.15873 2.7535 -17.36 73.011
-0.028238 0.37259 -1.7291 35.21
0.004951 -0.050977 -0.12103 32.35

-0.00064488 0.023287 -0.25948 31.089
-0.001115 0.013614 -0.074971 30.293

0.00020449 -0.0031106 -0.022454 30.12
0.00019862 -4.3258e-5 -0.038223 29.955
-0.00015337 0.0029361 -0.023759 29.788
-0.00015377 0.00063547 -0.0059015 29.723
0.00020294 -0.0016711 -0.01108 29.69
-9.1535e-5 0.001373 -0.01257 29.619



























































(11)

Table 3: Error sum of squares for metamodels fitted using the f ill design.

Metamodel SSE PSSE SSE+PSSE Tolerance (S)
Arctan1 161.0416 138.1521 229.1937
spline1 161.0416 183.1152 344.1568 88.27195
spline2 100.4395 138.1521 238.5916 50.5452
spline3 0.0 45.0701 45.0701 0.0

When using the equally spaced f ixed design, the minimum total error sum of squares is obtained for
approximately S = 379; see Figure 3. However, the large gap for 2λ2 = [30,35] in the f ixed design introduces
oscillations in the spline3 metamodel specially for 2λ2 = [20,30]; see Figure 4. This results in a poorer fitting
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Figure 2: Error sum of squares (automobile parts factory).

than the Arctan2 metamodel; see Table 4. Nonlinear functions provide a global adjustment were a small
number of parameters need to be estimated. Any additional point, or small movement of an existing point,
produces only slight changes on the estimated parameter values. Whereas, splines provide a piecewise fitting
where local changes may result in significant local changes in the resulting behavior.
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Figure 3: Error sum of squares (automobile parts factory).

As the above example depicts, the splines defined in (5) and (6) are quite sensitive to the selected
experimental design. The design points should be equally spaced along the response curve in order to avoid
large gaps.

6 CONCLUSIONS

Metamodels can be used as replacements for simulation models. The construction of a metamodel is based
on the number of selected design points. At each design point a number of replications are executed and the
correspondent outputs are collected. Parametric metamodels have global dependence since local behavior has
a strong influence on their behavior along the entire experimental region. Spline metamodels are inherently
better in approximating input-output relationships when responses vary rapidly and when the behavior in
different sub-regions are unrelated. Reinsch’s smoothing spline minimizes the total squared curvature of the
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Table 4: Error sum of squares for metamodels fitted using the f ixed design.

Metamodel SSE PSSE SSE+PSSE Tolerance (S)
Arctan2 57.01211 1427.354 1484.366
spline4 74.0066 3714.9 3788.9 370
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Figure 4: Spline metamodels with construction and validation design points.

spline restricted to a fixed tolerance that corresponds to the maximum error sum of squares. The tolerance
parameter can be tailored to achieve a given degree of smoothness for the resulting metamodel. By controlling
the tolerance parameter, the error sum of squares value (SSE) for the estimated metamodel may be minimized.
However, reducing the SSE may reduce the accuracy of the metamodel’s response for the values between the
construction design points. To control the accuracy a set of predictive values may be used and a predictive
error sum of squares (PSSE) computed. Thus, by minimizing SSE and PSSE, simultaneously, a good
adjustment may be achieved. The selection of a good experimental design is essential to obtain an accurate
metamodel. The procedure requires a set of evenly spaced design points along the response curve. The
proposed Reinsch’s smoothing spline metamodels provide a better approximation when the tolerance value
that minimizes SSE+PSSE and a good experimental design are used.
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