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ABSTRACT

This paper presents a user-friendly display, in a ten-by-eight matrix format, of a collection of 80
univariate distributions and their interrelationships. A simplified five-by-five matrix, showing only
25 families, is designed for student use. These relationships provide rapid access to information that
must otherwise be found through a time-consuming search of numerous sources.

1 INTRODUCTION

Univariate probability distributions are important because they provide the underpinnings of many of
the engineering models that are used in practice, for example, normal (Gaussian) for communication
systems and quality control, exponential for queueing, and Weibull for reliability. Univariate distri-
butions are taught in most probability and statistics courses in schools of business, engineering, and
science.

A figure illustrating the relationships among univariate distributions is useful for showing how
distributions correspond to one another. Nakagawa and Yoda (1977), Leemis (1986), and Leemis and
McQueston (2008) offer diagrams of 76 relations among univariate distributions. These diagrams
are difficult to use, however, as required distributions are not easy to locate. We believe a diagram
that displays the information in a matrix format is far more useful. Song (2005) organized 25 and 35
often-used distributions in the form of a matrix to facilitate a logical display, thereby enhancing ease
of location.

This paper improves upon these previous efforts by offering 80 relations in one user-friendly
figure, which retains the logical ordering provided by a matrix format. Moreover, we have corrected
some errors in Figure 1 of Leemis and McQueston (2008). Trying to locate the pairs corresponding
to these errors will clearly illustrate the need for the matrix form we introduce in this paper.

Some useful references for studying univariate distributions are Johnson and Kotz (1970), Johnson,
Kotz, and Balakrishnan (1995), Patil, Boswell, and Ratnaparkhi (1985), Patil et al. (1985), Evans,
Hastings, and Peacock (2000), Kotz and van Dorp (2004), Devroye (2006), and Dudewicz and Karian
(2009). None of these books, however, provide all of the simple relationships shown in this article.

2 A TEN-BY-EIGHT MATRIX

Figure 1 illustrates 80 univariate distributions, including 21 discrete and 59 continuous distributions.
The discrete distributions are displayed in rectangular boxes in the top three rows, with the third
row containing both discrete and continuous distributions. The row and column numbers are labeled
along the left-hand side and the top of Figure 1, respectively. Each distribution is then indexed in the
form RiC j, where i = 1,2, . . . ,10 and j = 1,2, . . . ,8. For example, Normal is indexed as R4C2. The
probability mass and density functions are summarized in Appendix A, where distributions are ordered
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alphabetically. The index number shown in the parenthesis beside the name of each distribution allows
users to easily find it in Figure 1.

2.1 Notation

In Figure 1, the distribution name and parameters are shown in each matrix cell. The range for
continuous distributions is also listed in the last row of each cell. Due to the limited space, the range
for discrete distribution is not shown. The parameters adopted satisfy the following conventions:

• N, K, n and k are integers;
• 0 ≤ p ≤ 1;
• a is the minimum; (and also a location parameter)
• b is the maximum; (and also a location parameter)
• µ is the expected value; (and also a location parameter)
• σ is the standard deviation;
• m is either the median or mode;
• θ , with or without subscripts, is the location parameter;
• β is the scale parameter;
• δ is the non-centrality parameter.

Notation for shape parameters is more complicated. We always use α (with or without subscripts) to
denote the shape parameter. For example, the following are shape parameters: the mode parameter
m in the Triangular(a,m,b), the integer k in the Erlang(k,β ), the degrees of freedom υ in the Chi-
Squared(υ), and the degrees of freedom υ1 and υ2 in the F(υ1,υ2). There are more exceptions.

2.2 Relations

Relations between distributions are indicated with a dashed, solid, or mixed dash-solid lines. Dashed
lines show asymptotic relations, solid lines show transformations or special cases, and mixed dash-
solid lines show mixture relations. For convenience, we use “source” and “target” to label two
related distributions. That is, each line shows a relation from its “source” distribution to its ”target”
distribution. The random variable X is used for all source distributions. Sometimes, when space is
limited, two lines are combined into one with two arrows; the relation is then placed closer to the
target distribution. For example, there is a solid line with two arrows connecting the Normal (R4C2)
and the Standard Normal (R4C3). The relation (X −µ)/σ , close to the right arrow, indicates that the
source distribution is the Normal (R4C2) and the target distribution is the Standard Normal (R4C3).
The other relation, µ +σX , which is close to the left arrow, indicates the reverse.

In Figure 1, if more than one random variable is involved to form a transformation, the relationship
between these random variables is denoted by “iid” (independent and identically distributed) and
“indep” (independent). For example, the relation between the Geometric (R2C2) and the Negative
Binomial (R3C2) is marked with “∑k

i=1 Xi, iid”, which indicates that the sum of k iid Geometric
random variables yields a Negative Binomial random variable.

The transformation relationships in Figure 1 can be combined to form other relationships. For
instance, a path from the Standard Normal (R4C3) to the Chi-Squared (R4C4) to the Gamma (R6C4)
to the Exponential (R8C3) indicates that the random variable X2

1 + X2
2 has the Exponential (β = 2)

distribution if X1 and X2 are independent Standard Normal random variables.
There is a special relationship between the Standard Uniform (R8C4) and any continuous dis-

tribution. That is, FX(X) ∼ Uniform(0,1), where FX is the cumulative distribution function (cdf) of
any continuous random variable X . Therefore, a connection with the relation FX(X) could be drawn
from any continuous distribution to the Standard Uniform. Connections with the relation F−1

X (U),
where U ∼ Uniform(0,1), could be drawn from the Standard Uniform to any distribution. The ran-
dom variable F−1

X (U) is known as the inverse-cdf transformation (Devroye, 2006; Gentle, 2003; and
Schmeiser, 1980). When space allows, we show a connection indicating the inverse cdf between the
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Standard Uniform U and other distributions. For example, we show the arrows from the Standard
Uniform to the Exponential distribution (R8C3), Rectangular (R8C8), Loglogistic (R9C5), Logistic
(R10C5), and Pareto (R10C3).

To indicate that the inverse cdf of a continuous random variable can be expressed as a closed
form, we place a black circle in the right bottom of the corresponding box. Distributions with this
property include Weibull (R6C2) and Rayleigh (R7C1). To indicate that the geometric (R1C2 and
R2C2) and exponential (R8C3) distributions possess memoryless property, we mark a “a circled x”
in the left bottom of these three entries.

The relation of any cell to itself is indicated by a connection to itself. Such “self-directed”
connections show eight relations; C, Ciid, I, L, Mn, Mx, P, and S. (The notation is defined below in
alphabetical order.) It should be noted that the parameters of source and target distributions for the
self-directed connections are not the same.

1. The convolution property (C).

The target random variable is
n
∑

i=1
Xi where Xi, i = 1,2, . . . ,n, are independent source random

variables. For example, the self-directed connection on Chi-Squared (R4C4) indicates that the
sum of n independent chi-square random variables yields a new random variable following
chi-square distribution.

2. The convolution property requiring iid source random variables (Ciid).

The target random variable is
n
∑

i=1
Xi, where Xi, i = 1,2, . . . ,n, are iid source random variables.

For example, the self-directed connection on Cauchy (R4C8) indicates that the sum of n iid
Cauchy random variables yields a new random variable following Cauchy distribution. It
should be noted that Cauchy (R4C8) is the only one having the Ciid

v property.

3. The linear combination property (L).

The target random variable is
n
∑

i=1
aiXi, where Xi, i = 1,2, . . . ,n, are independent source random

variables and ai are real constants. For example, the self-directed connection from Normal
(R4C2) back to the normal indicates that the linear combination of independent normal random
variables yields a normal distribution.

4. The inverse property (I).

The target random variable is
1
X

, where X is the source random variable. For example, the

self-directed connection on F (R4C5) indicates that the inverse of an F random variable follows
F distribution.

5. The product property (P).

The target random variable is
n
∏
i=1

Xi, where Xi, i = 1,2, . . . ,n, are independent source random

variables. For example, the self-directed connection on Log Normal (R5C2) indicates that
the product of n independent Log Normal random variables yields a new random variable
following Log Normal distribution.

6. The scaling property (S).
The target random variable is kX , where X is the source random variable and k is a positive
real constant. For example, the self-directed connection on Exponential (R8C3) indicates that
k times an independent exponential random variable yields a new random variable following
exponential distribution.

7. The minimum property (Mn).
The target random variable is min(X1,X2, ...,Xn), where Xi, i = 1,2, . . . ,n, are iid source random
variables. For example, the self-directed connection on Exponential (R8C3) indicates that the
smallest of n iid exponential random variables follows the exponential distribution.
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8. The maximum property (Mx).
The target random variable is max(X1,X2, ...,Xn), where Xi, i = 1,2, . . . ,n, are iid source random
variables. For example, the self-directed connection on Standard Power (R9C6) indicates that
the largest of n iid standard power random variables follows standard power distribution.

If more than one source random variable is used to form the corresponding target random variable
in self-directed connections, independence is required, but iid is not necessary. Specifically, L, C, and
P require independence, not necessarily iid, for source random variables. However, Ciid, Mx, and Mn
require iid source random variables. Since L implies C and S, the C and S properties are not listed
on self-directed connections having L in Figures 1 and 2.

2.3 The organizing principles

The organizing principles for defining the ten-by-eight matrix are (1) no connection crossings, (2)
shortening the length of connections, (3) grouping distributions with similar properties, and (4) placing
alternative forms (e.g., discrete vs. continuous distribution, central vs. non-central, and standard vs
non-standard) of the same distributions near each other. The resulting matrix is not unique. There are
clearly many other formats that may be more useful depending on other desired organizing principles.

3 A Simplified Five-by-Five Matrix

An updated version of an earlier form (see Song 2005) of the matrix format is illustrated in Figure 2,
which displays 25 probability distributions in a five-by-five matrix. Four changes have been made:
(1) the discrete vs. continuous distributions are made distinct by displaying discrete distributions in
rectangular boxes, (2) additional properties (C, Ciid, I, Mn, Mx, P, and S) related to ”self-directed”
connections are added, and (3) closed-form and memoryless properties are now marked in their
corresponding boxes by, respectively, a black circle in the bottom right and a circled x in the bottom
left. To avoid confusion with index numbers used in Appendix A, we do not list row and column
numbers in Figure 2. This simpler version is valuable because it covers only the distributions that are
taught in introductory courses and used by most practitioners in industrial settings.
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A MASS AND DENSITY FUNCTIONS

To define the notation used in Figures 1 and 2, we state the mass and density functions here. The
usual “and zero, elsewhere” is implied.

Discrete Distributions

1. Benford (R3C8):

fX(x) =log10

(

1+
1
x

)

, x = 1,2, ...,9

2. Bernoulli (p) (R2C5):

fX(x) = px(1− p)1−x, x = 0,1
3. Beta Binomial (n,α1,α2) (R2C7):

fX(x) =
Γ(n+2)Γ(α1 +α2)Γ(α1 + x)Γ(n− x+α2)

(n+1)Γ(α1)Γ(α2)Γ(x+1)Γ(n− x+1)Γ(n+α1 +α2)
,

x = 0,1, . . . ,n
4. Beta Pascal (k,α1,α2) (R2C1):
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fX(x) = Ck−1
x−1

B(α1 + k,x+α2 − k)
B(α1,α2)

, x = 0,1, . . .

5. Binomial (n, p) (R3C5):

fX(x) = Cn
x px(1− p)n−x, x = 0,1, . . . ,n

6. Discrete Uniform (x1,x2, . . . ,xn) (R1C7):

fX(x) =
1
n

, x = x1,x2, . . . ,xn

7. Discrete Weibull (p,α) (R1C1):

fX(x) = (1− p)xα − (1− p)(x+1)α
, x = 0,1, . . .

8. Equal-Spaced Uniform (a,b,c) (R1C8):

fX(x) =

(

1+
b−a

c

)−1

, x = a,a+ c,a+2c, . . . ,b

9. Gamma Poisson (α,β ) (R3C3):

fX(x) =
Γ(x+α)β x

Γ(α)(1+β )α+xx!
, x = 0,1, . . .

10. Geometric(trials) (p) (R2C2):

fX(x) = p(1− p)x−1, x = 1,2, . . .
11. Geometric(failures) (p) (R1C2):

fX(x) = p(1− p)x, x = 0,1, . . .
12. Hypergeometric (N,K,n) (R2C6):

fX(x) =
CK

x CN−K
n−x

CN
n

, x = max{n−N +K,0}, . . . ,min{K,n}
13. Logarithm (c) (R1C3):

fX(x) =
−(1− c)x

xlnc
, x = 1,2, . . .

14. Negative Binomial, Pascal (k, p) (R3C2):

fX(x) = Cx−1
k−1 pk(1− p)x−k, x = k,k +1, . . .

15. Negative Hypergeometric (N,K,k) (R2C3):

fX(x) =
CK

k−1CN−K
x−k

CN
x−1

· K − k +1
N − x+1

, x = k,k +1, . . . ,N −K + k

16. Poisson (µ) (R3C4):

fX(x) =
µx e−µ

x!
, x = 0,1,2, . . .

17. Polya (n, p,β ) (R1C4):

fX(x) =
Cn

x ∏x−1
j=0(p+ jβ ) ·∏n−x−1

k=0 (1− p+ kβ )

∏n−1
i=0 (1+ iβ )

,

x = 0,1,2, . . . ,n
18. Power Series (c,A(c)) (R2C4):

fX(x) =
axcx

A(c)
, where c > 0 and A(c) = ∑x axcx, x = 0,1,2, . . .

19. Standard Discrete Uniform (0,n,1) (R2C8):

fX(x) =
1

n+1
, x = 0,1,2, . . . ,n

20. Zeta (β ) (R1C5):
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fX(x) =
1

xβ Σ∞
i=1(1/i)β , x = 0,1,2, . . .

21. Zipf (n,β ) (R1C6):

fX(x) =
1

xβ Σn
i=1(1/i)β , x = 1,2, . . . ,n

Definition of Continuous Distributions

1. Arcsine (R6C7):

fX(x) = [ π
√

x(1− x) ]−1, 0 < x < 1
2. Beta (α1, α2) (R7C5):

fX(x) =
Γ(α1 +α2)xα1−1(1− x)α2−1

Γ(α1)Γ(α2)
, 0 < x < 1

3. Cauchy (θ ,β ) (R4C8):

fX(x) =

{

βπ
[

1+(
x−θ

β
)2

]}−1

, −∞ < x < ∞

4. Chi (υ) (R5C4):

fX(x) =
xυ−1e−x2/2

Γ(υ/2)2υ/2−1
, x > 0

5. Chi-Squared (υ) (R4C4):

fX(x) =
xυ/2−1e−x/2

Γ(υ/2)2υ/2
, x > 0

6. Doubly Noncentral F (υ1,υ2,δ ,α) (R5C7):

fX(x) =
∞
∑
j=0

∞
∑

k=0

[

e−δ/2(1
2δ ) j

j!

][

e−α/2(1
2α)k

k!

]

×υ(υ1/2)+ j
1 υ(υ2/2)+k

2 x(υ1/2)+ j−1

× (υ2 +υ1x)−
1
2 (υ1+υ2)− j−k

×
[

Γ(1
2υ1 + 1

2υ2 + j + k)

Γ(1
2υ1 + j)Γ(1

2υ2 + k)

]

, x > 0

7. Doubly Noncentral T (υ ,δ ,α) (R5C8):

See Johnson, Kotz, and Balakrishnan (1995, p.533)
8. Erlang (k, β ) (R7C4):

fX(x) =
xk−1exp(−x/β )

β k(k−1)!
, x > 0

9. Error (m, θ1, θ2) (R10C1):

fX(x) =
exp[−(|x−m|/θ1)

2/θ2/2]

θ1(2θ2/2+1Γ(1+θ2/2))
, −∞ < x < ∞

10. Exponential (β ) (R8C3):

fX(x) = β−1 exp(−x/β ), x > 0
11. Exponential Power (λ , α) (R9C4):

fX(x) = exp[1− exp(λxα)]exp(λxα)λαxα−1, x > 0
12. Extreme Value (α , β ) (R6C1):

fX(x) = (α/β )exp [αx− exp(αx)/β ], −∞ < x < ∞
13. F (υ1,υ2) (R4C5):
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fX(x) =
Γ
(υ1+υ2

2

)

(υ1/υ2)
υ1/2

Γ(υ1/2)Γ(υ2/2)

x(υ1/2)−1

(1+υ1υ−1
2 x)(υ1+υ2)/2

, x > 0

14. Gamma (α , β ) (R6C4):

fX(x) =
(x/β )α−1exp(−x/β )

βΓ(α)
, x > 0

15. Gamma Normal (µ,α,β ) (R5C1):

See Evans, Hastings, and Peacock (2000, p.103)
16. Generalized Gamma (α1, α2, β ) (R7C3):

fX(x) =
α2

Γ(α1)β

(

x
β

)α1α2−1

exp

[

−(
x
β

)α2

]

, x > 0

17. Generalized Pareto (α1, α2, θ ) (R10C2):

fX(x) =

(

α1 +
α2

x+θ

)

(

1+
x
θ

)−α2
exp(−α1x), x > 0

18. Gompertz (k, α) (R9C7):

fX(x) = kαxexp[−k(αx −1)/lnα], x > 0
19. Hyperbolic Secant (R3C7):

fX(x) = sech(πx), −∞ < x < ∞
20. Hyperexponential (βi, i = 1,2, . . . ,n) (R7C2):

fX(x) =
n
∑

i=1

pi

βi
e−x/βi , where pi > 0 and ∑n

i=1 pi = 1, x > 0

21. Hypoexponential (βi, i = 1,2, . . . ,n) (R9C2):

fX(x) =
n
∑

i=1
(1/βi)e−x/βi

(

n
∏

j=1, j 6=i

βi

βi −β j

)

, where βi 6= β j,∀i 6= j,x > 0

22. Increasing Decreasing Bathtub, IDB (k, α1, α2) (R8C1):

fX(x) =
(1+α2x)kx+α1

(1+α2x)α1/α2+1
exp(−kx2/2), x > 0

23. Inverse Gaussian, Wald (µ,β ) (R4C1):

fX(x) =

√

β
2πx3 exp

[

− β
2µ2x

(x−µ)2

]

, x > 0

24. Inverted Beta (α1, α2) (R7C7):

fX(x) =
xα2−1(1+ x)−α1−α2

B(α1,α2)
, x > 0

25. Inverted Gamma (α , β ) (R6C5):

fX(x) =
1

Γ(α)β α x−α−1exp[−1/(βx)], x > 0

26. Kolmogorov-Smirnov (n) (R6C8):

See Drew,Glen,and Leemis(2000)
27. Laplace(µ , β ) (R9C1):

fX(x) = (2β )−1exp[−|x−µ|/β ], −∞ < x < ∞
28. Lévy (R6C7):

fX(x) =

√

β
2π

e−β/2x

x3/2
, x > 0

29. Log Gamma (α , β ) (R5C3):

fX(x) =
1

β αΓ(α)
exp(αx)exp(−ex/β ), −∞ < x < ∞
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30. Log Logistic (α1, α2) (R9C5):

fX(x) =
α2e−α1x−α2−1

[1+ e−α1x−α2]2
, x > 0

31. Log Normal (m,α) (R5C2):

fX(x) =
(

xα
√

2π
)−1

exp

[

−1
2

[

ln(x/m)

α

]2
]

, x > 0

32. Logistic (µ , β ) (R10C5):

fX(x) =
exp[−(x−µ)/β ]

β{1+ exp[−(x−µ)/β ]}2 , −∞ < x < ∞

33. Logistic Exponential (α , β ) (R9C3):

fX(x) =
α(1/β )(ex/β −1)α−1ex/β

(1+(ex/β −1)α)2
, x > 0

34. Lomax (λ , α) (R10C6):

fX(x) =
λα

(1+λx)α+1 , x > 0

35. Makeham (k, α1, α2) (R9C8):

fX(x) = (α1 + kαx
2)exp

[

−α1x− k(αx
2 −1)

lnα2

]

, x > 0

36. Minimax (α1, α2) (R10C8):

fX(x) = α1α2xα2−1(1− xα2)α1−1, 0 < x < 1
37. Muth (α) (R8C2):

fX(x) = (eαx −α)exp

[

− 1
α

eαx +αx+
1
α

]

, x > 0

38. Nakagami (k,α) (R6C3):

fX(x) =
2αα

Γ(α)kα x2α−1exp
(

−α
k

x2
)

, x > 0

39. Noncentral Beta (α1,α2,δ ) (R7C6):

fX(x) =
∞
∑

i=0

Γ(i+α2 +α1)

Γ(α1)Γ(i+α2)

(

e−δ/2

i!

)

(

δ
2

)i

xi+α2−1(1− x)α1−1,

0 < x < 1
40. Noncentral Chi-Squared (υ ,δ ) (R5C5):

fX(x) =
∞
∑

k=0

e−δ/2(δ/2)k

k!
· e−x/2x(υ+2k)/2−1

2(υ+2k)/2Γ [(υ +2k)/2]
, x > 0

41. Noncentral F (υ1,υ2,δ ) (R5C6):

fX(x) =
∞
∑

i=0

Γ(2i+υ1+υ2
2 )(υ1

υ2
)(2i+υ1)/2x(2i+υ1−2)/2e−δ/2(δ

2 )i

Γ(υ2
2 )Γ

(

2i+υ1
2

)

i!
(

1+ υ1
υ2

x
)(2i+υ1+υ2)/2

, x > 0

42. Noncentral T (υ ,δ ) (R4C7):

fX(x) =
υυ/2e−δ 2/2

√
πΓ(υ/2)(υ + x2)(υ+1)/2

∞
∑

i=0

Γ[(υ + i+1)/2]

i!

(

xδ
√

2√
υ + x2

)i

,

−∞ < x < ∞
43. Normal, Gaussian (µ,σ2) (R4C2):

fX(x) =
1√
2π

exp

[

−1
2

(

x−µ
σ

)2
]

, −∞ < x < ∞
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44. Pareto (θ , α) (R10C3):

fX(x) =
αθ α

xα+1 , x ≥ θ
45. Power (α , β ) (R10C7):

fX(x) =
αxα−1

β α , 0 < x < β

46. Rayleigh (β ) (R7C1):

fX(x) = (2x/β 2)exp[−(x/β )2], x > 0
47. Rectangular, Uniform (a, b) (R8C8):

fX(x) = 1/(b−a), a < x < b
48. Standard Cauchy (R3C6):

fX(x) = [π (1+ x2)]−1, −∞ < x < ∞
49. Standard Logistic (R10C4):

fX(x) =
exp(−x)

[1+ exp(−x)]2
, −∞ < x < ∞

50. Standard Normal (R4C3):

fX(x) =
1√
2π

exp(−x2/2), −∞ < x < ∞

51. Standard Power (α) (R9C6):

fX(x) = αxα−1, 0 < x < 1
52. Standard Triangular (R8C5):

fX(x) =

{

x+1, −1 < x < 0
1− x, 0 ≤ x < 1

53. Standard Uniform (R8C4):

fX(x) = 1, 0 < x < 1
54. Standard Wald (β ) (R3C1):

fX(x) =

√

β
2πx3 exp

[

− β
2x

(x−1)2

]

, x > 0

55. T (υ) (R4C6):

fX(x) =
Γ[(υ +1)/2]

Γ(υ/2)
√

πυ

(

1+
x2

υ

)−(υ+1)/2

, −∞ < x < ∞

56. Triangular (a, m, b) (R8C6):

fX(x) =















2(x−a)

(m−a)(b−a)
, a < x ≤ m

2(b− x)
(b−a)(b−m)

, m < x < b

57. Two-Sided Power, TSP (a, b, m, n) (R8C7):

fX(x) =











n
b−a

(
x−a
m−a

)n−1 a < x ≤ m

n
b−a

(
b− x
b−m

)n−1 m < x < b

58. von Mises (α , µ) (R7C8):

fX(x) =
exp[αcos(x−µ)]

2πI0(α)
, where I0(α) =

∞
∑

i=0

α2i

22i(i!)2 , 0 < x < 2π

59. Weibull (α , β ) (R6C2):

fX(x) = αβ−αxα−1exp [−(x/β )α ], x > 0
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